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Abstract

Recently, deep convolutional neural networks (CNNs)

have been widely explored in single image super-resolution

(SISR) and obtained remarkable performance. However,

most of the existing CNN-based SISR methods mainly focus

on wider or deeper architecture design, neglecting to ex-

plore the feature correlations of intermediate layers, hence

hindering the representational power of CNNs. To address

this issue, in this paper, we propose a second-order atten-

tion network (SAN) for more powerful feature expression

and feature correlation learning. Specifically, a novel train-

able second-order channel attention (SOCA) module is de-

veloped to adaptively rescale the channel-wise features by

using second-order feature statistics for more discrimina-

tive representations. Furthermore, we present a non-locally

enhanced residual group (NLRG) structure, which not only

incorporates non-local operations to capture long-distance

spatial contextual information, but also contains repeated

local-source residual attention groups (LSRAG) to learn in-

creasingly abstract feature representations. Experimental

results demonstrate the superiority of our SAN network over

state-of-the-art SISR methods in terms of both quantitative

metrics and visual quality.

1. Introduction

Single image super-resolution (SISR) [5] has recently re-

ceived much attention. In general, the purpose of SISR is

to produce a visually high-resolution (HR) output from its

low-resolution (LR) input. However, this inverse problem
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is ill-posed since multiple HR solutions can map to any LR

input. Therefore, a great number of SR methods have been

proposed, ranging from early interpolation-based [37] and

model-based [4], to recent learning-based methods [32, 39].

The early developed interpolated-based methods (e.g.,

bilinear and bicubic methods) are simple and efficient but

limited in applications. For more flexible SR methods, more

advanced model-based methods are proposed by exploiting

powerful image priors, such as non-local similarity prior

[34] and sparsity prior [4]. Although such model-based

methods are flexible to produce relative high-quality HR

images, they still suffer from some drawbacks: (1) such

methods often involve a time-consuming optimization pro-

cess; (2) the performance may degrade quickly when image

statistics are biased from the image prior.

Deep convolution neural networks (CNNs) have re-

cently achieved unprecedented success in various problems

[7, 25]. The powerful feature representation and end-to-end

training paradigm of CNN makes it a promising approach

to SISR. In the last several years, a flurry of CNN-based

SISR methods have been proposed to learn a mapping func-

tion from an interpolated or LR input to its corresponding

HR output. By fully exploiting the image statics inherent in

training datasets, CNNs have achieved state-of-the-art re-

sults in SISR [2, 12, 14, 36, 39, 38]. Although considerable

progress has been achieved in image SR, existing CNN-

based SR models are still faced with some limitations: (1)

most of CNN-based SR methods do not make full use of

the information from the original LR images, thereby result-

ing in relatively-low performance; (2) most existing CNN-

based SR models focus mainly on designing a deeper or

wider network to learn more discriminative high-level fea-

tures, while rarely exploiting the inherent feature correla-

tions in intermediate layers, thus hindering the representa-

tional ability of CNNs.

To address these problems, we propose a deep second-

order attention network (SAN) for more powerful feature

expression and feature correlation learning. Specifically, we
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(a) HR (b) FSRCNN (c) LapSRN [14] (d) SRMD [36] (e) EDSR [36] (f) DBPN [20] (g) RDN [6] (h) Ours

Figure 1. Zoom visual results for 4× SR on “img 092” from Urban100. Our method obtains better visual quality and recovers more image

details compared with other state-of-the-art SR methods

propose a second-order channel attention (SOCA) mech-

anism for better feature correlation learning. Our SOCA

adaptively learns feature inter-dependencies by exploiting

second-order feature statistics instead of first-order ones.

Such SOCA mechnism makes our network focus on more

informative feature and improve discriminative learning

ability. Moreover, a non-locally enhanced residual group

(NLRG) structure is presented to further incorporates non-

local operations to capture long-distance spatial contextual

information. By stacking the local-source residual attention

groups (LSRAG) structure, we can exploit the information

from the LR images and allow the abundant low-frequency

information to be bypassed. As shown in Fig. 1, our method

obtains better visual quality and recovers more image de-

tails compared with other state-of-the-art SR methods.

In summary, the main contributions of this paper are

listed as follows:

• We propose a deep second-order attention network

(SAN) for accurate image SR. Extensive experiments

on public datasets demonstrate the superiority of our

SAN over state-of-the-art methods in terms of both

quantitive and visual quality.

• We propose second-order channel attention (SOCA)

mechanism to adaptively rescale features by consid-

ering feature statistics higher than first-order. Such

SOCA mechanism allows our network to focus on

more informative features and enhance discriminative

learning ability. Besides, we also utilize an iterative

method for covariance normalization to speed up the

training of our network.

• We propose non-locally enhanced residual group

(NLRG) structure to build a deep network, which fur-

ther incorporates non-local operations to capture spa-

tial contextual information, and share-source residual

group structure to learn deep features. Besides, the

share-source residual group structure through share-

source skip connections could allow more abundant in-

formation from the LR input to be bypassed and ease

the training of the deep network.

