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Abstract

How do we determine whether two or more clothing

items are compatible or visually appealing? Part of the

answer lies in understanding of visual aesthetics, and is

biased by personal preferences shaped by social attitudes,

time, and place. In this work we propose a method that

predicts compatibility between two items based on their vi-

sual features, as well as their context. We define context as

the products that are known to be compatible with each of

these item. Our model is in contrast to other metric learn-

ing approaches that rely on pairwise comparisons between

item features alone. We address the compatibility prediction

problem using a graph neural network that learns to gener-

ate product embeddings conditioned on their context. We

present results for two prediction tasks (fill in the blank and

outfit compatibility) tested on two fashion datasets Polyvore

and Fashion-Gen, and on a subset of the Amazon dataset;

we achieve state of the art results when using context infor-

mation and show how test performance improves as more

context is used.

1. Introduction

Predicting fashion compatibility refers to the task of

determining whether a set of fashion items go well to-

gether. In its ideal form, it involves understanding the vi-

sual styles of garments, being cognizant of social and cul-

tural attitudes, and making sure that when worn together

the outfit is aesthetically pleasing. The task is fundamen-

tal to a variety of industry applications such as personal-

ized fashion design [19], outfit composition [7], wardrobe

creation [16], item recommendation [31] and fashion trend

forecasting [1]. Fashion compatibility, however, is a com-

plex task that depends on subjective notions of style, con-

text, and trend – all properties that may vary from one indi-

vidual to another and evolve over time.

Previous work [24, 36] on the problem of fashion com-

patibility prediction uses models that mainly perform pair-

wise comparisons between items based on item information

such as image, category, description, . . . , etc. These ap-
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Figure 1: Fashion compatibility. We use context infor-

mation around fashion items to improve the task of fash-

ion compatibility prediction. (a) standard methods compare

pairs of items (b) we use a graph to exploit relational infor-

mation to know the context of the items.

proaches have the drawback that each pair of items consid-

ered are treated independently, making the final prediction

rely on comparisons between the features of each item in

isolation. In such a comparison mechanism that discards

context, the model makes the same prediction for a given

pair of clothing items every time. For example, if the model

is trained to match a specific style of shirt with a specific

style of shoes, it will consistently make this same predic-

tion every time. However, as compatibility is a subjective

measure that can change with trends and across individu-

als, such inflexible behaviour is not always desirable at test

time. The compatibility between the aforementioned shirt

and shoes is not only defined by the features of these items

alone, but is also biased by the individual’s preferences and

sense of fashion. We thus define the context of a clothing

item to be the set of items that it is compatible with, and

address the limitation of inflexible predictions by introduc-

ing a model that makes compatibility decisions based on

the visual features, as well as the context of each item. This

consideration gives the model some background as to what

we consider “compatible”, in itself a subjective bias of the

individual and the trend of the time.
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In this paper, we propose to leverage the underlying re-

lational information between items in a collection to make

better compatibility predictions. We use fashion as our

theme, and represent clothing items and their pairwise com-

patibility as a graph, where vertices are the fashion items

and edges connect pairs of items that are compatible; we

then use a graph neural network based model to learn to pre-

dict edges. Our model is based on the graph auto-encoder

framework [22], which defines an encoder that computes

node embeddings and a decoder that is applied on the em-

bedding of each product. Graph auto-encoders have previ-

ously been used for related problems such as recommender

systems [35], and we extend the idea to the fashion com-

patibility prediction task. The encoder part of the model

computes item embeddings depending on their connections,

while the decoder uses these embeddings to compute the

compatibility between item pairs. By conditioning the em-

beddings of the products on the neighbours, the style in-

formation contained in the representation is more robust,

and hence produces more accurate compatibility predic-

tions. This accuracy is tested by a set of experiments we

perform on three datasets: Polyvore [12], Fashion-Gen [28]

and Amazon [24], and through two tasks (1) outfit comple-

tion (see Section 4.1) and (2) outfit compatibility prediction

(see Section 4.1). We compare our model with previous

methods and obtain state of the art results. During test time,

we provide our model with varying amount of context of

each item being tested and empirically show, in addition,

that the more context we use, the more accurate our predic-

tions get.

