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Abstract

Most state-of-the-art methods for action recognition

consist of a two-stream architecture with 3D convolutions:

an appearance stream for RGB frames and a motion stream

for optical flow frames. Although combining flow with RGB

improves the performance, the cost of computing accurate

optical flow is high, and increases action recognition la-

tency. This limits the usage of two-stream approaches in

real-world applications requiring low latency. In this paper,

we introduce two learning approaches to train a standard

3D CNN, operating on RGB frames, that mimics the mo-

tion stream, and as a result avoids flow computation at test

time. First, by minimizing a feature-based loss compared to

the Flow stream, we show that the network reproduces the

motion stream with high fidelity. Second, to leverage both

appearance and motion information effectively, we train

with a linear combination of the feature-based loss and the

standard cross-entropy loss for action recognition. We de-

note the stream trained using this combined loss as Motion-

Augmented RGB Stream (MARS). As a single stream, MARS

performs better than RGB or Flow alone, for instance with

72.7% accuracy on Kinetics compared to 72.0% and 65.6%

with RGB and Flow streams respectively.

1. Introduction

The emergence of convolutional neural networks

(CNNs) [13, 19, 36], together with larger datasets [10, 18]

have recently led to remarkable progress in action recog-

nition [2, 32, 37]. To integrate temporal information with

CNNs, three main ideas have been proposed. Simonyan and

Zisserman [32] introduced a two-stream approach where

one stream models appearance by taking RGB frames as

input, and the other processes optical flow frames to lever-

age motion information. Tran et al. [37] proposed an ar-

chitecture with 3D convolutions on RGB frames, i.e., con-

volutions operating over both space and time. And lastly,
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Figure 1: Accuracy vs. time on MiniKinetics for different

streams using 16-frame clips. Time is averaged over all

videos. Flows are estimated using TV-L1 [45]. Our MERS

approach successfully mimics the Flow stream, while being

significantly faster, as it avoids flow computation. Combin-

ing MERS with the RGB stream (MERS+RGB), we achieve

accuracy comparable to RGB+Flow at a significantly lower

computation cost. Rather than using two streams, our

MARS approach is twice as fast as MERS+RGB and main-

tains the same performance. Note that computation time

only depends on the input size, irrespective of the dataset:

MARS is ∼100 times faster than RGB+TVL1Flow.

recurrent neural networks, such as LSTMs, have been used

to aggregate information iteratively over frames [5]. Recent

methods [2, 38, 44] are based on the combination of the

two-stream approach with 3D convolutions in each stream

that are trained using large datasets [18].

In summary, the strategy of combining 3D CNN-based

RGB and Flow streams produces the best results, but it

does have significant drawbacks. Firstly, two-stream ap-

proaches require explicit and accurate optical flow extrac-

tion from RGB frames, which is computationally expensive,

as shown in the accuracy vs. time plot on the MiniKinetics

dataset [44] in Figure 1. From the plot, we observe that

Flow and RGB+Flow are significantly slower than RGB.

Efficient methods for computing flow do exist [34], but they

are not as effective when combined with the RGB stream
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Figure 2: Training to mimic the Flow stream. We first train

the Flow stream to classify actions using optical flow clips

with cross entropy loss and freeze its weights. To mimic

flow features using RGB frames, in step 1, we backpropa-

gate the MSE loss through all the layers of MERS except

the last layer. In step 2, we separately train the last layer of

MERS with a cross entropy loss.

(see Figure 4a, and also noted in [30]). Secondly, optical

flow needs to be estimated before a forward pass of the net-

work can be computed. Thus, two-stream approaches not

only require heavy computational resources, but also lead to

high latency for recognizing actions in an online scenario.

As a consequence, they cannot be applied in real-world ap-

plications, even when the architecture is optimized [44].

