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Figure 1: 3D scans of objects suffer from sensor occlusions as well as noisy, oversmoothed reconstruction quality in very

dense, triangle-heavy meshes, due to both sensor noise and resolution as well as reconstruction artifacts. We propose a novel

approach, leveraging graph neural networks, which takes a partial scan of an object and generates a complete, lightweight

3D mesh of the object. Our approach is the first to propose a generative deep-learning based model for directly creating a 3D

mesh as an indexed face set.

Abstract

We introduce Scan2Mesh, a novel data-driven generative

approach which transforms an unstructured and potentially

incomplete range scan into a structured 3D mesh represen-

tation. The main contribution of this work is a generative

neural network architecture whose input is a range scan of

a 3D object and whose output is an indexed face set condi-

tioned on the input scan. In order to generate a 3D mesh

as a set of vertices and face indices, the generative model

builds on a series of proxy losses for vertices, edges, and

faces. At each stage, we realize a one-to-one discrete map-

ping between the predicted and ground truth data points

with a combination of convolutional- and graph neural net-

work architectures. This enables our algorithm to predict

a compact mesh representation similar to those created

through manual artist effort using 3D modeling software.

Our generated mesh results thus produce sharper, cleaner

meshes with a fundamentally different structure from those

generated through implicit functions, a first step in bridging

the gap towards artist-created CAD models.

1. Introduction

3D meshes are one of the most popular representations

used to create and design 3D surfaces, from across content

creation for movies and video games to architectural and

mechanical design modeling. These mesh or CAD mod-

els are handcrafted by artists, often inspired by or mimick-

ing real-world objects and scenes through expensive, sig-

nificantly tedious manual effort. Our aim is to develop a

generative model for such 3D mesh representations; that is,

a mesh model described as an indexed face set: a set of ver-

tices as 3D positions, and a set of faces which index into

the vertices to describe the 3D surface of the model. In this

way, we can begin to learn to generate 3D models similar to

the handcrafted content creation process.

The nature of these 3D meshes, structured but irregular

(e.g., irregular vertex locations, varying face sizes), make

them very difficult to generate. In particular, with the bur-

geoning direction of generative deep learning approaches

for 3D model creation and completion [5, 10, 30, 6], the

irregularity of mesh structures provides a significant chal-

lenge, as these approaches are largely designed for regular

grids. Thus, work in the direction of generating 3D models

predominantly relies on the use of implicit functions stored
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in regular volumetric grids, for instance the popular trun-

cated signed distance field representation [3]. Here, a mesh

representation can be extracted at the isosurface of the im-

plicit function through Marching Cubes [21]; however, this

uniformly-sampled, unwieldy triangle soup output remains

fundamentally different from 3D meshes in video games or

other artist-created mesh/CAD content.

Rather than generate 3D mesh models extracted from

regular volumetric grids, we instead take inspiration from

3D models that have been hand-modeled, that is, compact

CAD-like mesh representations. Thus, we propose a novel

approach, Scan2Mesh, which constructs a generative for-

mulation for producing a mesh as a lightweight indexed

face set, and demonstrate our approach to generate com-

plete 3D mesh models conditioned on noisy, partial range

scans. Our approach is the first, to the best of our knowl-

edge, to leverage deep learning to fully generate an explicit

3D mesh structure. From an input partial scan, we employ

a graph neural network based approach to jointly predict

mesh vertex positions as well as edge connectivity; this

joint optimization enables reliable vertex generation for a

final mesh structure. From these vertex and edge predic-

tions, interpreting them as a graph, we construct the cor-

responding dual graph, with potentially valid mesh faces as

dual graph vertices, from which we then predict mesh faces.

These tightly coupled predictions of mesh vertices along

with edge and face structure enable effective transforma-

tion of incomplete, noisy object scans to complete, compact

3D mesh models. Our generated meshes are cleaner and

sharper, while maintaining fundamentally different struc-

ture from those generated through implicit functions; we

believe this is a first step to bridging the gap towards artist-

created CAD models.

To sum up, our contributions are as follows:

• A graph neural network formulation to generate

meshes directly as indexed face sets.

• Demonstration of our generative model to the task

of shape completion, where we achieve significantly

cleaner and more CAD-like results than state-of-the-

art approaches.