This work has the following main contributions, (1) we

propose the first fashion compatibility method that uses

context information; (2) we perform an empirical study of

how the amount of neighbourhood information used dur-

ing test time influences the prediction accuracy; and (3)

we show that our method outperforms other baseline ap-

proaches that do not use the context around each item on

the Polvvore [12], Fashion-Gen [28], and Amazon [24]

datasets.

2. Related Work

As our proposed model uses graph neural networks to

perform fashion compatibility prediction, we group previ-

ous work related to our proposed model into two categories

that we discuss in this section. In what follows, an outfit is a

set of clothing items that can be worn concurrently. We say

that an outfit is compatible, if the clothing items compos-

ing the outfit are aesthetically pleasing when worn together;

we extend an outfit when we add clothing item(s) to the set

composing the outfit.

Visual Fashion Compatibility Prediction. To approach

the task of visual compatibility prediction, McAuley et

al. [24] learn a compatibility metric on top of CNN-

extracted visual features, and apply their method to pairs

of products such that the learned distance in the embed-

ding space is interpreted as compatibility. Their approach

is improved by Veit et al. [38], who instead of using

pre-computed features for the images, use an end-to-end

siamese network to predict compatibility between pairs of

images. A similar end-to-end approach [19] shows that

jointly learning the feature extractor and the recommender

system leads to better results. The evolution of fashion style

has an important role in compatibility estimation, and He

et al. [14] study how previous methods can be adapted to

model the visual evolution of fashion trends within recom-

mender systems.

Some variations of this task include predicting the com-

patibility of an outfit, to generate outfits from a personal

closet [34] for example, or determining the item that best

extends a partial outfit. To approach these tasks, Han et

al. [12] consider a fashion outfit to be an ordered sequence

of products and use a bidirectional LSTM on top of the

CNN-extracted features from the images and semantic in-

formation extracted from text in the embedding space. This

method was improved by adding a new style embedding for

the full outfit [27]. Vasileva et al. [36] also use textual in-

formation to improve the product embeddings, along with

using conditional similarity networks [37] to produce type-

conditioned embeddings and learn a metric for compatibil-

ity. This approach projects each product embedding to a

new space, depending on the type of the item pairs being

compared.

Graph Neural Networks. Extending neural networks to

work with graph structured data was first proposed by Gori

et al. [10] and Scarselli et al. [29]. The interest in this topic

resurged recently, with the proposal of spectral graph neural

networks [5] and its improvements [6, 21]. Gilmer et al. [9]

showed that most of the methods that apply neural networks

to graphs [25, 39, 11] can be seen as specific instances of a

learnable message passing framework on graphs. For an in-

depth review of different approaches that apply neural net-

works to graph-structured data, we refer the reader to the

work by Bronstein et al. [4] and Battaglia et al. [2], which

explores how relational inductive biases can be injected in

deep learning architectures.

Graph neural networks have been applied to product rec-

ommendation, which is similar to product compatibility

prediction. In this task, the goal is to predict compatibility

between users and products (as opposed to a pair of prod-

ucts). Van den Berg et al. [35] showed how this task can be

approached as a link prediction problem in a graph. Simi-

larly, graphs can also be used to take advantage of the struc-

ture within the rows and columns of a matrix completion

problem applied to product recommendation [18, 26]. Re-

cently, a graph-based recommender system has been scaled
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Figure 2: Method. We pose fashion compatibility as an edge prediction problem. Our method consists of an encoder, which

computes new embeddings for each product depending on their connections, and a decoder that predicts the compatibility

score of two items. (a) Given the nodes x1 and x2 we want to compute their compatibility. (b) The encoder computes

the embeddings of the nodes by using L graph convolutional layers that merge information from their neighbours. (c) The

decoder computes the compatibility score using the embeddings computed with the encoder.

to web-scale [40], operating on a graph with more than 3

billion nodes consisting of pins and boards from Pinterest.