2. Related Work

During the past decade, a plenty of image SISR meth-

ods have been proposed in the computer vision community,

including interpolation-based [37], model-based [34], and

CNN-based methods [2, 29, 14, 13, 29, 17, 30, 39, 38]. Due

to space limitation, we here briefly review works related to

CNN-based SR methods and attention mechanism, which is

close to our method.

CNN-based SR models. Recently, CNN-based methods

have been extensively studied in image SR, due to their

strong nonlinear representational power. Generally, such

methods cast SR as an image-to-image regression problem,

and learn an end-to-end mapping from LR to HR directly.

Most existing CNN-based methods mainly focus on design-

ing a deeper or wider network structure [2, 12, 13, 6, 39, 38].

For example, Dong et al. [2] first introduced a shallow

three-layer convolutional network (SRCNN) for image SR,

which achieves impressive performance. Later, Kim et al.

designed deeper VDSR [12] and DRCN [13] with more than

16 layers based on residual learning. To further improve the

performance, Lim et al. [20] proposed a very deep and wide

network EDSR by stacking modified residual blocks. The

significant performance gain indicates the depth of repre-

sentation plays a key role in image SR. Other recent works

like MemNet [30] and RDN [39], are based on dense blocks

[10] to form deep networks and focus on utilizing all the

hierarchical features from all the convolutional layers. In

addition to focusing on increasing the depth of the network,

some other networks, such as NLRN [22] and RCAN [38],

improve the performance by considering feature correla-

tions in spatial or channel dimension.

Attention mechanism. Attention in human perception gen-

erally means that human visual systems adaptively process

visual information and focus on salient areas [16]. In re-

cent years, several trials have embeded attention process-

ing to improve the performance of CNNs for various tasks,

such as image and video classification tasks [9, 33]. Wang

et al. [33] proposed non-local neural network to incorpo-

rate non-local operations for spatial attention in video clas-

sification. On the contrary, Hu et al. [9] proposed SENet

to exploit channel-wise relationships to achieve significant

performance gain for image classification.

Recently, SENet was introduced to deep CNNs to fur-

ther improve SR performance [38]. However, SENet only

explores first-order statistics (e.g., global average pooling),

while ignoring the statistics higher than first-order, thus hin-

dering the discriminative ability of the network. In im-
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age SR, features with more high-frequency information are

more informative for HR reconstruction. To this end, we

propose a deep second-order attention network (SAN) by

exploring second-order statistics of features.

3. Second-order Attention Network (SAN)

3.1. Network Framework

As shown in Fig. 2, our SAN mainly consists of four

parts: shallow feature extraction, non-locally enhanced

residual group (NLRG) based deep feature extraction, up-

scale module, and reconstruction part. Given ILR and ISR

as the input and output of SAN. As explored in [20, 39], we

apply only one convolutional layer to extract the shallow

feature F0 from the LR input

F0 = HSF (ILR), (1)

where HSF (·) stands for convolution operation. Then the

extracted shallow feature F0 is used for NLRG based deep

feature extraction, which thus produces the deep feature as

FDF = HNLRG(F0), (2)

where HNLRG represents the NLRG based deep feature ex-

traction module, which consists of several non-local mod-

ules to enlarge receptive field and G local-source residual

attention group (LSRAG) modules (see Fig. 2). So our pro-

posed NLRG obtains very deep depth and thus provides

very large receptive field size. Then the extracted deep fea-

ture FDF is upscaled via the upscale module via

F↑ = H↑(FDF ), (3)

where H↑(·) and F↑ are a upscale module and upscaled

feature respectively. There are some choices to act as up-

scale part, such as transposed convolution [3], ESPCN [28].

The way of embedding upscaling feature in the last few lay-

ers obtains a good trade off between computational burden

and performance, and thus is preferable to be used in recent

CNN-based SR models [3, 6, 39]. The upscaled feature is

then mapped into SR image via one convolution layer

ISR = HR(F↑) = HSAN (ILR), (4)

where HR(·), H↑(·) and HSAN are the reconstruction layer,

upscale layer and the function of SAN, respectively.

Then SAN will be optimized with a certain loss func-

tion. Some loss functions have been widely used, such as

L2 [2, 12, 29, 30], L1 [14, 15, 20, 39], perceptual losses

[11, 26]. To verify the effectiveness of our SAN, we adopt

the same loss functions as previous works (e.g., L1 loss

function). Given a training set with N LR images and their

HR counterparts denoted by {IiLR, I
i
HR}

N
i=1, the goal of

training SAN is to optimize the L1 loss function:

L(Θ) =
1

N

N
∑

i=1

||HSAN (IiLR)− IiHR||1, (5)

where Θ denotes the parameter set of SAN. The loss func-

tion is optimized by stochastic gradient descent algorithm.