In this paper, we propose two novel learning strategies,

based on the concept of distillation [14] and learning under

privileged information [39], to avoid flow computation at

test time, while preserving the performance of two-stream

approaches. To begin with, we train a standard 3D CNN

that takes RGB as input, and hallucinates features from the

Flow stream. More precisely, we minimize the difference

between features from the layer preceding the last fully-

connected layer of the network, and features at the same

level from the motion stream (see Figure 2). In other words,

our stream is similar to the RGB stream in terms of archi-

tecture and inputs, but is trained using a different loss func-

tion. We show that by using this approach, Flow features

can be obtained from RGB frames without explicit optical

flow computation during inference. For ease of notation,

we denote this network as Motion-Emulated RGB Stream

(MERS). MERS shows that, by accurately mimicking the

Flow stream, one can effectively transfer knowledge gained

from optical flow to a stream with RGB inputs based on 3D

convolutions. More importantly, it also implies that flow
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Figure 3: Training to leverage motion and appearance in-

formation. Initially, we train the Flow stream to classify

actions using optical flow clips with cross entropy loss and

freeze its weights. Our approach, MARS, leverages both

motion and appearance information by backpropagating the

cross entropy loss in addition to MSE loss between features,

through all the layers of the network.

computation can be avoided at test time. By combining the

standard RGB stream with our new stream (MERS) based

only on RGB inputs, we obtain accuracy comparable to a

two-stream approach (RGB+Flow), but at a significantly

lower computational cost (see MERS and RGB+MERS vs.

Flow and RGB+Flow in Figure 1).

We then go beyond mimicking flow features, and pro-

pose to combine appearance and motion information, ef-

fectively into a single stream. This is achieved by train-

ing a standard 3D CNN with RGB inputs to minimize

the difference in features compared to the Flow stream

(as in MERS), as well as to perform action recognition

(cross entropy loss, as in a standard RGB stream), see Fig-

ure 3. We denote this network by MARS for Motion-

Augmented RGB Stream. Experiments highlight that a

network trained using our novel approach, performs bet-

ter than the individual RGB and Flow streams, and is

comparable to the two-stream combination (RGB+Flow),

with significantly lower computational cost, see Figure 1.

This shows that MARS effectively leverages both appear-

ance and motion information. Specifically, MARS ob-

tains 72.7% accuracy on Kinetics compared to 72.0%

and 65.6% for RGB and Flow respectively. Simi-

larly on HMDB51 (split-1), MARS obtains 80.1% ac-

curacy, compared to 73.5% and 75.9% for RGB and

Flow stream, respectively. Code and models are available

at http://www.europe.naverlabs.com/Research/

Computer-Vision/Video-Analysis/MARS.

2. Related Work

Significant progress has been made with CNNs for

image-based tasks like classification [13, 19], segmenta-

tion [3, 23] and object detection [12, 28], especially since

2012. Their impact on problems in the video domain was
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not remarkable initially due to the inability of early models

to capture temporal variations in video, and the lack of large

video datasets. We discuss strategies developed to address

this, e.g. two-stream architectures and new datasets, in the

following. We also summarize recent work on distillation

methods to transfer knowledge between two networks, as it

is related to our proposed approach with transfer between

RGB and Flow streams.

Two-stream networks. Simonyan and Zisserman [32]

proposed a two-stream 2D CNN architecture, where one

stream operates on RGB frames, and the other on opti-

cal flow. The two streams are trained to estimate action

class labels, and the final label is obtained by averaging

the scores of both the streams. Feichtenhofer et al. [8] pre-

sented improvements to this two-stream network with dif-

ferent strategies to fuse the two streams. Initial work in

this two-stream paradigm was focused on 2D CNNs, but a

transition to 3D CNNs was made since spatio-temporal fea-

tures are better learned with 3D CNNs compared to their

2D equivalents [37]. This transition comes at: (i) a high

computational cost, largely due a large number of param-

eters that need to be optimized [37, 38, 44], and (ii) the

problem of overfitting due to small datasets. To deal with

the problem of overfitting, Carreira and Zisserman [2] in-

troduced the Kinetics dataset [18], which was large enough

to successfully train 3D CNNs [11]. Using RGB and Flow

streams pretrained on Kinetics, I3D [2] achieved the state of

art on the HMDB51 [20] and UCF101 [33] datasets. Meth-

ods such as [38, 44] replaced 3D convolutions with separate

spatial and temporal convolutions, which significantly re-

duces the number of parameters to learn, to alleviate the is-

sues of computational cost. Irrespective of their differences,

all the methods discussed above use hand-crafted optical

flow features such as [1, 45] for the motion stream, creating

a bottleneck for fast and online inference. Such improve-

ments when combining the two streams suggest that despite

spatio-temporal convolutions, the appearance stream fails

to fully capture the information from the motion stream.