3. Proposed Method

The approach we use in this work is similar to the metric

learning idea of Vasileva et al. [36], but rather than using

text to improve products embeddings, we use a graph to

exploit structural information and obtain better product em-

beddings. Our model is based on the graph auto-encoder

(GAE) framework defined by Kipf et al. [22], which has

been used for tasks like knowledge base completion [30]

and collaborative filtering [35]. In this framework, the en-

coder gets as input an incomplete graph, and produces an

embedding for each node. Then, the node embeddings are

used by the decoder to predict the missing edges in the

graph.

Let G = (V, E) be an undirected graph with N nodes

i ∈ V and edges (i, j) ∈ E connecting pairs of nodes. Each

node in the graph is represented with a vector of features

~xi ∈ R
F , and X = { ~x0, ~x1, . . . , ~xN−1} is a RN×F matrix

that contains the features of all nodes in the graph. Each row

of X , denoted as Xi,:, contains the features of one node,

i.e. Xi,0,Xi,1, . . . ,Xi,N−1 represent the features of the

ith node. The graph is represented by an adjacency matrix

A ∈ R
N×N , where Ai,j = 1 if there exist an edge between

nodes i and j and Ai,j = 0 otherwise.

The objective of the model is to learn an encoding H =
fenc(X,A) and a decoding A = fdec(H) function. The

encoder transforms the initial features X into a new rep-

resentation H ∈ R
N×F ′

, depending on the structure de-

fined by the adjacency matrix A. This new matrix follows

the same structure as the initial matrix X , so the i-th row

Hi,: contains the new features for the i-th node. Then, the

decoder uses the new representations to reconstruct the ad-

jacency matrix. This whole process can be seen as encod-

ing the input features to a new space, where the distance

between two points can be mapped to the probability of

whether or not an edge exists between them. We use a de-

coder to compute this probability using the features of each

node: p((i, j) ∈ E) = fdec(Hi,:,Hj,:), which for our pur-

poses represents the compatibility between items i and j.

In this work, the encoder is a Graph Convolutional Net-

work (Section 3.1) and the decoder (Section 3.2) learns

a metric to predict the compatibility score between pairs

of products (i, j). Figure 2 shows a scheme of how this

encoder-decoder mechanism works.

3.1. Encoder

From the point of view of a single node i, the encoder

will transform its initial visual features ~xi into a new rep-

resentation ~hi. The initial features, which can be com-

puted with a CNN as a feature extractor, contain informa-

tion about how an item looks like, e.g., shape, color, size.

However, we want the new representation produced by the

encoder to capture not only the product properties but also

structural information about the other products it is com-

patile with. In other words, we want the new representation

of each node to contain information about itself, but also

about its neighbours Ni, where Ni = {j ∈ V |Ai,j = 1}
denotes the set of nodes that are connected to node i. There-

fore, the encoder is a function that aggregates the local

neighbourhood around a node ~hi = fenc(~xi,Ni) : RF →
R

F ′

to include neighbourhood information in the learned

representations. This function is implemented as a deep

Graph Convolutional Network (GCN) [21] that can have

several hidden layers. Thus, the final value of~hi is a compo-

sition of the functions computed at each hidden layer, which

produces hidden activations ~z
(l)
i . A single layer takes the

following form.