2. Related Work

Recent advances in machine learning, coupled with the

increasing availability of 3D shape and scene databases [2,

30, 4], has spurred development of deep learning ap-

proaches on 3D data. 3D ShapeNets [35] and VoxNet [22]

were among the first approaches to propose 3D convolu-

tional neural networks, both leveraging occupancy-based

representations encoded in regular volumetric grids in or-

der to perform object recognition tasks. Various other ap-

proaches have since been developed upon 3D CNN-based

architectures, targeting applications such as object classi-

fication [24], object detection [29], 3D keypoint match-

ing [36], and scan completion [5, 10, 30, 6].

Such approaches have largely been developed upon reg-

ular volumetric grid representations, a natural 3D analogue

to image pixels. Earlier 3D CNN approaches leveraged

occupancy-based volumetric representations [35, 22, 24],

simply encoding whether each voxel is occupied, empty (or

optionally unknown). Inspiration has also been taken from

work in 3D scanning and reconstruction, where implicit vol-

umetric representations, in particular truncated signed dis-

tance fields, are very popular. Such representations encode

both finer-grained information about the surface as well as

the empty space, and have recently been effectively lever-

aged for both discriminative and generative tasks [5, 30, 6].

For generative tasks, Liao et al. [18] proposed a learned

marching cubes mesh extraction from a volumetric grid for

further output refinement. Hierarchical strategies have also

been developed to alleviate the cubic cost of such dense vol-

umetric representations [26, 33], and have been shown to

generate higher-resolution output grids [25, 31, 11, 10, 34].

However, the 3D surfaces extracted from these regular vol-

umetric grids maintain fundamentally different structure

from that of handcrafted CAD models.

Point-based representations have recently been popular-

ized with the introduction of the PointNet architecture [23],

which demonstrated 3D classification and segmentation on

a more efficient 3D representation than dense volumetric

grids. Generative approaches have also been developed

upon point cloud representations [7], but 3D point cloud

outputs lack the structured surface information of meshes.

Several approaches for inferring the mesh structure of an

object from an input image have recently been introduced,

leveraging very strong priors on possible mesh structure in

order to create the output meshes. AtlasNet [9] learns to

generate a 2D atlas embedding of the 3D mesh of an object.

Another approach is to learn to deform template meshes

(e.g., an ellipsoid) to create an output 3D mesh model of

an object [19, 32, 12]. Such approaches generate 3D mesh

surfaces as output, but are constrained to a limited set of

mesh structures, whereas we aim to generate the explicit

mesh structure from scratch.

In contrast to previous approaches, we take inspiration

from handcrafted CAD models and develop an approach

to generate the full mesh graph structure, from vertices to

edges to faces. To this end, we leverage developments in

machine learning approaches on graphs, in particular graph

neural networks [28], to formulate an method to generate

3D mesh vertices, edges, and faces.

3. Method Overview

Our method generates a 3D mesh as a set of vertices (3D

positions) and a set of k-sided faces which index into the
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Figure 2: Our Scan2Mesh approach takes as input an partial scan of an object as a TSDF, and proposes a new graph neural

network formulation to predict the mesh graph structure of vertices, edges, and faces. First, the input TSDF is used to jointly

predict mesh vertices and edges as a graph, then this graph is transformed into its dual in order to predict the final mesh

output faces (which need not contain all intermediate predicted edges). We maintain losses on each of the mesh vertex, edge,

and face predictions to produce a final output mesh graph structure.

vertices to describe the mesh surface, conditional on an in-

put partial range scan. Note that our approach is agnos-

tic to the input data and representation as our focus lies in

the formulation of a generative approach to explicitly gen-

erate mesh structure; in this paper, we use the task of shape

completion to exemplify our approach. For shape comple-

tion, we aim to generate a complete mesh model from an

input partial scan of an object. Here, the input scan is cap-

tured as depth image or set of depth images, which are then

fused into a 323 volumetric grid as a truncated signed dis-

tance field through volumetric fusion [3]. Training is per-

formed with supervised input-target pairs, with input scans

generated by virtually scanning objects from the ShapeNet

dataset [2].

