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Abstract

This paper proposes a method that uses deep convolu-

tional neural networks to achieve automatic and accurate

tooth instance segmentation and identification from CBCT

(cone beam CT) images for digital dentistry. The core of

our method is a two-stage network. In the first stage, an

edge map is extracted from the input CBCT image to en-

hance image contrast along shape boundaries. Then this

edge map and the input images are passed to the second

stage. In the second stage, we build our network upon the

3D region proposal network (RPN) with a novel learned-

similarity matrix to help efficiently remove redundant pro-

posals, speed up training and save GPU memory. To resolve

the ambiguity in the identification task, we encode teeth spa-

tial relationships as an additional feature input in the iden-

tification task, which helps to remarkably improve the iden-

tification accuracy. Our evaluation, comparison and com-

prehensive ablation studies demonstrate that our method

produces accurate instance segmentation and identification

results automatically and outperforms the state-of-the-art

approaches. To the best of our knowledge, our method is

the first to use neural networks to achieve automatic tooth

segmentation and identification from CBCT images.

1. Introduction

Digital dentistry has been developing rapidly in the past

decade. The key to digital dentistry is the acquisition and

segmentation of complete 3D teeth models; for example,

they are needed for specifying the target setup and move-

ments of individual teeth for orthodontic diagnosis and

treatment planning. However, acquiring complete 3D in-

put teeth models is a challenging task. Currently, there are

two mainstream technologies for acquiring 3D teeth mod-

els: (1) Intraoral or desktop scanning; and (2) cone beam

computed tomography (CBCT) [25]. Intraoral or desktop

scanning is a convenient way to obtain surface geometry of

tooth crowns but it cannot provide any information of tooth

Figure 1. An example of tooth segmentation and tooth identifica-

tion. The first column shows a CBCT scan in the axis view, the

second column shows its segmentation results, and the last col-

umn shows the 3D segmentation results with different colors for

different teeth respectively.

roots, which is needed for accurate diagnosis and treatment

in many cases. In contrast, CBCT provides more compre-

hensive 3D volumetric information of all oral tissues, in-

cluding teeth. Because of its high spatial resolution, CBCT

is suitable for 3D image reconstruction and is widely used

for oral surgery and digital orthodontics. In this paper, we

focus on 3D tooth instance segmentation and identification

from CBCT image data, which is a critical task for applica-

tions in digital orthodontics, as shown in Fig. 1.

Segmenting teeth from CBCT images is a difficult prob-

lem for the following reasons. (1) When CBCT is acquired

in the nature occlusion condition (i.e., the lower teeth and

upper teeth are in touch in the normal bite condition), it is

hard to separate a lower tooth from its opposing upper teeth

along their occlusal surface because of the lack of changes

in gray values [18, 22]; (2) Similarly, it is hard to sepa-

rate a tooth from its surrounding alveolar bone due to their

highly similar densities; and (3) Adjacent teeth with similar

shape appearance are likely to confuse the effort of identify-

ing different tooth instances (See for example the two max-

illary central incisors in Fig. 1). Hence, successful tooth

segmentation can hardly be achieved by relying only on the

intensity variation of CT images, as shown by many previ-
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ous attempts tooth segmentation methods.

To address the above issues, some previous works exploit

either the level-set method [11, 18, 13, 22] or the template-

based fitting method [2] for tooth segmentation. The former

methods are restricted by their need for a feasible initializa-

tion that requires tedious user annotations, and they produce

unsatisfactory results when teeth are in natural occlusion

condition. The later methods lack the necessary robustness

in practice when there are large shape variations for dif-

ferent patients. Recently, many deep learning methods for

medical image analysis [41, 42, 40], though have not been

applied to tooth segmentation, have demonstrated promis-

ing performance over traditional methods in various tasks.

All these previous works have motivated us to solve the

problem of tooth segmentation from CBCT by using a data-

driven method which learns the shape and data priors simul-

taneously. Specifically, we present a novel learning-based

method for automatic tooth instance segmentation and iden-

tification. That is, we aim to segment all the teeth from the

surrounding issues, separate the teeth from each other, and

identify each tooth by assigning to it a correct label.