~z
(l+1)
i = ReLU



~z
(l)
i Θ

(l)
0 +

∑

j∈Ni

1

|Ni|
~z
(l)
j Θ

(l)
1



 (1)
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Here, ~z
(l)
i is the input of the i-th node at layer l, and

~z
(l+1)
i is its output. In its matrix form, the function operates

on all the nodes of the graph at the same time:

Z
(l+1) = ReLU

(

S
∑

s=0

ÃsZ
(l)
Θ

(l)
s

)

(2)

Here, Z(0) = X for the first layer. We denote Ãs as

the normalized s-th step adjacency matrix, where A0 = IN
contains self-connections, and A1 = A+ IN contains first

step neighbours with self-connections. We let Ã = D
−1

A,

normalizing it row-wise using the diagonal degree matrix

Dii =
∑

j Ai,j . Context information is controlled by the

parameter S that represents the depth of the neighbourhood

that is being considered during training: the neighbourhood

at depth s of node i is the set of all nodes that are at dis-

tance (number of edges traveled) at most s from i. We let

S = 1 for all our experiments, meaning that we only use

neighbours at depth one in each layer. Θ
(l)
s is a R

F×F ′

matrix, which contains the trainable parameters for layer

l. We apply techniques such as batch normalization [17],

dropout [33] or weight regularization at each layer.

Finally, we introduce a regularization technique applied

to the matrix A, which consists of randomly removing all

the incident edges of some nodes with a probability pdrop.

The goal of this technique is two-fold: (1) it introduces

some changes in the structure of the graph, making it more

robust against changes in structure, and (2) it trains the

model to perform well for nodes that do not have neigh-

bours, making it more robust to scenarios with low rela-

tional information.

3.2. Decoder

We want the decoder to be a function that computes the

probability that two nodes are connected. This scenario is

known as metric learning [3], where the goal is to learn a

notion of similarity or compatibility between data samples.

It is relevant to note that similarity and compatibility are

not exactly the same. Similarity measures how similar two

nodes are, for example two shirts might be similar because

they have the same shape and color, but they are not neces-

sarily compatible. Compatibility is a property that measures

how well two items go together.

In its general form, metric learning can be defined as

learning a function d(·, ·) : RN ×R
N → R

+
0 that represents

the distance between two N -dimensional vectors. There-

fore, our decoder function takes inspiration from other met-

ric learning approaches [23, 15, 32]. In our case, we want to

train the decoder to model the compatibility between pairs

of items, so we want the output of d(·, ·) to be bounded by

the interval [0, 1].
The decoder function we use is similar to the one pro-

posed by [8]. Given the representations of two nodes ~hi

Algorithm 1 Compatibility prediction between nodes

Input:

X - Feature matrix of the nodes

A - Adjacency matrix of nodes relations

(i, j) - Pairs of nodes for assessing compatibility

Output: The compatibility score p between nodes i and j

1: L = 3 ⊲ Use 3 graph convolutional layers

2: S = 1 ⊲ Consider neighbours 1 step away

3: H = ENCODER(X , A)

4: p = DECODER(H , i, j)

5: function ENCODER(X , A)

6: A0,A1 = IL, IL +A

7: Ã1 = D
−1

A1 ⊲ Normalize the adj. matrix

8: Z
(0) = X

9: for each layer l = 0, ..., L− 1 do

10: Z
(l+1) = ReLU

(

S
∑

s=0
ÃsZ

(l)
Θ

(l)
s

)

11: end for

12: return Z
(L)

13: end function

14: function DECODER(H , i, j)

15: return σ
(

|Hi,: −Hj,:| ~ω
T + b

)

16: end function

and ~hj computed with the encoder model described above,

the decoder outputs the probability p that these two nodes

are connected by an edge.

p = σ
(∣

∣

∣

~hi − ~hj

∣

∣

∣ ~ω
T + b

)

(3)

Here |·| is absolute value, and ~ω ∈ R
F ′

and b ∈ R are

learnable parameters. σ(·) is the sigmoid function that maps

a scalar value to a valid probability ∈ (0, 1).
The form of the decoder described in Equation 3 can be

seen as a logistic regression decoder operating on the abso-

lute difference between the two input vectors. The absolute

value is used to ensure that the decoder is symmetric, i.e.,

the output of d(~hi,~hj) and d(~hj ,~hi) is the same, making it

invariant to the order of the nodes.