We propose a new graph neural network in order to pre-

dict the vertices, edges, and then faces of the mesh graph

structure. First, features from the input TSDF scan are com-

puted through a series of 3D convolutions; from this feature

space, we predict a set of 3D vertex locations. These vertex

locations form the nodes of the mesh graph. We construct

a fully connected graph on these mesh vertices, and employ

graph neural network to predict which mesh edges belong

to the mesh graph structure. Note that the vertices and edges

are predicted jointly in order to learn reliable vertex gener-

ation for a final mesh structure.

From the graph of intermediate predicted vertices and

edges, we then construct the dual graph in order to predict

the final face structure of the mesh. The nodes of the dual

graph characterize potential faces (i.e., each node represents

a potential face, which is a set of k predicted edges that con-

nect to form a valid k-sided face), and we employ another

graph neural network to predict the final mesh faces. We

maintain losses on the vertices, edges, and faces during this

mesh generation process in order to learn to generate CAD-

like mesh models.

4. Scan2Mesh Network Architecture

Our Scan2Mesh network architecture is visualized in

Figure 2. It is composed of two main components: first, a

3D-convolutional and graph neural network architecture to

jointly predict vertex locations and edge connectivity; and

second, a graph neural network to predict the final mesh

face structure. For the task of shape completion, we take

as input a range scan represented as a truncated signed dis-

tance field (TSDF) in a 323 volumetric grid. We represent

the TSDF as a 5-channel volumetric grid, in which the first

two channels store the truncated unsigned distance field val-

ues and known/unknown space according to the camera tra-

jectory of the scan, and the last three channels store the

(x, y, z) coordinates of the volumetric grid in the coordi-

nate system of the mesh vertex positions, so that the TSDF

volume is spatially “aligned” with the mesh – in the same

spirit as the CoordConv operator proposed by [20]. The

TSDF data generation of the partially-scanned input is de-

tailed in Sec. 5.

4.1. Joint Vertex and Edge Prediction

The TSDF input then is used to predict a set of n mesh

vertex locations through a series of 3D convolutions (ker-

nel sizes 4, 3, 3, 3, all but the last followed by a 1 × 1 × 1
convolution). The resulting feature space, f(TSDF) is used

to predict an n × 3 tensor of n vertex position through a

series of two fully-connected layers. We also denote the in-

termediary feature space after two sets of 3D convolutions

as f2(TSDF), which is used to capture spatial features of

the input scan to inform the edge prediction.

We then construct a fully-connected graph with n nodes

corresponding to the n vertex positions. The initial node

features are characterized by the 3-dimensional vertex posi-

tions, in addition to the closest feature vector in f2(TSDF)
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by looking up the vertex positions into the f2(TSDF) grid.

We propose a graph neural network on this graph, which

remains agnostic to the vertex ordering. For a graph G =
(V, E) comprising vertices v ∈ V and edges e = (v, v′) ∈
E , messages are passed from nodes to edges, and edges to

nodes as follows, similar to [8, 16]:

v → e : h′
i,j = fe([hi,hj ])

e → v : h′
i = fv(

∑

{ei,j}

hi,j)

where hi represents the feature of vertex vi, hi,j represents

the feature of edge ei,j , and [·, ·] denotes concatenation.

Thus, an edge ei,j receives updates through the concate-

nated features of the vertices vi, vj it is defined by, and a

vertex vi receives updates through the sum of the features

of the edges ei,j incident on vi. fv and fe are MLPs op-

erating on nodes and edges, respectively. For full network

architecture details regarding layer definitions, please see

the supplemental material.

The vertices are optimized for with an ℓ1 loss, where we

first compute a one-to-one mapping between the predicted

vertices and ground truth vertices using the Hungarian al-

gorithm [17]. This one-to-one mapping during training is

essential for predicting reliable mesh structure; a greedy ap-

proach (e.g., Chamfer loss on vertices) results in collapse of

smaller structures as shown in Figure. 3.

The output predicted vertices along with the input scan

features f2(TSDF) are then used to predict edge connec-

tivity on the graph of the mesh with vertices as nodes.

Each node is initially associated with two features, the 3-

dimensional vertex positions and the closest feature vec-

tor in f2(TSDF) according to the respective vertex posi-

tions. These features are processed independently through

small MLPs, then concatenated to the form vertex features

which are then processed through graph message passing.