3.2. Non-locally Enhanced Residual Group (NLRG)

We now show our non-locally enhanced residual group

(NLRG) (see Fig. 2), which consists of several region-level

non-local (RL-NL) modules and one share-source residual

group (SSRG) structure. The RL-NL exploits the abundant

structure cues in LR features and the self-similarities in HR

nature scenes. The SSRG is composed of G local-source

residual attention groups (LSRAG) with share-source skip

connections (SSC). Each LSRAG further contains M sim-

plified residual blocks with local-source skip connection,

followed by a second-order channel attention (SOCA) mod-

ule to exploit feature interdependencies.

It has been verified that stacking residual blocks is help-

ful to form a deep CNN in [20, 39]. However, very deep

network built in such way would suffer from training dif-

ficulty and performance bottleneck due to the problem of

gradient vanishing and exploding in deep network. Inspired

by the work in [15], we propose local-source residual atten-

tion group (LSRAG) as the fundamental unit. It is known

that simply stacking repeated LSRAGs would fail to obtain

better performance. To address this issue, the share-source

skip connection (SSC) is introduced in NLRG to not only

facilitate the training of our deep network, but also to by-

pass abundant low-frequency information from LR images.

Then a LSRAG in the g-th group is represented as:

Fg = WSSCF0 +Hg(Fg−1), (6)

where WSSC denotes the weight to the convolution layer,

and is initialized as 0, and then gradually learns to assign

more weight to the shallow feature. The bias term is omitted

for simplicity. Hg(·) is the function of the g-th LSRAG.

Fg,Fg−1 denote the input and output of the g-th LSRAG.

The deep feature is then obtained as:

FDF = WSSCF0 + FG. (7)

Such SSRG structure can not only ease the flow of informa-

tion across LSRAGs, but also make it possible to train very

deep CNN for image SR with high performance.

Region-level non-local module (RL-NL). The proposed

NLRG also exploits the abundant structure cues in LR fea-

tures and the self-similarities in HR nature scenes by RL-

NL modules plugged before and after the SSRG. The non-

local neural network [33] is proposed to capture the com-

putation of long-range dependencies throughout the entire
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Figure 2. Framework of the proposed second-order attention network (SAN) and its sub-modules.

image for high-level tasks. However, traditional global-

level non-local operations may be limited for some reasons:

1) global-level non-local operations require unacceptable

computational burden, especially when the size of feature

is large; 2) it is empirically shown that non-local operations

at a proper neighborhood size are preferable for low-level

tasks (e.g., image super-resolution) [22]. Thus for feature

with higher spatial resolution or degradation, it is natural

to perform region-level non-local operations. For such rea-

sons, we divide the feature map into a grid of regions (see

Fig. 2, the k × k RL-NL indicates the input feature is first

divided into a grid of k2 blocks with the same size.), each

of which is then processed by the subsequent layers.

After non-local operations, the feature representation is

non-locally enhanced before fedding into the subsequent

layers via exploiting the spatial correlations of features.

Local-source residual attention group (LSRAG). Due

to our share-source skip connections, the abundant low-

frequency information can be bypassed. To go a further

step to residual learning, we stack M simplified residual

blocks to form a basic LSRAG. The m-th residual block

(see Fig. 2) in the g-th LSRAG can be represented as

Fg,m = Hg,m(Fg,m−1), (8)

where Hg,m(·) denotes the function of m-th residual block

in g-th LSRAG, and Fg,m−1,Fg,m are the corresponding

input and output. To make our network focus on more in-

formative features, a local-source skip connection is used to

produce the block output via

Fg = WgFg−1 + Fg,M , (9)

where Wg is the corresponding weight. Such local-source

and share-source skip connections allow more abundant

low-frequency information to be bypassed during training.

For more discriminative representations, we propose SOCA

mechnism embedded at the tail of each LSRAG. Our SOCA

mechnism learns to adaptively rescale channel-wise fea-

tures by considering second-order statistics of features.

3.3. Second-order Channel Attention (SOCA)

Most previous CNN-based SR models do not consider

the feature interdependencies. To utilize such information,

SENet [9] was introduced in CNNs to rescale the channel-

wise features for image SR. However, SENet only exploits

first-order statistics of features by global average pooling,

while ignoring statistics higher than first-order, thus hinder-

ing the discriminative ability of the network. On the other

hand, recent works [19, 21] have shown that second-order

statistics in deep CNNs are more helpful for more discrimi-

native representations than first-order ones.

Inspired by the above observations, we propose a

second-order channel attention (SOCA) module to learn

feature interdependencies by considiering second-order

statistics of features. Now we will describe how to exploit

such second-order information next.

Covariance normalization. Given a H ×W × C feature

map F = [f1, · · · , fC ] with C feature maps with size of

H ×W . We reshape the feature map to a feature matrix X

with s = WH features of C-dimension. Then the sample

covariance matrix can be computed as

Σ = XĪXT , (10)

where Ī = 1
s
(I− 1

s
1), I and 1 are the s× s identity matrix

and matrix of all ones, respectively.