3.3. Training

The model is trained to predict compatibility among the

products. With A being the adjacency matrix of the graph

of items, we randomly remove a subset of edges to gener-

ate an incomplete adjacency matrix Â. The set of edges

removed is denoted by E+, as they represent positive edges,

i.e., pairs of nodes (i, j) such that Ai,j = 1. We then ran-

domly sample a set of negative edges E−, which represent

pairs of nodes (i, j) that are not connected, i.e., products
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(d) Compatibility as a graph

Figure 3: Tasks. We evaluate our model in two different tasks. (a) shows an example of a FITB question for the first task, and

(b) shows an example of a valid outfit for the seconf task. (c) Shows how a FITB question can be posed as an edge prediction

problem in a graph and (d) shows how the compatibility prediction for an outfit can be posed as an edge prediction problem.

that are not compatible. The model is trained to predict

the edges Etrain = (E+, E−) that contain both positive and

negative edges. Therefore, given the incomplete adjacency

matrix Â and the initial features for each node X , the de-

coder predicts the edges defined in Etrain, and the model

is optimized by minimizing the cross entropy loss between

the predicted edges and their ground truth values, which is

1 for the edges in E+ and 0 for the edges in E−.

A schematic overview of the model can be seen in Fig-

ure 2, and Algorithm 1 shows how to compute the compati-

bility between two products using the encoder and decoder

described above.

4. Experimental setup

4.1. Tasks

We apply our model to two tasks that can be recast as

a graph edge prediction problem. In what follows, we let

{o1, . . . , oN−1} denote the set of N fashion items in a given

outfit, and ei,j denote the edge between nodes i and j.

Fill In The Blank (FITB). The fill-in-the-blank task con-

sists of choosing the item that best extends an outfit from

among a given set of possible item choices. We follow the

setup described in Han et al. [12], where one FITB ques-

tion is defined for each test outfit. Each question consists

of a set of products that form a partial outfit, and a set of

possible choices {c0, . . . , cM−1} that includes the correct

answer and M−1 randomly chosen products. In our exper-

iments we set the number of choices to 4. An example of

one of these questions can be seen in Figure 3a, where the

top row shows the products of a partial outfit and the bottom

row shows the possible choices for extending it. FITB can

be framed as an edge prediction problem where the model

first generates the probability of edges between item pairs

(oi, cj) for all i = 0, . . . , N − 1 and j = 0, . . . ,M − 1.

Then, the score for each of the j choices is computed as
∑N−1

i=0 ei,j , and the one with the highest score is the item

that is selected to be added to the partial outfit. The task

itself is evaluated using the same metric defined by Han et

al. [12]: by measuring whether or not the correct item was

selected from the list of choices.

Outfit Compatibility Prediction. In the outfit compatibil-

ity prediction task, the goal is to produce an outfit compat-

ibility score, which represents the overall compatibility of

the items forming the outfit. Scores close to 1 represent

compatible outfits, and scores close to 0 represent incom-

patible outfits. The task can be framed as an edge prediction

problem where the model predicts the probability of every

edge between all possible item pairs; this means predicting

the probability of
N(N−1)

2 edges for each outfit. The com-

patibility score of the outfit is the average over all pairwise

edge probabilities 2
N(N−1)

N−1
∑

i=0

N−1
∑

j=i+1

ei,j . The outfit com-

patibility prediction task is evaluated using the area under

the ROC curve for the predicted scores.

4.2. Evaluation by neighbourhood size

Let the k-neighbourhood of node i in our relational

graph be the set of k nodes that are visited by a breadth-

first-search process, starting from i. In order to measure the

effect of the size of relational structure around each item,

during testing we let each test sample contain the items

and their k-neighbourhoods, and we evaluate our model by

varying k. Thus, when k = 0 (Figure 4a) no relational

information is used, and the embedding of each product is

based only on its own features. As the value of k increases

(Figures 4b and 4c), the embedding of the items compared

will be conditioned on more neighbours. Note that this is

applied only at evaluation time; during training, we use all

available edges. For all results in the following sections we

report the value of k used for each experiment.

