
ATOM: Accurate Tracking by Overlap Maximization

Martin Danelljan∗,1,2 Goutam Bhat∗,1,2 Fahad Shahbaz Khan1,3 Michael Felsberg1

1 CVL, Linköping University, Sweden 2 CVL, ETH Zürich, Switzerland 3 Inception Institute of Artificial Intelligence, UAE

Abstract

While recent years have witnessed astonishing improve-

ments in visual tracking robustness, the advancements in

tracking accuracy have been limited. As the focus has been

directed towards the development of powerful classifiers,

the problem of accurate target state estimation has been

largely overlooked. In fact, most trackers resort to a simple

multi-scale search in order to estimate the target bounding

box. We argue that this approach is fundamentally limited

since target estimation is a complex task, requiring high-

level knowledge about the object.

We address this problem by proposing a novel track-

ing architecture, consisting of dedicated target estimation

and classification components. High level knowledge is in-

corporated into the target estimation through extensive of-

fline learning. Our target estimation component is trained

to predict the overlap between the target object and an

estimated bounding box. By carefully integrating target-

specific information, our approach achieves previously un-

seen bounding box accuracy. We further introduce a clas-

sification component that is trained online to guarantee

high discriminative power in the presence of distractors.

Our final tracking framework sets a new state-of-the-art

on five challenging benchmarks. On the new large-scale

TrackingNet dataset, our tracker ATOM achieves a rela-

tive gain of 15% over the previous best approach, while

running at over 30 FPS. Code and models are available at

https://github.com/visionml/pytracking.

1. Introduction

Generic online visual tracking is a hard and ill-posed

problem. The tracking method must learn an appearance

model of the target online based on minimal supervision,

often a single starting frame in the video. The model then

needs to generalize to unseen aspects of the target appear-

ance, including different poses, viewpoints, lightning con-

ditions etc. The tracking problem can be decomposed into

∗Both authors contributed equally.

ATOM DaSiamRPN UPDT

Figure 1. A comparison of our approach with state-of-the-art track-

ers. UPDT [3], based on correlation filters, lacks an explicit tar-

get state estimation component, performing a brute-force multi-

scale search instead. Consequently, it does not handle aspect-ratio

changes, which can lead to tracking failure (second row). DaSi-

amRPN [39] employs a bounding box regression strategy to es-

timate the target state, but still struggles in cases of out-of-plane

rotation, deformation, etc. Our approach ATOM, employing an

overlap prediction network, successfully handles these challenges

and provides accurate bounding box predictions.

a classification task and an estimation task. In the former

case, the aim is to robustly provide a coarse location of the

target in the image by categorizing image regions into fore-

ground and background. The second task is then to estimate

the target state, often represented by a bounding box.

In recent years, the focus of tracking research has been

on target classification. Much attention has been invested

into constructing robust classifiers, based on e.g. correla-

tion filters [6, 22, 31], and exploiting powerful deep feature

representations [3, 34] for this task. On the other hand, tar-

get estimation has seen below expected progress. This trend

is clearly observed in the recent VOT2018 challenge [17],

where older trackers such as KCF [13] and MEEM [37] still

obtain competitive accuracy while exhibiting vastly inferior

robustness. In fact, most current state-of-the-art trackers

[3, 4, 31] still rely on the classification component for tar-

get estimation by performing a multi-scale search. How-

4660



ever, this strategy is fundamentally limited since bounding

box estimation is inherently a challenging task, requiring

high-level understanding of the object’s pose (see figure 1).

In this work, we set out to bridge the performance gap

between target classification and estimation in visual object

tracking. We introduce a novel tracking architecture con-

sisting of two components designed exclusively for target

estimation and classification. Inspired by the recently pro-

posed IoU-Net [15], we train the target estimation compo-

nent to predict the Intersection over Union (IoU) overlap,

i.e. the Jaccard Index [14], between the target and an es-

timated bounding box. Since the original IoU-Net is class-

specific, and hence not suitable for generic tracking, we pro-

pose a novel architecture for integrating target-specific in-

formation into the IoU prediction. We achieve this by intro-

ducing a modulation-based network component that incor-

porates the target appearance in the reference image to ob-

tain target-specific IoU estimates. This further enables our

target estimation component to be trained offline on large-

scale datasets. During tracking, the target bounding box is

found by simply maximizing the predicted IoU overlap in

each frame.