In contrast, our approach avoids flow computation at test

time, while maintaining the state-of-the-art performance of

the two-stream framework.

Joint appearance and motion modeling. CNNs have

also been used to estimate optical flow directly from RGB

frames [6, 16, 27], instead of relying on hand-crafted opti-

cal flow methods, typically with an encoder-decoder struc-

ture. This makes the Flow stream end-to-end trainable us-

ing a loss on optical flow to guide the flow component, i.e.,

learn optical flow from RGB frames, and then recognize

actions with the estimated optical flow. One alternative to

this loss, which requires ground-truth optical flow, is using

an unsupervised loss to train on action datasets where this

ground-truth is unavailable [49]. Other approaches, such

as [4, 26] used an off-the-shell optical flow method ([1]

in [4], EpicFlow [29] in [26]) as pseudo ground-truth flow.

Fan et al. [7] integrate TV-L1 flow [45] in the form of a dif-

ferentiable module into a CNN. Instead of learning the flow

module from scratch, they initialize it with a model learned

on optical flow benchmarks, and only train the network for

action recognition, without any loss on flow. As expected,

the output of the flow module learned in this fashion no

longer corresponds to an accurate optical flow. In contrast

to these works, we propose to compute a loss on the fea-

tures from the motion stream, thereby allowing the network

to mimic or enhance the Flow stream.

Very recent works have attempted to model appearance

and motion into a single stream [21, 35], with modules de-

signed to better exploit temporal information, leading to

complex architectures for a modest gain. We show that our

strategy of minimizing a feature-based loss provides an ef-

fective way to integrate temporal information into a stan-

dard 3D convolutional architecture.

Distillation. Our proposed learning approach is related to

the concept of generalized distillation [24] that combines

distillation [14] and privileged information [39]. Distilla-

tion was originally proposed for knowledge transfer from a

complex to a simple model by using class probabilities of

the complex model as ‘soft target’ for the smaller one [14].

In a similar spirit, our goal is to transfer knowledge from the

motion stream to a network with only RGB input, without

explicit flow computation. The learning under privileged

information paradigm provides a model trained with addi-

tional information available only in the training phase and

not at test time [39]. In our case, flow is the privileged in-

formation available for training, along with RGB, but only

RGB is available at test time.

Garcia et al. [9] developed a distillation framework for

action recognition with their four-step process that hallu-

cinates depth features from RGB frames. They distilled

depth features via logits, as well as matching feature maps

of depth and RGB networks. In a similar spirit, Hoffmann et

al. [15] hallucinate depth information for an object detector

by combining different losses between mid-level features

with standard object detection losses. Another recently pro-

posed graph distillation approach [25] dynamically lever-

ages information across different modalities. Our method

differs from these works as: (a) we consider the case of

RGB and Flow inputs, and (b) distill knowledge from the

Flow to the RGB stream by matching high-level features,

instead of matching class probabilities (logits).

3. Learning to Replace Flow

The state of the art for action recognition leverages both

appearance (RGB) and motion (Flow) streams [2]. These

streams have standard image architectures with 3D convo-

lutions instead of 2D convolutions, and take clips of a fixed

length as input. Given a video clip of consecutive frames
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of an action ŷ, the RGB and Flow streams are trained sep-

arately to classify actions. Let s
RGB

(resp. s
Flow

) denote the

score computed by the RGB (resp. Flow) network before

softmax, and y
RGB

(resp. y
Flow

) the predicted class, i.e., the

one with the highest score. The prediction at test time is

usually obtained by averaging s
RGB

and s
Flow

.

We now address the challenge of avoiding flow compu-

tation at test time, while achieving similar performance as

two-stream network. To this end, we propose a solution

based on the concept of learning under privileged infor-

mation [39]. We consider the Flow stream, operating on

flow clips, as a teacher network that possesses vital infor-

mation needed for action recognition. Our goal is to train

a second network (student) to classify actions using RGB

frames as input, along with the privileged information from

the teacher, i.e., Flow, that is supplied only at training time.

In the following, we assume that the Flow stream is already

trained for action recognition and we freeze its weights. We

now detail our two learning strategies: (i) to mimic flow fea-

tures using RGB frames (Section 3.1), and (ii) to leverage

both appearance and motion information (Section 3.2).