4.3. Datasets

We test our model on three datasets, as well as on a few

of their variations that we discuss below.

The Polyvore dataset. The Polyvore dataset [12] is a

crowd-sourced dataset created by the users of a website of
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the same name; the website allowed its members to upload

photos of fashion items, and collect them into outfits. It

contains a total of 164,379 items that form 21,899 different

outfits. The maximum number of items per outfit is 8, and

the average number of items per outfit is 6.5. The graph is

created by connecting each pair of nodes that appear in the

same outfit with an edge. We train our model with the train

set of the Polyvore dataset, and test it on a few variations

obtained from this dataset, described below.

The FITB task contains 3,076 questions and the outfit

compatibility task has 3,076 valid, and 4,000 invalid outfits.

In the original Polyvore dataset, the wrong FITB choices

and the invalid outfits are selected randomly from among

all remaining products. The resampled dataset proposed

by Vasileva et al. [36] is more challenging: the incorrect

choices in each question of the FITB task are sampled from

the items having the same category as the correct choice;

for outfit compatibility, outfits are sampled randomly such

that each item in a given outfit is from a distinct category.

We also propose a more challenging set which we call sub-

set where we limit the outfits size to 3 randomly selected

items. In this scenario the tasks become harder because less

information is available to the model.

The Fashion-Gen Outfits dataset. Fashion-Gen [28] is a

dataset of fashion products collected from an online plat-

form that sells luxury goods from independent designers.

Each product has images, descriptions, attributes, and re-

lational information. Fashion-Gen relations are defined by

professional designers and adhere to a general theme, while

Polyvore’s relations are generated by users with different

tastes and notions of compatibility.

We created outfits from Fahion-Gen by grouping be-

tween 3 and 5 products that are connected together. The

training set consists of 60,159 different outfits from the col-

lections 2015 − 2017, and the validation and test sets have

2,683 and 3,104 outfits respectively, from the 2014 collec-

tion. The incorrect FITB choices and the invalid outfits for

the compatibility task are randomly sampled items that sat-

isfy gender and category restrictions, as in the case of the

resampled Polyvore dataset.

Amazon products dataset. The Amazon products

dataset [24, 14] contains over 180 million relationships

between almost 6 million products of different categories.

In this work we focus on the clothing products, and we

apply our method to the Men and Women categories.

There are 4 types of relationships between items: (1) users

who viewed A also viewed B; (2) users who viewed A

bought B; (3) users who bought A also bought B; and

(4) users bought A and B simultaneously. For the latter

two cases, we make the assumption that the pair or items

A and B are compatible and evaluate our model based

on this assumption. We evaluate our model by predicting

?

(a) k=0

?

(b) k=2

?

compared
1-step
2-step
unused

(c) k=4

Figure 4: Evaluation by k-neighbourhood. BFS expan-

sion of k neighbours around two nodes. When (a) k = 0
no neighbourhood information is used; (c) k = 4 up to 4
neighbourhood nodes are used for compatibility prediction.

the latter two, since they indicate products that might be

complementary [24]. We use the features they provide,

which are computed with a CNN.

4.4. Training details

Our model has 3 graph convolutional layers with S = 1,

350 units, dropout of 0.5 applied at the input and batch nor-

malization at its output. The value of pdrop applied to A

is 0.15. The input to each node are 2048-dimensional fea-

ture vectors extracted with a ResNet-50 [13] from the image

of each product, and are normalized to zero-mean and unit

variance. It is trained with Adam [20], with a learning rate

of 0.001 for 4, 000 iterations with early stopping.

The Siamese Network baseline is trained with triplets of

compatible and incompatible pairs of items. It consists on a

ImageNet pretrained ResNet-50 at each branch and a metric

learning output layer. We train it using SGD with a learning

rate of 0.001 and a momentum of 0.9.