For each edge in the fully-connected graph, we predict

whether it belongs to the mesh graph structure using a (two-

dimensional) cross entropy loss. The vertex positions and

edges are optimized for jointly in order to reliably predict

vertices belonging to a mesh structure.

4.2. Mesh Face Prediction

We predict the final mesh faces from these intermedi-

ate predicted vertices and edges by transforming the graph

of predicted mesh vertices and edges into its dual graph.

This dual graph comprises the set of valid potential faces as

the nodes of the graph, with a (dual graph) edge between

two nodes if the two potential faces share an edge. The

nodes are represented by an 8-dimensional feature vector

comprising the centroid, normal, surface area, and radius of

its respective potential face. We then employ a graph neu-

ral network formulated similarly as that for the vertex and

Figure 3: During training, we map the predicted graph with

a one-to-one mapping on the vertices with the ground truth

(top-left) using the Hungarian algorithm for bi-bipartite

matching [17]. This enables prediction of both large struc-

tures as well as small structures, which might collapse with

a greedy association, as seen in the chair legs (top, right).

edge prediction, this time predicting which faces belong to

the final mesh structure. Note that final mesh face predic-

tions need not contain all intermediary predicted edges. We

first train the face prediction using a cross entropy loss on

the nodes of the dual graph, and then use a chamfer loss

between points sampled from the predicted mesh and the

target mesh in order to better encourage all structurally im-

portant faces to be predicted.

4.3. Training

To train our model, we use the training data generated

from the ShapeNet dataset [2] as described in Sec. 5.

We use the ADAM optimizer [15] with a learning rate of

0.0005 and batch size of 8 for all training. We train on eight

classes of the ShapeNet dataset, following the train/test split

of [5]. We additionally follow their training data augmenta-

tion, augmenting each train object by generating two virtual

scanning trajectories for each object, resulting in 48, 166
train samples and 10, 074 validation samples.

We train the vertex-edge prediction for 5 epochs (≈ 15
hours). While we found it sufficient to train the joint vertex-

edge prediction through finding a one-to-one mapping be-

tween the predicted vertices and ground truth mesh vertices

(the edges following as vertex indices), we found that for

training face prediction with cross entropy loss, the one-to-

one mapping sometimes resulted in distorted target faces,

and it was more reliable to train the model on dual graphs

computed from the ground truth meshes. Thus we first train
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Method Mesh Distance Mesh Normal Similarity

Poisson Surface Reconstruction [13, 14] 0.0136 0.60

Point Pred + Poisson [13, 14] 0.0089 0.67

ShapeRecon [27] 0.0075 0.60

3D ShapeNets [35] 0.0027 0.68

3D-EPN [5] 0.0023 0.76

Ours 0.0016 0.83

Table 1: Quantitative shape completion results for different methods on synthetic scans of ShapeNet objects. We measure

the distance between the predicted meshes and the ground truth mesh as the average point distance between points uniformly

sampled from the respective meshes, as well as the normal similarity to the ground truth mesh. Point Pred + Poisson refers

to using our architecture to only predict 1024 “vertices,” followed by Poisson Surface Reconstruction [13, 14].

Input
Average Chairs Tables Airplanes Dressers Lamps Boats Sofas Cars

Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim

Points 0.0019 0.80 0.0016 0.79 0.0022 0.82 0.0008 0.93 0.0015 0.76 0.0045 0.72 0.0013 0.82 0.0021 0.76 0.0009 0.78

TSDF 0.0016 0.83 0.0015 0.82 0.0021 0.82 0.0010 0.93 0.0014 0.79 0.0029 0.80 0.0011 0.85 0.0016 0.80 0.0008 0.83

Table 2: Evaluating the effect of different input scan representations. We compare point cloud inputs with TSDF inputs,

measuring the distance between the predicted meshes and the ground truth mesh as the chamfer distance between points

uniformly sampled from the respective meshes, as well as the normal similarity to the ground truth mesh. The regularity of

the TSDF and encoding of known and unknown space result in improved mesh prediction results.

the face prediction network for 1 epoch (≈ 6 hours) us-

ing a cross entropy loss and ground truth dual graph data,

and then train on dual graphs from predicted vertices and

edges using a chamfer loss between the predicted and target

meshes (for 1 epoch, ≈ 18 hours).

5. Data Generation

For training data generation, we use the ShapeNet model

database [2], and train on a subset of 8 classes (see Sec.