3.1. MERS

Our first training strategy to hallucinate flow features

from RGB input is denoted as Motion Emulating RGB

Stream (MERS). We achieve this by imposing a loss func-

tion at the feature level. Initial layers of a CNN repre-

sent low-level local features, while the latter layers repre-

sent high-level global features [46], which are highly dis-

criminative [31] for the concerned task. We thus use a

loss on the output of the layer immediately before the final

fully-connected layer of MERS, to mimic those of the Flow

stream. We denote these features from MERS and Flow

streams as fc
MERS

and fc
Flow

, respectively. Figure 2 illus-

trates the training strategy for MERS. MERS has a similar

architecture and inputs as a standard RGB stream with 3D

convolutions, but its target is to reduce the Mean Squared

Error (MSE) loss between these features:

L
MERS

= ‖fc
MERS

− fc
Flow

‖2. (1)

Applying this loss at the penultimate layer of the network

leaves the last layer of MERS untrained. We follow a two-

step training procedure, where we first train all the layers

of MERS, except the last one, using the mean squared loss

(1). This training provides a stream that mimics the fea-

tures of the Flow stream. For performing action recognition,

we train (Step 2 in the figure) only the last fully-connected

layer, i.e., the classifier, separately, with a cross entropy loss

using these “mimicked” features.

In summary, we first train the Flow stream to classify

actions using optical flow clips with cross entropy loss be-

tween the true class labels ŷ and the predicted class labels

y
Flow

. Once the Flow stream is trained, we freeze its weights.

We then train MERS to mimic the Flow stream using RGB

frames by backpropagating the MSE loss between fc
MERS

and fc
Flow

through the first n − 1 layers of a n layered net-

work. These hallucinated flow features are finally used for

action classification by training the nth layer of MERS, with

a cross-entropy loss between the true class, ŷ and the class

predicted through score s
MERS

. Note that the cross entropy

loss is backpropagated only through the last layer of MERS.

At test time, MERS is independent of the Flow stream, and

only RGB input is necessary.

3.2. MARS

Our second strategy goes a step further: we train a net-

work that leverages both appearance and motion informa-

tion with only RGB inputs at test time, and without explicit

flow estimation. We refer to this as Motion-Augmented

RGB Stream (MARS). Recall that MERS uses the MSE

loss to distill motion information into a network operating

on RGB frames. To enhance this training with appearance

information, we train the network by backpropagating a lin-

ear combination of MSE and cross entropy losses through

the entire network. In other words, we train MARS using

the following loss function:

L
MARS

= CrossEntropy(s
MARS

, ŷ) + α‖fc
MARS

− fc
Flow

‖2, (2)

where α is a scalar weight modulating the influence of mo-

tion features. Smaller values of α makes MARS similar

to a standard RGB stream, and larger ones drive it closer

to MERS that mimics the Flow stream. We study the im-

pact of α in Section 5.3. Using this combined loss ensures

that a difference between the mimicked and flow features

leads to a decrease in cross-entropy, i.e., a higher classifi-

cation accuracy. As the stream is based on RGB data, this

feature difference comes from appearance. Thus, MARS

effectively combines motion information distilled from the

Flow stream with complementary appearance information

necessary for better action classification.

To sum up our strategy MARS, we first train the Flow

stream, with standard cross entropy loss. We then freeze its

weights and train MARS; see Figure 3. When testing with

MARS, we only use RGB frames as input to compute the

class scores, thus avoiding flow computation.

4. Experimental Setup

4.1. Datasets and metrics

We focus on the popular benchmarks for action recogni-

tion: Kinetics400 [18], HMDB51 [20], UCF101 [33], and

SomethingSomethingv1 [10]. Kinetics400 consists of 400

classes with approximately 240k training, 20k validation

and 40k test videos. As this dataset is large, we perform

some of the analyses on the MiniKinetics subset contain-

ing 200 classes, 80k training and 5k validation videos in-

troduced by [44]. HMDB51 consists of 51 action classes
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Figure 4: (a) Accuracy vs. time on MiniKinetics for different optical flow approaches using 16-frame clips. Time is averaged

over all videos of the MiniKinetics validation set. (b) Accuracy of MARS for different values of α on MiniKinetics with

16-frame clips. (c) Evolution of losses and accuracies while training MARS on Kinetics400 from scratch for α = 50.

with a total of 7000 videos and three different train/test

splits. UCF101 contains 101 actions classes with a total

of 13,320 videos and also three train/test splits. We denote

the first split for HMDB51 and UCF101 as HMDB51-1 and

UCF101-1, respectively. SomethingSomethingv1 contains

a total of 174 action classes with 86,017 training, 11,522

validation and 10,960 test videos.