The core of our method is a two-stage deep supervised

neural network. In the first stage, to enhance the bound-

ary of blurring and low contrast signals, we train an edge

extraction subnetwork. In the second stage, we devise a 3D

region proposal network [33] with a novel learned similarity

matrix which efficiently removes the duplicated proposals,

speeds up and stabilizes the training process, and signifi-

cantly cuts down the GPU memory usage. The input CBCT

images combined with the extracted edge map are then sent

to the 3D RPN followed by four individual branches for seg-

mentation, classification, 3D bounding box regression, and

identification tasks. To resolve the identification ambiguity,

we take into consideration tooth spatial position by adding

a spatial relation component to encode the position features

to improve identification accuracy. To the best of knowl-

edge, our method is the first to apply deep neural networks

to automatic tooth instance segmentation and identification

from CBCT images.

We train our neural networks on a proprietary data set of

CBCT images collected by the radiologists in our team and

validate our method with extensive experiments and com-

parisons with the state-of-the-art methods, as well as com-

prehensive ablation studies. The experiments and compar-

isons demonstrate that our method produces superior results

and significantly outperforms other existing methods.

2. Related work

Object Detection and Segmentation. Driven by the ef-

fectiveness of deep learning, many approaches in object de-

tection [33, 15, 28, 17] and instance segmentation [27, 7,

6, 32, 31, 21] have achieved promising results. In partic-

ular, R-CNN [[16]] introduces an object proposal scheme

and establishes a baseline for 2D object detection. Faster R-

CNN [33] advances the stream by proposing a Region Pro-

pose Network (RPN). Mask R-CNN [17] extends Faster R-

CNN by adding an additional branch that outputs the object

mask for instance segmentation. Following the set of rep-

resentative 2D R-CNN based works, 3D CNNs have been

proposed to detect objects and estimate poses replying on

3D bounding box detection [34, 36, 37, 8, 5, 14] on 3D

voxelized data. Girdhar et al. [14] extend Mask R-CNN to

the 3D domain by creating 3D RPN for key point tracking.

Inspired by the success of region-based methods on object

detection and segmentation, we exploit 3D Mask R-CNN as

the base network.

CNNs for Medical Image Segmentation. CNNs-based

methods for medical image analysis have demonstrated ex-

cellent performance on many challenging tasks, including

classification [35], detection [38] and segmentation [9, 40].

Note that medical images usually appear in a volumetric

form, e.g., 3D CT scans and MR images, many works em-

ploy 2D CNNs taking input the adjacent 2D slices [4] from

the 3D volume. Though coping with 2D data will not con-

sume too much GPU resources, the 3D spatial information

lying in volumetric data is not fully exploited. To directly

apply convolutional layers on 3D data, more 3D CNN-

based algorithms [9, 3, 23] are proposed. However, the ex-

isting methods target only on semantic level segmentation

or classification rather than instance level which is essential

in orthodontic diagnosis.

Tooth Segmentation from CBCT Images. Accurate tooth

segmentation from CBCT is a fundamental step for individ-

ual 3D tooth model reconstruction, which can assist doctors

in orthodontic diagnosis and treatment planning [11, 43].

Many traditional algorithms are proposed for tooth segmen-

tation, reflecting the importance of this application. Driven

by the intensity distribution in CBCT images, previous ap-

proaches resort to region growing [1, 24] and level sets

boosted variants [39, 22, 12]. By further considering the

prior knowledge of tooth, statistical shape models [30, 2]

become the most powerful and efficient choice. However,

these methods always suffer from many artifacts or failures

even with excellent manual initialization.

3. Methods

The core of our method is a two-stage deep neural net-

work. In the first stage, we extract the edge map from CBCT

images by a deep supervised network. In the second stage,

we concat the learned edge map features with the original

image features and send them to the 3D RPN. Then we pro-

pose one learned similarity matrix to filter the plenty of re-

dundant proposals inner the 3D RPN module, and one spa-

tial relationship component to further resolve the ambiguity
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Figure 2. Our two-stage network architecture for tooth instance segmentation and identification. Given CBCT images, we first pass them

to the edge map extraction network in stage one, where the deep supervised scheme is used. Then the detected edge map and the original

CBCT images are sent to the region proposal network with a novel similarity matrix. Four individual branches are followed for tooth

segmentation, classification, 3D box regressor and identification. In the identification branch, we further add the spatial relation component

to help resolve the ambiguity.

of tooth identification. Fig. 2 shows an overview of the

whole pipeline.