6). We follow the training data generation process of [5],

generating training input-target pairs by virtually scanning

the ShapeNet objects along the camera trajectories given by

their ShapeNet virtual scans dataset. We use two trajec-

tories for each object for training. The virtually captured

depth map(s) along these trajectories are then fused into a

323 grid through volumetric fusion [3] to obtain input TS-

DFs. We use a truncation of 3 voxels for all experiments.

An object is mapped from its world space into a 323 grid by

scaling the largest bounding box extent to 32− 3 ∗ 2 (for 3
voxels of padding on each side).

For ground truth meshes, we use triangle meshes sim-

plified from ShapeNet models. In order to both reduce the

complexity of the graph sizes as well as unify some of the

irregularity of the ShapeNet meshes, we simplify all target

meshes to 100 vertices each using the V-HCAD library [1],

which approximately maintains the convex hull of the orig-

inal mesh.

6. Results and Evaluation

In this section, we provide an evaluation of our proposed

method with a comparison to existing approaches on the

task of scan completion of 3D shapes. We evaluate on

the ShapeNet [2] dataset, using the train/test split provided

by 3D-EPN [5] comprising 8 classes: chairs, tables, sofas,

dressers, lamps, boats, cars, and airplanes. We test on the

1200 object test set proposed by 3D-EPN of single depth

image range scans (150 objects per class), where input scans

are aligned with the ground truth complete meshes, which

lie in the unit cube. We compare our mesh results to meshes

produced by state-of-the-art approaches; in the case that an

approach generates an implicit function, we extract an out-

put mesh using Matlab’s isosurface function. To measure

the mesh quality, we employ two metrics: (1) we mea-

sure the mesh completeness using a chamfer distance be-

tween uniformly sampled points from the predicted mesh

and the ground truth mesh, and (2) we measure the nor-

Average Chairs Tables Airplanes Dressers Lamps Boats Sofas Cars

Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim

Greedy 0.0022 0.74 0.0020 0.73 0.0027 0.75 0.0012 0.85 0.0020 0.70 0.0047 0.70 0.0016 0.72 0.0021 0.71 0.0011 0.74

1-to-1 0.0016 0.83 0.0015 0.82 0.0021 0.82 0.0010 0.93 0.0014 0.79 0.0029 0.80 0.0011 0.85 0.0016 0.80 0.0008 0.83

Table 3: Evaluating greedy vs 1-to-1 association of predictions and ground truth during training. We measure the distance

between the predicted meshes and the ground truth mesh as the chamfer distance between points uniformly sampled from

the respective meshes, as well as the normal similarity to the ground truth mesh. Here, a 1-to-1 discrete mapping encourages

higher quality vertex, edge, and face predictions.
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Figure 4: Qualitative scan completion results on virtual scans of ShapeNet [2] objects, in comparison to Poisson Surface

Reconstruction [13, 14], as well as the volumetric generative approaches of 3D ShapeNets [35] and 3D-EPN [5]. We show

results on a variety of object classes, and produce both sharp and complete mesh structure in contrast to the volumetrically

regular triangulation and noisy or oversmoothed results from approaches using implicit representations on a volumetric grid.

mal deviation from the ground truth mesh to characterize

mesh sharpness and cleanness. The normal deviation met-

ric is computed bi-directionally: for meshes Ma,Mb, we

sample points from each of their surfaces and compute the

normal deviation N(Mb,Ma) from Mb to Ma as the av-

erage of the cosine of the normal angle difference for the
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Figure 5: Qualitative mesh prediction results on partial scans of ShapeNet [2] objects. From an input partial scan, we first

predict mesh vertices and edges, which are then used to generate the final mesh face predictions.
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Average Chairs Tables Airplanes Dressers Lamps Boats Sofas Cars

Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim Dist NSim

Direct(GT) 0.0042 0.66 0.0035 0.62 0.0042 0.66 0.0078 0.69 0.0030 0.63 0.0053 0.67 0.0022 0.71 0.0058 0.59 0.0014 0.69

Direct(Surf) 0.0031 0.69 0.0031 0.64 0.0028 0.69 0.0025 0.81 0.0028 0.62 0.0077 0.66 0.0016 0.72 0.0033 0.62 0.0010 0.73