Metrics. For all the datasets we report top-1 mean ac-

curacy. For Kinetics400 and SomethingSomethingv1, we

report performance on the validation set as the test servers

are not available anymore.

4.2. Implementation details

RGB and flow inputs. We extract frames at 25 fps and

resize them, such that the smallest dimension is 256 pix-

els, except for SomethingSomethingv1 where frames are

provided at 12 fps with a frame height of 100 pixels [10].

Following recent approaches [2, 44], we use the TV-L1

method [45] to extract optical flow, with default parame-

ter setting from OpenCV.1 We truncate the values to lie be-

tween −20 and 20, map them to the [0, 255] range, and then

save them with jpeg compression. Following [11], most

experiments are done with clips of 16 consecutive frames

(16f-clip) to maintain reasonable training time. We also ex-

periment with 64 frames clips (64f-clip) with the same data

augmentation. At training, we randomly sample a 112×112
crop in the image from a random clip of the given length,

and randomly apply horizontal flipping, which includes re-

verting the x-direction in the case of flow input. We subtract

the ActivityNet mean for RGB inputs and 127.5 for optical

flow, i.e., we assume flow is centered at 0. At test time, we

use center crop and average scores of all non-overlapping

clips. When combining multiple streams, we average the

scores of each stream.

We also evaluate the performance of two computation-

ally efficient flow approaches, MPEGFlow [17] and PWC-

Net [34] on MiniKinetics. MPEGFlow corresponds to the

1https://opencv.org

motion vector encoded in the MPEG video compression for-

mat that can be retrieved at nearly zero computational cost.

We extract MPEGFlow from videos using macroblocks of

size 8×8, and resize these flow frames such that the smaller

dimension is 256 pixels. PWC-Net is a recent CNN-based

approach that operates about four times faster than its com-

petitors, while maintaining a reasonable endpoint error. For

PWC-Net, input frame dimensions are resized to a multiple

of 64 and pixels values are normalized between [0, 1]. For

both these approaches, we follow the same scaling and data

augmentation procedure as that of TV-L1.

Architecture and training. We choose the 3D ResNeXt-

101 [43] architecture due its performance on Kinetics400,

UCF101, and HMDB51 [11]. Following the setting of [11],

we use the SGD optimization method with a weight decay

of 0.0005, momentum of 0.9, and an initial learning rate

of 0.1, except when training flow with 64f-clips, where we

use 0.01. While training MARS, we choose α = 50 based

on the experimental results detailed in Section 5.3. We

train on Kinetics400 and MiniKinetics from scratch. For

other datasets, we finetune from the model trained on Kinet-

ics400: all the layers in the case of SomethingSomethingv1,

and only the last block and the last fully-connected layer for

the smaller HMDB51 and UCF101 datasets.

5. Results and Discussion

We begin with an analysis of the impact of flow in two-

stream approaches in Section 5.1. Section 5.2 compares the

performance of MERS and MARS training strategies and

shows that MARS outperforms both RGB and Flow. Next,

we present an extensive study of our network with the in-

fluence of the weighing factor in the loss equation (Sec-

tion 5.3), and the impact of motion (Section 5.4). We finally

compare with the state of the art in Section 5.5.