It is shown in [27, 19] that covariance normalization

plays a critical role for more discriminative representations.

For this reason, we first perform covariance normalization

for the obtained covariance matrix Σ, which is symmetric

positive semi-definite and thus has eigenvalue decomposi-

tion (EIG) as follows

Σ = UΛUT , (11)

where U is an orthogonal matrix and Λ =
diag(λ1, · · · , λC) is diagonal matrix with eigenvalues

in non-increasing order. Then convariance normalization
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can be converted to the power of eigenvalues:

Ŷ = Σα = UΛαUT , (12)

where α is a positive real number, and Λα =
diag(λα

1 , · · · , λ
α
C). When α = 1, there is no normaliza-

tion; when α < 1, it nonlinearly shrinks the eigenvalues

larger than 1.0 and streches those less than 1.0. As explored

in [19], α = 1/2 works well for more discriminative repre-

sentations. Thus, we set α = 1/2 in the following.

Channel attention. The normalized covariance matrix

characterizes the correlations of channel-wise features. We

then take such normalized covariance matrix as a channel

descriptor by global covariance pooling. As illustrated in

Fig. 2, let Ŷ = [y1, · · · , yC ], the channel-wise statistics

z ∈ RC×1 can be obtained by shrinking Ŷ. Then the c-th
dimension of z is computed as

zc = HGCP (yc) =
1

C

C
∑

i

yc(i), (13)

where HGCP (·) denotes the global covariance pooling

function. Compared with the commonly used first-order

pooling (e.g., global average pooling), our global covari-

ance pooling explores the feature distribution and captures

the feature statistics higher than first-order for more dis-

criminative representations.

To fully exploit feature interdependencies from the ag-

gregated information by global covariance pooling, we ap-

ply a gating mechanism. As explored in [9], the simple sig-

moid function can serve as a proper gating function

w = f(WUδ(WDz)), (14)

where WD and WU are the weight set of convolution layer,

which set channel dimension of features to C/r and C, re-

spectively. f(·) and δ(·) are the function of sigmoid and

RELU. Finally, we obtain the channel attention map w to

rescale the input

f̂c = wc · fc, (15)

where wc and fc denote the scaling factor and feature map in

the c-th channel. With such channel attention, the residual

component in the LSRAG is rescaled adaptively.

As is shown above, covariance normalization plays a vi-

tal role in our SOCA. However, such covariance normal-

ization relies heavily on eigenvalue decoomposition, which

is not well supported on GPU platform, thus leading to in-

efficient training. To solve this issue, as explored in [18],

we also apply a fast matrix normalization method based on

Newton-Schulz iteration [8]. In the next section, we briefly

describe the covariance normalization.

3.4. Covariance Normalization Acceleration

To date, fast implementation of EIG on GPU is still an

open problem. Inspired by [18], we utilize Newton-Schulz

iteration to speed up the computation of covariance normal-

ization. Specifically, from Equ. (11), the Σ has square root

as Σ1/2 = Y = Udiag(λ1/2
i )UT . Given Y0 = Σ,Z0 = I,

for n = 1, · · · , N , as shown in [18], the Newton-Schulz

iteration is then updated alternately as follows:

Yn = 1
2Yn−1(3I− Zn−1Yn−1),

Zn = 1
2 (3I− Zn−1Yn−1)Zn−1. (16)

After enough iterations, Yn and Zn quadratically converges

to Y and Y−1. Such iterative operation is suitable for par-

allel implementation on GPU. In practice, one can achieve

approximate solution with few iterations, e.g., no more than

5 iterations in our method.

Since Newton-Schulz iteration only converges locally, to

guarantee the convergence, we pre-normalize Σ first via

Σ̂ =
1

tr(Σ)
Σ, (17)

where tr(Σ) =
∑C

i λi denotes the trace of Σ. In such case,

it can be inferred that the ||Σ − I||2 equals to the largest

singular value of (Σ− I), i.e., 1− λi∑
i λi)

less than 1, which

thus satisfies the convergence condition.

After Newton-Schulz iteration, we apply a post-

compensation procedure to compensate the data magnitude

caused by pre-normalization, thus producing the final nor-

malized covariance matrix

Ŷ =
√

tr(Σ)YN . (18)

3.5. Implementations

We set LSRAG number as G = 20 in the SSRG struc-

ture, and embed RL-NL modules (k = 2) at the head and

tail of SSRG. In each LSRAG, we use m = 10 residual

blocks plus single SOCA module at the tail. In SOCA mod-

ule, we use 1 × 1 convolution filter with reduction ratio

r = 16. For other convolution filter outside SOCA, the

size and number of filter are set as 3 × 3 and C = 64,

respectively. For upscale part H↑(·), we follow the works

in [20, 39] and apply ESPCNN [28] to upscale the deep

features, followed by one final convolution layer with three

filters to produce color images (RGB channels).