5. Results

5.1. Fill In The Blank

Polyvore Original. We report our results for this task in

Table 1. The first three rows correspond to previous work,

and the following three rows show the scores obtained by

our model for different values of k. As shown in the table,

the scores consistently increases with k, from 62.2% of ac-

curacy with k = 0 to 96.9% with k = 15. This behaviour

is better seen in Figure 5a which shows how the accuracy in

the FITB task increases as a function of k. When k = 0 the

other methods perform better, because without structure our

model is simpler. However, we can see how as more neigh-

bourhood information is used, the results in the FITB task

increase, which shows that using information from neigh-

bouring nodes is a useful approach if extra relational infor-

mation is available.

Polyvore Resampled. For the resampled setup, the accu-

racy also increases with k, going from 47.0% to 92.7%,
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(a) Polyvore FITB (b) Polyvore compatibility (c) Fashion-Gen FITB (d) Fashion-Gen compatibility

Figure 5: Results. Evaluation of our models for different values of k.

Table 1: Polyvore Results. Polyvore results for both the

FITB and the compatibility prediction tasks. Resampled

task is more difficult than the original one. † Using only

a subset of length 3 of the original outfit.

FITB Accuracy Compat. AUC

Method Orig. Res. Orig. Res.

Siamese Net [36] 54.2 54.4 0.85 0.85

Bi-LSTM [12] 68.6 64.9 0.90 0.94

TA-CSN [36] 86.1 65.0 0.98 0.93

Ours (k = 0) 62.2 47.0 0.86 0.76

Ours (k = 3) 95.9 90.9 0.99 0.98

Ours (k = 15) 96.9 92.7 0.99 0.99

Ours (k = 0)† 59.5 45.3 0.69 0.64

Ours (k = 3)† 79.1 69.4 0.92 0.90

Ours (k = 15)† 88.2 82.1 0.93 0.92

Table 2: Fashion-Gen Results. Results on the Fashion-Gen

dataset for the FITB and compatibility tasks.

Method FITB Acc. Compatibility AUC

Siamese Network 56.3 0.69

Ours (k = 0) 51.9 0.72

Ours (k = 3) 65.0 0.84

Ours (k = 15) 76.1 0.90

Ours (k = 30) 77.1 0.91

which is lower than its original counterpart, showing that

the resampled task is indeed more difficult.

Polyvore Subset. The last rows of Table 1 (marked with †)

correspond to this scenario, and we can see that compared to

when using the full outfit, the the FITB accuracy drops from

96.9% to 88.2% for the original version, and from 92.7% to

82.1% for the resampled version, both at k = 15.

Fashion-Gen Outfits. The results for the FITB task on the

Fashion-Gen dataset are shown in Table 2 as a function of

k. Similar to the results for variations of Polyvore, we see

in Figure 5c how an increase in the value of k improves the

performance of our model also for the Fashion-Gen dataset.

For example, it increases by 20 points by using up to k =
15 neighbourhood nodes for each item, compared to using

no neighbourhood information at all. When compared to

the Siamese Network baseline, we observe how the siamese

model is better than our model without structure, but with

k ≥ 3 our method outperforms the baseline.

5.2. Outfit Compatibility Prediction

Polyvore Results. Table 1 shows the results obtained by

our model on the compatibility prediction task for different

values of k. Similarly to the previous task, results show that

using more neighborhood information improves the perfor-

mance on the outfit compatibility task, where the AUC in-

creases from 0.86 with k = 0 to 0.99 with k = 15.

Polyvore Resampled. The scores on the resampled version

are similar to the original version, increasing the AUC from

0.76 to 0.99 with a larger value for k.

Polyvore Subset. The results on this test data is denoted

with † in the table, and we see how in this scenario the

scores decrease from 0.99 to 0.93 and 0.92 for the origi-

nal and resampled tasks respectively, both with k = 15. As

with the FITB task, here we observe again how using extra

information in the form of relations with other products is

beneficial to achieve better performance.