3.1. Base Network

Inspired by the excellent performance of R-CNN based

networks for general object segmentation and classification,

we extend the pipeline of Mask R-CNN [17] to a 3D version

as our base network.

In the backbone feature extraction module, we first apply

five 3D convolutional layers to CBCT images. Then the

encoded features are fed into the 3D RPN module where

we use the same structure as in [14] except the number

of anchors. Since the teeth size is relatively similar with

little variation, we tune the number of anchor to 1 at each

sliding position. In addition, we add one more branch for

identification as shown in Fig. 2.

Finally, the loss with multiple tasks for the base network

is defined as:

Lb = Lcls + Lbox + Lseg + Lid, (1)

where the classification loss Lcls, the 3D bounding-box re-

gression loss Lbox and the segmentation loss Lseg are iden-

tical as defined in [17]. And Lid is a log-softmax function

for tooth identification.

3.2. Our Network

3.2.1 Edge Map Prediction and Representation

The blurring signals in CBCT images make it hard to find

the clear tooth boundary. Besides, the low contrast value of

touching teeth prevents an accurate segmentation. To solve

these problems, we propose to extract an edge map from

CBCT images to enhance clear boundary information.

Given a CBCT volume data, which is annotated with a

multi-label ground truth segmentation Y where yi = k in-

dicates the ith tooth has label k. Then a binary edge map

EB of the same size can be produced by setting the voxels

on the tooth boundary to be 1 according to Y , others are set

to 0. Finally, a Gaussian filter G with standard deviation

σ = 0.1 is applied to the binary edge map EB to generate

ground truth edge map E.

To obtain fast convergence and more accurate predic-

tion, we employ deep supervised learning [26, 9] to train

the edge map detection network and enforce the learning of

ground truth edge map from three different feature levels as

shown in Fig. 2. Specifically, the network consists of one

encoder with nine convolutional layers and three branches

of decoders linking with lower-level, middle-level and high-

level features from the encoder. Then the loss function us-

ing mean squared error (MSE) is defined as:

LEM =
∑

i=0,1,2

‖E′

i − E‖
2
2 , (2)

where E denotes the ground truth edge map and E′

i is the

predicted edge map by different levels of features.

Having the edge map, we first apply three individual

conv layers (not shared) to edge map which comes from

the deepest decoder, and the original CBCT images. Then

we concate them together with another five conv layers to

be the input of the region proposal module.

3.2.2 Similarity Matrix

In the base network, 3D RPN module generates a set of

region proposals and removes the duplicate ones using non-

maximum suppression (NMS) before sending to the 3D

ROIAlign module. The challenge here is two-fold: 1) the

huge consumption of GPU memory on 3D volumetric data

prevents us setting big ROI number (32 (3D) vs. 512 (2D));

2) the NMS method depends on regressed bounding box po-

sition to remove redundant proposals, which is somewhat

inaccurate. To overcome these challenges, we propose a
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nature similarity matrix component that exploits shape fea-

tures directly to remove duplicate proposals efficiently.

In contrast to the NMS method utilizing simple relations

of regressed candidate bounding boxes and scores, we train

a similarity matrix S employing features of different pro-

posals. To train the similarity matrix, we first obtain the

top-k (k=256 is used) ranked proposals generated by 3D

RPN, denoted as P = {P0, P1, ..., Pk}. S has the dimen-

sion k× k, and the element Sij represents the possibility of

proposals Pi and Pj containing the same tooth. In training

stage, for any pair of proposals Pi and Pj in P , we first ex-

tract their corresponding features FPi
and FPj

in the back-

bone convolutional layer, and then we concatenate them to-

gether and send them to the fully-connected layers to output

a binary classification probability, which is supervised by

the ground truth similarity matrix introduced in the follow-

ing.