3.6. Discussions

Difference to Non-local RNN (NLRN). NLRN [22] in-

troduces non-local operations to capture long-distance spa-

tial contextual information in image restoration. There

are some differences between NLRN and our SAN. First,

NLRN embeds non-local operations in a recurrent neural
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network (RNN) for image restoration, while our SAN incor-

porates non-local operations in deep convolutional neural

network (CNN) framework for image SR. Second, NLRN

only considers spatial feature correlations between each

location and its neighborhood, but ignores the channel-

wise feature correlations. While our SAN mainly focuses

on learning such channel-wise feature correlations with

second-order statistics of features for more powerful rep-

resentational ability.

Difference to Residual Dense Network (RDN). We sum-

marize the main differences between RDN [39] and our

SAN. The first one is the design of basic block. RDN

mainly combines dense blocks with local feature fusion by

using local residual learning, while our SAN is built on the

basis of residual blocks. The second one is the way of en-

hancing discriminative ability of the network. Channel at-

tention [9, 38] has been shown to be effective for better dis-

criminative representations. However, RDN does not con-

sider such information, but pays attention to exploiting the

hierarchical features from all the convolutional layers. On

the contrary, our SAN heavily relies on channel attention

for better discriminative representations. Thus, we propose

second-order channel attention (SOCA) mechanism to ef-

fectively learn channel-wise feature interdependencies.

Difference to Residual Channel Attention Network

(RCAN). Zhang et al. [38] proposed a residual in resid-

ual structure to form a very deep network. RCAN is close

to our SAN, and the main differences lie in the following as-

pects. First, RCAN consists of several residual groups with

long skip connections. While, SAN stacks repeated resid-

ual groups through share-source skip connections, which

allows more abundant low-frequency information to be by-

passed. Second, RCAN can only exploit the contextual in-

formation in a local receptive field, but is unable to exploit

the information outside of the local region. While SAN can

alleviate this problem by incorporating non-local operations

to not only capture long-distance spatial contextual infor-

mation, but enlarge the receptive field. Third, to enhance

the discriminative ability of the network, RCAN only con-

siders channel attention based first-order feature statistics

by global average pooling. While our SAN learns channel

attention based on second-order feature statistics.

To the best of our knowledge, it is the first attempt to in-

vestigate the effect of such attention based on second-order

feature statistics for image SR. More analysis about the ef-

fect of such attention mechanism are shown next.

4. Experiments

4.1. Setup

Following [20, 6, 39, 38], we use 800 high-resolution

images from DIV2K dataset [31] as training set. For test-

ing, we adopt 5 standard benchmark datasets: Set5, Set14,

BSD100, Urban100 and Manga109, each of which has dif-

ferent characteristics. We carry out experiments with Bicu-

bic (BI) and Blur-downscale (BD) degradation models [36].

All the SR results are evaluated by PSNR and SSIM metrics

on Y channel of transformed YCbCr space.

During training, we augment the training images by ran-

domly rotating 90◦, 180◦, 270◦ and horizontally flipping. In

each min-batch, 8 LR color patches with size 48 × 48 are

provided as inputs. Our model is trained by ADAM optimi-

zor with β1 = 0.9, β2 = 0.99, and ε = 10−8. The learning

rate is initialized as 10−4 and then reduced to half every 200

epochs. Our proposed SAN has been implemented on the

Pytorch framework [23] on an Nvidia 1080Ti GPU.

4.2. Ablation Study

As discussed in Section 3, our SAN contains two main

components including non-locally enhanced residual group

(NLRG) and second-order channel attention (SOCA).

Non-locally Enhanced Residual Group (NLRG). To ver-

ify the effectiveness of different modules, we compare

NLRG with its variants trained and tested on Set5 dataset.

The specific performance is listed in Table 1.

Base refers to a very basic baseline which only con-

tains the convolution layers with 20 LSRAGs and 10 resid-

ual blocks in each LSRAG, thus resulting in deep network

with over 400 convolution layers. As in [38], we also add

long and short skip connections in Base model. From Ta-

ble 1 we can see that Base reaches PSNR=32.00 dB on

Set5 (×4). Results from Ra to Re verify the effectiveness

of individual module, since the module used alone improves

the performance over Base model. Specifically, Ra and

Rb that add a single RL-NL in shallow (before SSRG) or

deep layers (after SSRG) obtain similar SR results and out-

perform Base, which verifies the effectiveness of RL-NL.

When share-source skip connection (SSC) is added alone

(Rc), the performance can be improved from 32.00 dB to

32.07 dB. The main reason lies in that share-source skip

connections allows more abundant low-frequency informa-

tion from the LR images to be bypassed. When both of Ra

and Rb are used (leading to Rf ), the performance can be

further improved. It is found more RL-NL modules cannot

obtain much better performance than Rf in our method, and

thus we apply Rf in our method to balance the performance

and efficiency.