5.1. Flow stream

We first evaluate the performance of three optical flow

approaches, namely TV-L1, PWC-Net, and MPEGFlow,
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Stream MiniKinetics Kinetics400 UCF101-1 HMDB51-1
Something

Somethingv1

RGB 69.3 68.2 91.7 66.7 30.2

Flow 61.7 54.0 92.5 71.4 34.5

RGB+Flow 72.7 69.1 95.6 74.0 38.8

MERS 62.2 54.3 93.4 71.8 35.5

MERS+RGB 72.3 68.3 95.6 72.9 38.4

MERS+Flow 63.3 55.0 93.4 72.4 36.4

MERS+RGB+Flow 72.2 67.0 95.5 74.5 39.4

MARS 72.3 65.2 94.6 72.3 39.6

MARS+RGB 72.8 69.6 95.6 73.1 37.6

MARS+Flow 71.3 62.8 94.9 74.5 39.2

MARS+RGB+Flow 73.5 68.9 95.8 75.0 40.4

Table 1: Top-1 accuracy using 16f-clips. For MiniKinetics and Kinetics400, all the streams are trained from scratch. For

UCF101-1, HMDB51-1 and SomethingSomethingv1, all the streams are finetuned from Kinetics400 pretrained models.

Optical flows are computed using TV-L1 algorithm.

Stream Kinetics400 UCF101-1 HMDB51-1
Something

Somethingv1

RGB 72.0 95.2 73.5 46.6

Flow 65.6 95.8 75.9 43.0

RGB+Flow 74.5 97.5 79.8 51.7

MARS 72.7 97.1 80.1 48.7

MARS+RGB 74.8 97.3 80.6 51.7

MARS+Flow 72.3 97.5 80.9 50.4

MARS+RGB+Flow 74.9 97.8 81.3 53.0

Table 2: Top-1 accuracy using 64f-clips. For Kinetics400,

all the streams are trained from scratch. For UCF101-1,

HMDB51-1 and SomethingSomethingv1, all the streams

are finetuned from Kinetics400 pretrained models. Optical

flows are computed using TV-L1 algorithm.

on MiniKinetics. Figure 4a shows the accuracy vs. aver-

age time per video on the MiniKinetics validation set (250
frames per video on average). All the times quoted exclude

data access time, and are computed on the same machine

with an NVIDIA TitanX GPU. We observe that the TV-

L1 Flow stream (orange point in the figure) produces the

best accuracy, although with an extremely high computa-

tion cost of over 30s per video, which represents nearly

99% of the total time for recognizing actions. As seen

in Figure 4a, MPEGFlow is the fastest to compute, by a

large margin, requiring less than a second per video, but

its performance is significantly lower than that of TV-L1,

and all the other flow methods [40]. PWC-Net is about

three times faster than TV-L1, but its performance is 5%

lower than TV-L1. These observations motivate our ef-

fort to mimic the Flow stream with the help of an accu-

rate flow method, like TV-L1, and to avoid estimating op-

tical flow at test time. For the sake of completion, we il-

lustrate the performance of two-stream networks with RGB

for each of these three flow methods and observe an increase

in accuracy, except for RGB+MPEGFlow (see Figure 4a).

MPEGFlow has poor quality and consequently, its accuracy

is 40% lower than RGB, which leads to the degraded per-

formance of RGB+MPEGFlow.

Tables 1 and 2 show the impact of TV-L1 optical

flow [45] in a two-stream framework with 16 and 64 frame

clips, respectively. The first two rows in each table cor-

respond to either RGB or Flow stream alone. Compared

to these, the RGB+Flow two-stream variant shows a sig-

nificant improvement in performance. For example, in the

64-clip case, we observe an increase of 2.5%, 2.3%, 6.3%
and 5.1% in accuracy over RGB on Kinetics400, UCF101-

1, HMDB51-1, and SomethingSomethingv1, respectively.

5.2. Recognition accuracy

MERS. We now evaluate our training strategy MERS,

whose goal is to mimic the Flow stream from RGB inputs,

to avoid flow computation at test time. From the results

shown in Table 1, we observe that the difference in mean

accuracy between MERS and Flow is less than 1% on all

the datasets. This shows that MERS is a good replace-

ment for the Flow stream. This observation is further sup-

ported by the minimal difference between MERS+RGB and

RGB+Flow. Also, combining Flow with MERS, results in

almost no performance improvement. In summary, MERS

provides an effective alternative to the Flow stream.