Fashion-Gen Outfits. The results on this task for the

Fashion-Gen outfits dataset are shown in the second col-

umn of Table 2, for different values of k. As can be seen,

the larger the value of k, the better the performance. This

trend is better shown in Figure 5d, where we can see how in-

creasing k from 0 to 10 steadily improves the performance,

and plateaus afterwards.

12623



0.26

0.74

(a) original context

0.77

0.23

(b) new context

Figure 6: Context matters. (a) and (b) show how predicted

compatibility between items depends on their context.

5.3. Context matters

With the above experiments, we have seen how increas-

ing the amount of neighbourhood information improves the

results on all tasks. To better understand the role of context,

we use an example from Polyvore to demonstrate how the

context of an item can influence its predicted compatibil-

ity with another product. Figure 6 shows the compatibility

predicted between a pair of trousers and two pairs of shoes

depending on two different contexts. Figure 6a shows the

original context of the trousers, and the shoes selected are

the correct ones. However, if we change the context of the

trousers to a different set of clothes, as in Figure 6b, the

outcome of the prediction is now a different pair of shoes

(more formal one) that presumably are a better match given

the new context.

5.4. Amazon Links

We also evaluate how our method can be applied to pre-

dict relations between products in the Amazon dataset. We

train a model for each type of relationship and also eval-

uate how one model trained with clothes from one gender

transfers to the other gender. This cross-gender setup allows

us to evaluate how the model adapts to changes in context,

as opposed to a baseline that ignores context altogether. In

Table 3 we show that our model achieves state of the art re-

sults for the ’also bought’ relation, and similar results for

the ’bought together’ relation. The ’bought together’ rela-

tionship has much less connections than the ’also bought’,

so our model is less effective at using context to improve

the results. However, since in that scenario the model has

been trained with less connections, it performs better with

Table 3: Amazon results. Results on the Amazon dataset

for the link prediction task.

Also bought Bought together

Method Men Women Men Women

McAuley et al. [24] 93.3 91.2 95.1 94.3

Ours (k = 0) 57.9 53.8 79.5 71.7

Ours (k = 3) 92.6 92.9 94.5 94.5

Ours (k = 10) 97.1 95.8 94.0 94.8

Table 4: Amazon cross-gender results. Test the adaptabil-

ity of the model by training and testing across different gen-

ders. Rows show the gender the model has been trained on,

columns show the gender the model is tested with. † Model

trained also with k = 0 so it does not use context during

training.

Men Women

k=0 † Men 95.0 58.3

Women 66.5 93.2

k=0
Men 57.9 52.9

Women 55.9 53.8

k=3
Men 92.6 79.8

Women 86.5 92.9

k=10
Men 97.1 86.0

Women 90.9 95.8

(a) Also bought.

Men Women

k=0 † Men 90.7 62.5

Women 73.2 91.5

k=0
Men 79.5 61.8

Women 68.5 71.7

k=3
Men 82.7 73.9

Women 79.7 94.5

k=10
Men 94.0 74.3

Women 83.2 94.8

(b) Bought together.

k = 0, because it is more similar to the training behaviour.

In Table 4 we show the results of one model trained with

men’s clothing and tested with women’s clothing (and vice

versa). The model denoted with † does not use relational

information during training and testing, so is the baseline

for not using contextual information (k = 0). As it can be

seen, the more neighbourhood information a model uses,

the most robust it is to the domain change. This occurs be-

cause when the model relies on context, it can adapt better

to unseen styles or clothing types.

6. Conclusions

In this paper we have seen how context information can

be used to improve the performance on compatibility pre-

diction tasks using a graph neural network based model. We

experimentally show that increasing the amount of context

improves the performance of our model on all tasks. We

conduct experiments on three different fashion datasets and

obtain state of the art results when context is used during

test time.
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