The preparation of the ground truth similarity matrix SG

is divided into two steps. Suppose we have m ground

truth bounding box in current patch, denoted as B =
B0, B1, ..., Bm, given the candidate proposal Pi ∈ P , we

first calculate the Intersection-over-Union score between

the bounding box of Pi and each bounding box in B. If the

highest IoU score P i
iou is derived between Pi and Bc, Pi

gets the object index c representing that Pi contains same

tooth as in Bc. Then in step two, we fill the value of SG
ij

following the three rules: 1) SG
ij = 1 if the pair of proposals

{Pi, Pj} has the same object index, and both of their IoU

scores P i
iou and P

j
iou are higher than η; 2) SG

ij = 0 if the

pair of proposals {Pi, Pj} has different object indices, and

both of their IoU scores P i
iou and P

j
iou are higher than η; 3)

SG
ij = −1 if one of the IoU scores P i

iou or P
j
iou of the pair

of proposals {Pi, Pj} is not higher than η, where η = 0.2
in all of our experiments. With ground truth matrix, the net-

work can learn the similarity matrix S via the loss functions

defined as:

LSM =
∑

(i,j)∈ε

SG
ij logSij + (1− SG

ij ) log(1− Sij), (3)

where (i, j) ∈ ε indicates the set of elements (i, j) that

satisfy Gij 6= −1.

In testing stage, the learned similarity matrix S is treated

as a look-up table. That is for any pair of proposals

{Pi, Pj}, if the element Sij > 0.5, we discard the dupli-

cate proposal with a lower classification score. Eventually,

the redundant proposals are removed efficiently and the se-

lected proposals are sent to the following steps for tooth

detection, segmentation, and identification.

3.2.3 Tooth Identification

To identify every tooth with a distinct label, we obey the

ISO standard tooth numbering system as shown in Fig. 3,

Upper Teeth

Lower Teeth

Figure 3. Tooth numbering system and the corresponding color

coding.

where the mouth is split into four quadrants: upper right,

upper left, lower right, and lower left respectively. Each

quadrant has seven teeth with different types. The wisdom

teeth are excluded from this study because of limited sam-

ples. Throughout the paper, we use the color coding shown

in Fig. 3 to visualize the teeth labels. However, we observe

that the general classifier would be confused if two neigh-

boring teeth have similar shapes, e.g., molars and central

incisors, without considering the spatial relationship.

To tackle this problem, we propose to encode the neigh-

boring teeth spatial boxes and shape features as additional

features for the identification task. Specifically, given a can-

didate proposal Pi (Pi ∈ {P1, P2, ..., Pn}, n equals to the

number of ROI) after ROIAlign module, we first obtain the

compacted shape feature. Then taking the neighboring spa-

tial relations into consideration, we build the relation feature

as a weighted sum of shape features from all other propos-

als. The relation weight indicates the impact from other pro-

posals and can be calculated by the geometric box features

following the idea [20]. Having the spatial relationship en-

coded, the identification branch takes the shape feature and

relation feature as input, which is supervised by the ground

truth label using a soft-max function.

Final Loss Function. In the end, with all these proposed

novel components, our network is trained using the overall

loss function combining the loss of base network and simi-

larity matrix loss, defined as:

L = Lb + λLSM , (4)

where λ = 0.5 for all experiments.
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3.3. Dataset and Network Training

To train our network, we collect a CBCT dataset from

some patients before or after orthodontics. The dataset con-

tains 20 3D CT scans with a resolution varied from 0.25

mm to 0.35 mm (12 for training and 8 for testing). We then

normalize the intensity of the CBCT image to the range of

[0, 1]. To generate the training data, we randomly crop 150

patches of size 128 × 128 × 128 around the alveolar bone

ridge in the CT scan and finally acquire about 1800 patches

as training data. The ground truth of the dataset is annotated

with a tooth-level bounding box, mask, and label. In the test

phase, the overlapped sliding window method is applied to

crop sub-volumes with a stride 32× 32× 32. Then for two

overlapped teeth, we use the one with a maximum value of

Pcls×Pid to be the final tooth prediction if the IoU of their

teeth segmentation results is higher than 0.2, where Pcls and

Pid indicate the tooth classification and identification prob-

abilities respectively.