Second-order channel attention (SOCA). We also show

the effect of our SOCA from the results of Rd, Re, Rh and

Ri. Specifically, Rd means that channel attention is based

on first-order feature statistics by global average pooling,

thus leading to first-order channel attention (FOCA). Re

means that channel attention is based on second-order fea-

ture statistics, thus leading to our second-order channel at-

tention (SOCA). It can be found that both of Rd and Re

obtain better performance than methods of Ra to Rc with-
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Table 1. Effects of different modules. We report the best PSNR (dB) values on Set5 (4×) in 5.6× 105 iterations.
Base Ra Rb Rc Rd Re Rf Rg Rh Ri

RL-NL(before SSRG) � � � � �

RL-NL(after SSRG) � � � � �

share-source skip connection (SSC) � � � �

First-order channel attention (FOCA) � �

Second-order channel attention (SOCA) � �
32.00 32.04 32.06 32.07 32.12 32.16 32.08 32.10 32.14 32.20

Urban100 (4×):

img 067

HR Bicubic SRCNN [2] FSRCNN [3] LapSRN [14]

PSNR/SSIM 17.02/0.7101 18.39/0.8023 18.21/0.7994 18.66/0.8406

EDSR [20] DBPN [6] RDN [39] RCAN [38] SAN

21.17/0.9052 20.31/0.8910 20.87/0.9023 21.29/0.9127 21.34/0.9081

Urban100 (4×):

img 076

HR Bicubic SRCNN [2] FSRCNN [3] LapSRN [14]

PSNR/SSIM 21.59/0.6325 22.5619/0.7316 22.0382/0.6807 22.03/0.6948

EDSR [20] DBPN [6] RDN [39] RCAN [38] SAN

23.95/0.7750 23.21/0.7455 24.08/0.7801 24.30/0.7896 24.53/0.7925

Figure 3. Visual comparison for 4× SR with BI model on Urban100 dataset. The best results are highlighted

out channel attention. This indicates that channel atten-

tion plays a more important role in determining the per-

formance. Furthermore, compared with FOCA, our SOCA

achieves consistently better results, no matter if combined

with other modules (e.g., RL-NL and SSC). These observa-

tions demonstrate the superiority of our SOCA.

4.3. Results with Bicubic Degradation (BI)

To test the effectiveness of our SAN, we compare our

SAN with 11 state-of-the-art CNN-based SR methods: SR-

CNN [1], FSRCNN [3], VDSR [12], LapSRN [14], Mem-

Net [30], EDSR [20], SRMD [36], NLRN [22], DBPN [6],

RDN [39] and RCAN [38]. As in [20, 39, 38], we also

adopt self-ensemble method to further improve our SAN

denoted as SAN+. All the quantitative results for various

scaling factors are reported in Table 2. Compared with other

methods, our SAN+ performs the best results on all the

datasets on various scaling factors. Without self-ensemble,

SAN and RCAN obtain very similar results and outperform

other methods. This is mainly because both of them adopt

channel attention to learn feature interdependencies, thus

making the network focus on more informative features.

Compared with RCAN, our SAN obtains better results for

datasets (e.g., such as Set5, Set14 and BSD100) with rich

texture information, while obtaining a little worse results

for datasets(e.g., Urban100 and Manga109) with rich re-

peated edge information. It is known that textures are high-

order patterns and have more complex statistic character-

istics, while edges are first-order patterns that can be ex-

tracted by first-order gradient operators. Thus our SOCA

based on second-order feature statistics works better on im-

ages with more high-order information (e.g., textures).

Visual quality. We also show the zoomed results of var-

ious methods in Fig. 3, from which we can see that most

compared SR models cannot reconstruct the lattices accu-

rately and suffer from serious blurring artifact. In contrast,

our SAN obtains sharper results and recovers more high-

frequency details, such as high contrast and sharp edges.

Take “img 076” for example, most compared methods out-

put heavy blurring artifacts. The early developed bicubic,

SRCNN, FSRCNN and LapSRN even lose the main struc-

ture. More recent methods (e.g., EDSR, DBPN and RDN)

can recover the main outlines but fail to recover more im-

age details. Compared with the ground-truth, RCAN and
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Table 2. Quantitative results with BI degradation model.