Dual Pred 0.0016 0.90 0.0015 0.90 0.0021 0.89 0.0010 0.93 0.0014 0.88 0.0029 0.86 0.0011 0.88 0.0016 0.91 0.0008 0.91

Table 4: Evaluating direct prediction of faces using a mesh graph with mesh vertices as nodes in comparison to using the

dual graph with potential faces as nodes. We measure the distance between the predicted meshes and the ground truth mesh

as the chamfer distance between points uniformly sampled from the respective meshes, as well as the normal similarity to the

ground truth mesh. The dual graph significantly reduces the large combinatorics of the possible faces, providing much more

reliable mesh prediction results.

closest sampled point from Mb to each that of Ma, and take

0.5(N(Ma,Mb)+N(Mb,Ma)) as the global normal devia-

tion (taking the best normal deviation from a search window

of 0.03, to disambiguate small positional misalignments).

Comparison to state of the art. We evaluate against state-

of-the-art shape completion approaches in Table 1 and Fig-

ure 4. Additionally, we evaluate various design choices in

Tables 2, 3, and 4. Here, we see that our approach generates

sharper, cleaner meshes than previous volumetric-based ap-

proaches while producing accurate completeness in global

shape structure.

What is the impact of the input scan representation? We

evaluate our approach using a point cloud representation of

the input range scan (uniformly sampled from the range im-

age inputs) in comparison to a TSDF in Table 2. To process

the point cloud input, we replace the volumetric convolu-

tions of the encoder with a PointNet-based architecture [23].

Both representations produce good mesh results, but we find

that regularity and encoding of known and unknown space

in the TSDF produces better completion and mesh quality.

Do we need a 1-to-1 mapping between prediction and

target during training? In Table 3, we evaluate using a

greedy mapping between predicted vertices and target ver-

tices during vertex-edge training. Using a greedy mapping

degrades the quality of vertex predictions with respect to

the final mesh structure (e.g., we want a cluster of vertices

at the end of a chair leg instead of one vertex), and results

in worse mesh reconstruction quality (see Figure 3 for an

example visualization).

Why use the dual graph for face prediction? We evalu-

ate our face prediction approach, which leverages the dual

graph of the mesh vertex-edge graph, in Table 4. Here,

we compare against directly predicting mesh faces using

the same formulation as the joint vertex-edge prediction,

where instead of predicting edges as which two vertices

are connected, we predict faces as which sets of three ver-

tices are connected, resulting in O(n3) possible faces from

which the mesh faces must be predicted (we refer to the

supplemental for more detail regarding directly predicting

faces). Given the large combinatorics here, where the num-

ber of ground truth mesh faces is approximately 0.2% of

the number of total possible faces (for n = 100), we eval-

uate two possibilities for training the direct face prediction:

Direct(GT) uses only the ground truth mesh faces as target

faces, and Direct(Surf) which uses all possible faces close

to the ground truth mesh surface as target faces. Both ap-

proaches nonetheless suffer from the heavy combinatorics,

whereas our approach of predicting faces by using the dual

graph of the mesh vertex-edge graph produces significantly

better mesh structure and completeness.

6.1. Limitations

We propose one of the first approaches to explicitly gen-

erate a 3D mesh as an indexed face set, and believe that

this is a stepping stone towards future work in constructing

CAD-like 3D models akin to those currently handcrafted.

For instance, our use of fully-connected graphs limits the

size of our models; adapting the graphs and message pass-

ing to enable learning on significantly larger mesh graphs

would open up generation of higher resolution or larger

scale models. Additionally, we do not explicitly enforce

mesh regularity or surface continuity (which are also not

given in the ShapeNet models); adding hard constraints into

the optimization to guarantee these attributes would open up

many more applications for these models.

7. Conclusion

We presented Scan2Mesh, a generative model for creat-

ing 3D mesh models as indexed face sets, inspired by 3D

model representations used in handcrafted 3D models. We

proposed a new graph neural network formulation to gen-

erate a mesh representation directly, and demonstrated our

mesh generation on the task of shape completion, achiev-

ing cleaner and more CAD-like mesh models from noisy,

partial range scans. We believe that this opens up myriad

possibilities towards bridging the gap of 3D model genera-

tion towards the quality of artist-created CAD models.
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