The network is trained in a two-step process. We first

train the edge map extraction sub-network for 10 epochs in

step one and fix it in step two, where we train the segmenta-

tion and identification sub-networks for 10 epochs as well.

All the networks are implemented in PyTorch and trained

on the server with an Nvidia GeForce 1080Ti GPU, using

Adam solver with a fixed learning rate 0.001. Generally, the

total training time is about 30 hours (6 hours for stage one

and 24 hours for stage two respectively).

4. Results and Discussion

To evaluate our algorithm, we feed tooth CBCT images

in our testing dataset to the two-stage network, and the com-

plete 3D teeth model are reconstructed using 3D Slicer [10]

given the labels from network outputs. Some representative

results are shown in Fig. 1 and 7. Note that different colors

indicate different tooth types as defined in Sec. 3.2.3. Fur-

thermore, we conduct ablation studies (Sec. 4.1) and com-

parison with the state-of-the-art methods (Sec. 4.2) quanti-

tatively and qualitatively.

Error Metric. We report three error metrics in this pa-

per, i.e., the accuracy for tooth segmentation, detection and

identification respectively. To evaluate tooth segmentation

accuracy, we employ the widely used Dice similarity coef-

ficient (DSC) metric and the formulation is:

DSC =
2× |Y ∩ Z|

|Y|+ |Z|
, (5)

where Y and Z refer to the voxelized prediction results and

ground truth masks. Furthermore, we define the accuracy of

detection and identification as follows: suppose G is the set

of all teeth in ground truth data, and D is the set of teeth de-

tected by our network, and within D we have L right teeth

Network

Metric
DSC DA FA

bNet 89.73% 96.39% 90.54%

bENet 91.98% 97.75% 92.79%

Table 1. Accuracy comparison of bNet and bENet.

NbROI Method
Metric

DSC DA FA

32
NMS 91.98% 97.75% 92.79%

SM 92.10% 98.20% 93.24%

16
NMS 91.08% 95.49% 90.54%

SM 92.07% 98.20% 93.24%

12
NMS 86.76% 83.33% 77.93%

SM 91.77% 96.85% 90.99%

8
NMS 77.07% 68.92% 65.32%

SM 89.86% 88.29% 82.91%

Table 2. Performance comparison between the NMS and our SM

under different ROI numbers.

labels. The detection accuracy (DA) and identification ac-

curacy (FA) are calculated as:

DA =
|D|

|D ∪G|
and FA =

L

|D ∪G|
. (6)

All the experiments are performed on a machine with In-

tel(R) Xeon(R) E5-2628 1.90GHz CPU and 256GB RAM.

4.1. Ablation Study

To validate the effects of our two-stage network compo-

nents, we have done additional experiments by augmenting

the base network (Sec. 3.1) with our proposed novel com-

ponents. All alternative networks are trained on the same

dataset, and we report the accuracy on our test dataset for

comparison.

Edge Map. To validate the effect of the edge map input, we

augment the base network (bNet) with edge map detection

stage, and the detected edge map is combined with original

CBCT images as the input for the following tasks. Here we

use bENet as the notation of this variation. We then com-

pare the results from both networks as shown in Tab. 1 and

Fig. 4. Statistically, we acquire higher accuracy on all our

three subtasks and gain a remarkable 2.25% increasing in

terms of segmentation accuracy, though the bNet has ob-

tained promising results. And visually we select three typi-

cal cases, where the edge map has a great advantage. With

the edge map, the accurate boundary on body part (the first

row in Fig. 4), crown part (the second row in Fig. 4) with

touching teeth and even root part (the third row in Fig. 4)

with low contrast between tooth and alveolar bone can be

found benefiting for the accurate teeth reconstructed.
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(a) (b) (c)

Figure 4. The visual comparison between networks w/wo edge map extraction subnetwork. We show the axial-aligned CT image with

some details zooming in on some areas and the corresponding 3D reconstruction. (a) Results from ground truth data, (b) results from bNet,

and (c) results from bENet. The comparison is performed row by row.