MARS. Table 1 also illustrates the performance of our

training strategy combining feature-based and cross entropy

losses (MARS). All the results correspond to the α = 50
setting. We observe that MARS outperforms both RGB and

Flow streams alone on MiniKinetics, UCF101, HMDB51,

and SomethingSomethingv1 by a substantial margin (be-

tween 1% to 9%), showing that MARS learns to leverage

both appearance and motion information, effectively. How-

ever, on Kinetics400, MARS performs worse than the RGB

stream. This is due to the poor performance of the Flow

stream with short clips on this dataset, with a 14% dif-

ference over RGB, as many videos are mostly static in a
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Figure 5: Class-wise performance of MARS vs. RGB and

Flow for 6 classes of Kinetics400 dataset.

short range. Li et al. [22] also find that Kinetics400 is bi-

ased towards static information. When using longer clips

of 64 frames, see Table 2, the difference between RGB and

Flow streams is significantly lower (6.4%), and MARS per-

forms better than both RGB and Flow streams. On all the

other datasets, MARS obtains a significantly higher accu-

racy than RGB and Flow streams, specifically on datasets

where motion is crucial, like SomethingSomethingv1 or

HMDB51. In some cases, e.g., on HMDB51 with 64f-

clips, MARS alone performs better than the two-stream

RGB+Flow model. MARS+Flow and MARS perform sim-

ilarly, indicating that MARS successfully leverages motion

information, i.e., adding Flow does not further improve per-

formance.

To further understand when MARS performs better than

RGB, we compare the performance of RGB, Flow and

MARS for three classes with the highest and lowest dif-

ference (shown as the number in parenthesis in the figure

for each case) between MARS and RGB accuracy in Fig-

ure 5. MARS has the strongest impact for classes where

Flow performs well. On the other hand, when Flow re-

sults in low performance, MARS also performs quite poorly

compared to RGB, but remains better than Flow. This again

shows that MARS leverages information from both appear-

ance and motion data.

5.3. Effect of α on accuracy

MARS is trained by balancing two losses: (a) cross-

entropy loss between logits and ground-truth targets, and

(b) MSE loss between averaged pooling features of MARS

and Flow, see (2). We report mean accuracy of MARS on

MiniKinetics using values of α = {5, 50, 100, 200} in Fig-

ure 4b for 16f-clips. We also report the accuracy of RGB

(i.e., α = 0) and Flow (on the right). We observe that by

increasing the value α, we reach a peak accuracy (α = 50)

where the values of the cross-entropy loss and α×MSE loss

are approximately the same, see Figure 4c. This shows

that MARS not only achieves a trade-off between RGB

and Flow, but effectively leverages both motion and appear-

ance. Higher values of α increase the influence of MSE over

cross-entropy loss, thus causing MARS to tend towards the

Flow stream accuracy, which is essentially MERS.

We also experimented applying the feature-based loss on

earlier layers or on the logits. We find that applying this

loss on the earlier layers leads to a drop in accuracy, as it is

more difficult to mimic lower-level flow features from RGB

inputs. When this feature-based loss is applied on the logits,

we obtain a similar performance on MiniKinetics, as when

the loss is applied to high-level features. However, a model

pretrained on Kinetics400 does not generalize well enough

to other datasets.

5.4. Impact of motion

To further understand the difference in the features

learned by MARS and MERS compared to those of RGB

and Flow streams, we analyze their performance in the ab-

sence of motion. We replace the actual test clips of MiniKi-

netics by ‘static’ clips that are created by duplicating the

middle frame of each clip, thus removing motion informa-

tion. The mean accuracy, reported at the top of Figure 6, is

calculated by averaging scores over such non-overlapping

consecutive ‘static’ clips, consisting of 16 frames.

Figure 6 also shows the class activation maps [48] for

each of the streams. Class activation maps help visualize

discriminative regions specific to each action class. We

feed the networks with ‘static’ 16f-clips and observe that

the accuracy of RGB drops slightly with static clips and the

class activations are relevant. This shows that RGB mainly

focuses on appearance despite 3D convolutions. MARS

shows a larger drop than RGB due to lack of motion infor-

mation, but can localize the relevant regions correctly. This

shows that MARS simultaneously captures appearance and

motion. MERS and Flow perform close to random on the

static clips (classification accuracy 0.5% and 5.1% respec-

tively, and random visualization regions). This is expected

in the absence of motion and illustrates that they behave

similarly.

5.5. Comparison with the state of the art

We now compare the performance of MARS with state-

of-the-art approaches in Table 3 for Kinetics400 and in Ta-

ble 4 for UCF101, HMDB51 and SomethingSomethingv1.