Method
Set5 Set14 BSD100 Urban100 Manga109

PSNR/ SSIM PSNR/ SSIM PSNR/ SSIM PSNR/ SSIM PSNR/ SSIM

Bicubic 2 33.66/.9299 30.24/.8688 29.56/.8431 26.88/.8403 30.80/.9339

SRCNN 2 36.66/.9542 32.45/.9067 31.36/.8879 29.50/.8946 35.60/.9663

FSRCNN 2 37.05/.9560 32.66/.9090 31.53/.8920 29.88/.9020 36.67/.9710

VDSR 2 37.53/.9590 33.05/.9130 31.90/.8960 30.77/.9140 37.22/.9750

LapSRN 2 37.52/.9591 33.08/.9130 31.08/.8950 30.41/.9101 37.27/.9740

MemNet 2 37.78/.9597 33.28/.9142 32.08/.8978 31.31/.9195 37.72/.9740

EDSR 2 38.11/.9602 33.92/.9195 32.32/.9013 32.93/.9351 39.10/.9773

SRMD 2 37.79/.9601 33.32/.9159 32.05/.8985 31.33/.9204 38.07/.9761

NLRN 2 38.00/.9603 33.46/.9159 32.19/.8992 31.81/.9246 −−/ −−

DBPN 2 38.09/.9600 33.85/.9190 32.27/.9000 32.55/.9324 38.89/.9775

RDN 2 38.24/.9614 34.01/.9212 32.34/.9017 32.89/.9353 39.18/.9780

RCAN 2 38.27/.9614 34.11/.9216 32.41/.9026 33.34/.9384 39.43/.9786

SAN 2 38.31/.9620 34.07/.9213 32.42/.9028 33.10/.9370 39.32/.9792

SAN+ 2 38.35/.9619 34.44/.9244 32.50/.9038 33.73/.9416 39.72/.9797

Bicubic 3 30.39/.8682 27.55/.7742 27.21/.7385 24.46/.7349 26.95/.8556

SRCNN 3 32.75/.9090 29.30/.8215 28.41/.7863 26.24/.7989 30.48/.9117

FSRCNN 3 33.18/.9140 29.37/.8240 28.53/.7910 26.43/.8080 31.10/.9210

VDSR 3 33.67/.9210 29.78/.8320 28.83/.7990 27.14/.8290 32.01/.9340

LapSRN 3 33.82/.9227 29.87/.8320 28.82/.7980 27.07/.8280 32.21/.9350

MemNet 3 34.09/.9248 30.01/.8350 28.96/.8001 27.56/.8376 32.51/.9369

EDSR 3 34.65/.9280 3.52/ .8462 29.25/.8093 28.80/.8653 34.17/.9476

SRMD 3 34.12/.9254 30.04/.8382 28.97/.8025 27.57/.8398 33.00/.9403

NLRG 3 34.27/.9266 30.16/.8374 29.06/.8026 27.93/.8453 −−/ −−

RDN 3 34.71/.9296 30.57/.8468 29.26/.8093 28.80/.8653 34.13/.9484

RCAN 3 34.74/.9299 30.64/.8481 29.32/.8111 29.08/.8702 34.43/.9498

SAN 3 34.75/.9300 30.59/.8476 29.33/.8112 28.93/.8671 34.30/.9494

SAN+ 3 34.89/.9306 30.77/.8498 29.38/.8121 29.29/.8730 34.74/.9512

Bicubic 4 28.42/.8104 26.00/.7027 25.96/.6675 23.14/.6577 24.89/.7866

SRCNN 4 30.48/.8628 27.50/.7513 26.90/.7101 24.52/.7221 27.58/.8555

FSRCNN 4 30.72/.8660 27.61/.7550 26.98/.7150 24.62/.7280 27.90/.8610

VDSR 4 31.35/.8830 28.02/.7680 27.29/.0726 25.18/.7540 28.83/.8870

LapSRN 4 31.54/.8850 28.19/.7720 27.32/.7270 25.21/.7560 29.09/.8900

MemNet 4 31.74/.8893 28.26/.7723 27.40/.7281 25.50/.7630 29.42/.8942

EDSR 4 32.46/.8968 28.80/.7876 27.71/.7420 26.64/.8033 31.02/.9148

SRMD 4 31.96/.8925 28.35/.7787 27.49/.7337 25.68/.7731 30.09/.9024

DBPN 4 32.47/.8980 28.82/.7860 27.72/.7400 26.38/.7946 30.91/.9137

NLRG 4 31.92/.8916 28.36/.7745 27.48/.7346 25.79/.7729 −−/ −−

RDN 4 32.47/.8990 28.81/.7871 27.72/.7419 26.61/.8028 31.00/.9151

RCAN 4 32.62/.9001 28.86/.7888 27.76/.7435 26.82/.8087 31.21/.9172

SAN 4 32.64/.9003 28.92/.7888 27.78/.7436 26.79/.8068 31.18/.9169

SAN+ 4 32.70/.9013 29.05/.7921 27.86/.7457 27.23/.8169 31.66/.9222

Bicubic 8 24.40/.6580 23.10/.5660 23.67/.5480 20.74/.5160 21.47/.6500

SRCNN 8 25.33/.6900 23.76/.5910 24.13/.5660 21.29/.5440 22.46/.6950

FSRCNN 8 20.13/.5520 19.75/.4820 24.21/.5680 21.32/.5380 22.39/.6730

SCN 8 25.59/.7071 24.02/.6028 24.30/.5698 21.52/.5571 22.68/.6963

VDSR 8 25.93/.7240 24.26/.6140 24.49/.5830 21.70/.5710 23.16/.7250

LapSRN 8 26.15/.7380 24.35/.6200 24.54/.5860 21.81/.5810 23.39/.7350

MemNet 8 26.16/.7414 24.38/.6199 24.58/.5842 21.89/.5825 23.56/.7387

MSLap 8 26.34/.7558 24.57/.6273 24.65/.5895 22.06/.5963 23.90/.7564

EDSR 8 26.96/.7762 24.91/.6420 24.81/.5985 22.51/.6221 24.69/.7841

DBPN 8 27.21/.7840 25.13/.6480 24.88/.6010 22.73/.6312 25.14/.7987

SAN 8 27.22/.7829 25.14/.6476 24.88/.6011 22.70/.6314 24.85/.7906