NbROI 32 16 12 8

Memory 9.3GB 6.3GB 5.4GB 4.6GB

TNMS 34.0h 28.0h 24.5h 22.5h

TSM 25.0h 24.0h 23.5h 22.0h

Table 3. The statistics of GPU memory usage and training time

under different ROI numbers for both the NMS and our SM.

Network

Metric
DSC DA FA

bESNet 92.07% 98.20% 93.24%

fullNet 92.37% 99.55% 96.85%

Table 4. Accuracy comparison of networks w/wo the spatial rela-

tion component.

Similarity Matrix (SM). The huge amount of proposals

in 3D RPN prevent us from setting bigger ROI in practice

training, where bigger ROI number means more GPU mem-

ory usage but higher ability to include more object candi-

dates. Thus we design the control experiments by apply-

ing our similarity matrix to replace the traditional NMS in

bENet. We test both networks with various ROI numbers

and the statistical results are shown in Tab. 2. We estimate

the training time and GPU memory usage roughly and the

statistics are reported in Tab. 3. Using the same ROI num-

(a) bESNet (b) fullNet

Figure 5. The qualitative comparison of tooth identification w/wo

the spatial relation component (SR). Different tooth types are rep-

resented by different colors as defined in Sec. 3.2.3 and red color

represents the wrong label.

ber, SM generates superior accuracy over NMS on all three

accuracy metrics. And even using ROI = 12, SM produces

comparable results with NMS using ROI = 32 (91.77%
vs. 91.98%). But SM uses as less as 44.7% training hours

and 72.2% GPU memory (23.5 vs. 34.0 hours, 5.4 vs. 9.3
GB respectively), which we argue that our similarity ma-

trix significantly speeds up the training process and saves

GPU memory under specific quality control. One interest-

ing observation is that when we set ROI = 8, the accuracy
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of NMS decreases drastically, while we still can produce

89.86% segmentation accuracy which is comparable with

bNet (ROI = 32, NMS is used). The reason here is that

when setting small ROI number, NMS receives less instance

objects while our SM encourages more instance objects ef-

ficiently using object features.

Using SM and setting ROI = 16, we already remove

most of the redundant proposals, thus we only get a slightly

increasing in terms of segmentation accuracy with ROI =
32, as shown in Tab. 2. In order to leverage the advantages

of SM for efficient network training, we use ROI = 16 in

the following spatial relation component ablation test and

our final full network.

Note that in NMS method, the IoU threshold Nt will af-

fect the performance. We empirically set Nt = 0.2 based

on our substantial experiments to encourage better results.

Spatial Relation Component. To validate the effective-

ness of the spatial relation component in resolving the iden-

tification ambiguity, we further augment bESNet (bENet

with similarity matrix) with spatial relation component

which is our final two-stage full network (fullNet) and com-

pare the accuracy performance on our three subtasks (see

statistics in Tab. 4). With spatial relation network, the per-

formance of tooth identification and detection tasks earn

about 3.61% and 1.35% growth with almost all teeth de-

tected and labeled correctly.

We also present the visual comparison in Fig 5. Using

spatial relation component, the two similar central incisors

(the first row in Fig. 5) are correctly identified. Besides,

the cuspid tooth grows in a wrong direction (the second row

in Fig. 5), such that the lateral incisor and cuspid are spa-

tially too close to the 1st bicuspid tooth. Without taking

the spatial relation into consideration, the identification of

lateral incisor tooth will be affected by the label of 1st bi-

cuspid tooth which has bigger volume and is easy to recog-

nize. Instead, with the spatial relation included, the label for

the lateral incisor tooth is correctly predicted. Furthermore,

spatial relation component has a positive effect on the seg-

mentation task since it detects the tiny tooth as highlighted

in the red box in Fig. 5, which attributes to the positive

correlation between three subtasks.

4.2. Comparison

We compare our method with the state-of-the-art learn-

ing and non-learning methods.