In both tables, we first compare with methods that use only

RGB as input at test time, without explicit flow compu-

tation, and then with approaches that use both RGB and

Flow. For Kinetics400, when using only RGB frames as

input, MARS+RGB performs better than all the methods,

except NL-I3D [42]. Note that NL-I3D is pretrained on Im-

ageNet using clips of size 128 × 224 × 224, i.e., 2 times

longer and 4 times higher resolution than our clip size used

to train MARS from scratch. This approach is based on a
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Figure 6: From left to right: class activation maps of Flow,

MERS, MARS and RGB using 16f ‘static’ clips on MiniKi-

netics. Numbers right at the top indicate video classification

accuracy on the validation set. Numbers on each map indi-

cate the softmax activation scores of the ground truth class.

novel non-local module to capture long-range dependency,

which can further be integrated into our architecture. In Ta-

ble 4, MARS+RGB outperforms all the methods that use

RGB only as inputs. In particular, the gap is quite signif-

icant for datasets where motion is important, as HMDB51

and SomethingSomethingv1, with an improvement of 3.6%

and 3.5% respectively. This shows that our approach for

mimicking flow features along with action recognition gen-

eralizes well to other datasets. Next, we compare the ac-

curacy of MARS+RGB+Flow to state-of-the-art methods

that use both RGB and Flow as inputs. On Kinetics400,

adding Flow to MARS+RGB only has a marginal impact

(increase of 0.1), as motion is not important. In contrast, on

HMDB51 and SomethingSomethingv1, the gain is larger,

around 1%, and we set a new state-of-the-art performance.

Method Streams Pretrain Acc

I3D [2] RGB ImageNet 71.1*

ResNext101 [11] RGB none 65.1

R(2+1)D [38] RGB Sport-1M 74.3

S3D-G [44] RGB ImageNet 74.7

NL-I3D [42] RGB ImageNet 77.7

MARS RGB none 72.7

MARS+RGB RGB none 74.8

I3D [2] RGB+Flow ImageNet 74.2*

R(2+1)D [38] RGB+Flow Sports-1M 75.4

S3D-G [44] RGB+Flow ImageNet 77.2

MARS+RGB+Flow RGB+Flow none 74.9

Table 3: Comparison with state-of-the-art Top-1 accuracy

results for Kinetics400 validation set. (*Calculated on the

held-out test set of Kinetics400)

Method Streams Pretrain UCF101 HMDB51
Something

Somethingv1

TRN [47] RGB none — — 34.4

MFNet [21] RGB none — — 43.9

C3D [37] RGB Sports-1M 90.4 — —

I3D [2] RGB ImNet+Kin 95.6 74.8 —

ResNext101 [11] RGB Kinetics 94.5 70.1 —-

S3D-G [44] RGB ImNet+Kin 96.8 75.9 48.2*

R(2+1)D [38] RGB Kinetics 96.8 74.5 —

MARS RGB Kinetics 97.4 79.3 48.7

MARS+RGB RGB Kinetics 97.6 79.5 51.7

2-stream [32] RGB+Flow ImageNet 88.0 59.4 —

TSN [41] RGB+Flow ImageNet 94.2 69.4 —

TRN [47] RGB+Flow none — — 42.0

I3D [2] RGB+Flow ImNet+Kin 98.0 80.7 —

R(2+1)D [38] RGB+Flow Kinetics 97.3 78.7 —

OFF [35] RGB+Flow none 96.0 74.2 —

MARS+RGB+

Flow
RGB+Flow Kinetics 98.1 80.9 53.0

Table 4: Comparison with state-of-the-art results. The re-

sults of UCF101 and HMDB51 are averaged over 3 splits.

For SomethingSomethingv1, the numbers represent valida-

tion set accuracy. (*pretrained on ImageNet)

6. Conclusion

In this paper, we introduced MARS, a strategy to learn

a stream that takes only RGB frames as input but leverages

both appearance and motion information from them. This is

achieved by training a network to minimize the loss between

its features and the Flow stream, along with the cross en-

tropy loss for recognition. Our extensive evaluation showed

that our single-stream MARS framework outperforms RGB

and Flow streams on popular benchmarks, such as Kinet-

ics400, UCF101, HMDB51, and SomethingSomethingv1.
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