SAN+ 8 27.30/.7849 25.23/.6493 24.97/.6031 22.91/.6369 25.17/.7964

SAN obtain more faithful results and recover more image

details, but SAN has sharper results. These observations

verify the superiority of SAN with more powerful represen-

tational ability. Although the recovery of high-frequency

information is difficult due to limited information available

in LR input (scaling factor > 4×), our SAN can still make

full use of the limited LR information through share-source

skip connections, and simultaneously utilize both spatial

and channel feature correlations for more powerful feature

expressions, thus producing more finer results.

4.4. Results with Blur-downscale Degradation (BD)

Following [36, 39], we also compare various SR meth-

ods on image with blur-down degradation (BD) model. We

Table 3. Quantitative results with BD degradation model. Best and

second best results are highlighted and underlined

Method
Set5 Set14 BSD100 Urban100 Manga109

PSNR/ SSIM PSNR/ SSIM PSNR/ SSIM PSNR/ SSIM PSNR/ SSIM

Bicubic 3 28.78/.8308 26.38/.7271 26.33/.6918 23.52/.6862 25.46/.8149

SPMSR 3 32.21/.9001 28.89/.8105 28.13/.7740 25.84/.7856 29.64/.9003

SRCNN 3 32.05/.8944 28.80/.8074 28.13/.7736 25.70/.7770 29.47/.8924

FSRCNN 3 26.23/.8124 24.44/.7106 24.86/.6832 22.04/.6745 23.04/.7927

VDSR 3 33.25/.9150 29.46/.8244 28.57/.7893 26.61/.8136 31.06/.9234

IRCNN 3 33.38/.9182 29.63/.8281 28.65/.7922 26.77/.8154 31.15/.9245

SRMD 3 34.01/.9242 30.11/.8364 28.98/.8009 27.50/.8370 32.97/.9391

RDN 3 34.58/.9280 30.53/.8447 29.23/.8079 28.46/.8582 33.97/.9465

RCAN 3 34.70/.9288 30.63/.8462 29.32/.8093 28.81/.8645 34.38/.9483

SAN 3 34.75/.9290 30.68/.8466 29.33/.8101 28.83/.8646 34.46/.9487

SAN+ 3 34.86/.9297 30.77/.8481 29.39/.8112 29.03/.8674 34.76/.9501

Table 4. Computational and parameter comparison (2× Set5).

EDSR MemNet NLRG DBPN RDN RCAN SAN

Para. 43M 677k 330k 10M 22.3M 16M 15.7M

PSNR 38.11 37.78 38.00 38.09 38.24 38.27 38.31

compare our method with 8 state-of-the-art SR methods:

SPMSR [24], SRCNN [2], FSRCNN [3], VDSR [12], IR-

CNN [35], SRMD [36], RDN [39], and RCAN [38]. All

the results on 3× are shown in Table 3, from which we

can observe that our SAN achieves consistently better per-

formance than other methods even without self-ensemble.

Specifically, the PSNR gain of SAN over RDN is up to 0.4
dB on Urban100 and Manga109 datasets.

4.5. Model Size Analyses

The Table 4 shows the performance and model size of

recent deep CNN-based SR methods. Among these meth-

ods, MemNet and NLRG contain much less parameters at

the cost of performance degradation. Instead, our SAN has

lless parameters than RDN and RCAN, but obtains higher

performance, which implies that our SAN can have a good

trade-off between performance and model complexity.

5. Conclusions

We propose a deep second-order attention network

(SAN) for accurate image SR. Specifically, the non-locally

enhanced residual group (NLRG) structure allows SAN to

capture the long-distance dependencies and structural infor-

mation by embedding non-local operations in the network.

Meanwhile, NLRG allows abundant low-frequency infor-

mation from the LR images to be bypassed through share-

source skip connections. In addition to exploiting the spa-

tial feature correlations, we propose second-order channel

attention (SOCA) module to learn feature interdependen-

cies by global covariance pooling for more discriminative

representations. Extensive experiments on SR with BI and

BD degradation models show the effectiveness of our SAN

in terms of quantitative and visual results.
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