Learning-based methods. Recently, Miki et al. [29] pro-

pose to use deep learning for tooth type labeling. They man-

ually crop each tooth from one 2D slice of CBCT images

and feed the cropped 2D image to the network for tooth

type classification. In contrast, we perform instance seg-

mentation and identification together in 3D domain, then

not only the instance labels are found but also the accurate

teeth shapes are built.

(a) (b)

Figure 6. Comparison with the state-of-the-art method. (a) Seg-

mentation results from [11]. (b) Our segmentation results. The

first row shows results in a close bite position, while the second

row shows the results in an open bite position.

Non-learning based methods. Many more non-learning

methods target tooth shape segmentation [11, 2, 30], type

classification, or both together [19]. Although [30] achieves

a high dice score, it requires extra template teeth meshes

and tedious user annotations, while [2] has a small average

surface disctnace error, but it is not able to segment molar

teeth. Thus, we compare the more recent state-of-the-art

method [11] on tooth segmentation task, where they em-

ploy the level-set based method with manual initialization.

There is a visual comparison in Fig. 6 showing that 1) they

cannot find the correct tooth shape boundary in the close

bite condition (the first row); 2) they can segment every

tooth, but with noisy boundary in the open bite condition

(the second row), especially the root part in the red box due

to the low contrast value there. Instead, our method is not

restricted to the open or close condition, even we do not

include any open bite condition teeth data in our training

dataset because a tooth CT date captured under an open bite

condition is generally invalid in orthodontic diagnosis. To

further compare the statistical segmentation accuracy with

their method, we first capture two sets of teeth data in an

open bite condition and then conduct the comparison using

them. Specifically, the DSC scores are 87.12% (theirs) and

92.64% (ours), and the average symmetric surface distance

errors are 0.32mm (theirs) and 0.14mm (ours) respectively.

We outperform them both visually and statistically.

4.3. Discussion

Failure case. There are two failure cases as shown in Fig. 8

(a) and (b). The segmentation will fail when there is ex-

treme gray scale value in CT image, such as the metal ar-
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CT scan Right View Frontal View Left View

#167/236

#38/206

#82/225

Figure 7. The results gallery of the tooth segmentation and identification. Different CT scans with segmentation results are shown in the

first column, and the reconstructed 3D teeth models from three different views are shown in the following three columns. The numbers

illustrate the scan indices and different colors illustrate different teeth as defined in Sec. 3.2.3. In addition, the second example contains a

removed molar tooth, whose position is marked by the red dashed box.

(a) (b) (c)

Figure 8. Failure cases and wisdom tooth detection. (a) Extreme

gray scale value appears on CT image, e.g., metal artifact of dental

implants. (b) Tooth with wrong orientation. (c) Correctly detected

wisdom teeth with wrong labels.

tifact of dental implants (Fig. 8 (a)). And the identification

will fail if the tooth has the wrong orientation (Fig. 8 (b)),

since our network did not see this kind of data during the

training process.

Wisdom tooth. Wisdom tooth is a special case for human

since only a few people have this kind of tooth. Hence, we

remove these teeth from CBCT images when preparing the

training data. But when we feed this tooth to our network, it

detects and segments it successfully as shown in Fig. 8 (c).

We never add extra label for this tooth, therefore the tooth

label is wrong, visualized with red color.

Incomplete teeth. Our testing dataset includes data with

incomplete teeth. One example result is shown in the sec-

ond row of Fig. 7, where one tooth has been removed from

the jaw. We could successfully segment all existing teeth

with correct labels.

5. Conclusion

In this paper, we propose the first deep learning solution

for accurate tooth instance segmentation and identification

from CBCT images. Our method is fully automatic without

any user annotation and post-processing step. It produces

superior results by exploiting the novel learned edge map,

similarity matrix and the spatial relations between different

teeth. As illustrated, the proposed method significantly out-

performs all other existing methods both qualitatively and

quantitatively. Our newly proposed components make the

popular RPN-based framework suitable for 3D applications

with lower GPU memory and less training time require-

ments, and it can be generalized to other medical image

processing tasks in the future.
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