To develop a seamless and transparent tracking method,

we also revisit the problem of target classification with the

aim of avoiding unnecessary complexity. Our target clas-

sification component is simple yet powerful, consisting of

a two-layer fully convolutional network head. Unlike our

target estimation module, the classification component is

trained online, providing high robustness against distrac-

tor objects in the scene. To ensure real-time performance,

we address the problem of efficient online optimization,

where gradient descent falls short. Instead, we employ a

Conjugate-Gradient-based strategy and demonstrate how it

can be easily implemented in modern deep learning frame-

works. Our final tracking loop is simple, alternating be-

tween target classification, estimation, and model update.

We perform comprehensive experiments on five chal-

lenging benchmarks: NFS [9], UAV123 [24], TrackingNet

[25], LaSOT [8], and VOT2018 [17]. Our tracking approach

sets a new state-of-the-art on all five datasets, achieving an

absolute gain of 10% on the challenging LaSOT dataset.

Moreover, we provide an analysis of our tracker, along with

different network architectures for overlap prediction.

2. Related Work

In the context of visual tracking, it often makes sense to

distinguish between target classification and target estima-

tion as two separate, but related subtasks. Target classifica-

tion basically aims at determining the presence of the target

object at a certain image location. However, only partial

information about the target state is obtained, e.g. its im-

age coordinates. Target estimation then aims at finding the

full state. In visual tracking, the target state is often rep-

resented by a bounding box, either axis aligned [9, 35] or

rotated [17]. State estimation is then reduced to finding the

image bounding box that best describes the target in the cur-

rent frame. In the simplest case, the target is rigid and only

moves parallel to the camera plane. In such a scenario, tar-

get estimation reduces to finding the 2D image-location of

the target, and therefore does not need to be considered sep-

arately from target classification. In general, however, ob-

jects may undergo radical variations in pose and viewpoint,

greatly complicating the task of bounding box estimation.

In the last few years, the challenge of target classification

has been successfully addressed by discriminatively train-

ing powerful classifiers online [6, 13, 26]. In particular,

the correlation-based trackers [7, 13, 23] have gained wide

popularity. These methods rely on the diagonalizing trans-

formation of circular convolutions, given by the Discrete

Fourier Transform, to perform efficient fully convolutional

training and inference. Correlation filter methods often ex-

cel at target classification by computing reliable confidence

scores in a dense 2D-grid. On the other hand, accurate tar-

get estimation has long eluded such approaches. Even find-

ing a one-parameter scale factor has turned out a formidable

challenge [5, 20] and most approaches resort to the brute-

force multi-scale detection strategy with its obvious compu-

tational impact. As such, the default method is to apply the

classifier alone to perform full state estimation. However,

target classifiers are not sensitive to all aspects of the target

state, e.g. the width and height of the target. In fact, invari-

ance to some aspects of the target state is often considered

a valuable property of the discriminative model to improve

robustness [2, 3, 26]. Instead of relying on the classifier, we

learn a dedicated target estimation component.

Accurate estimation of an object’s bounding box is a

complex task, requiring high-level a-priori knowledge. The

bounding box depends on the pose and viewpoint of the ob-

ject, which cannot be modeled as a simple image transfor-

mation (e.g. uniform image scaling). It is therefore highly

challenging, if not impossible, to learn accurate target es-

timation online from scratch. Many recent methods in the

literature have therefore integrated prior knowledge in the

form of heavy offline learning [18, 26, 39]. In particular,

SiamRPN [18] and its extension [39] have been shown ca-

pable of bounding box regression thanks to extensive of-

fline training. Yet, these Siamese tracking approaches often

struggle at the problem of target classification. Unlike, for

instance, correlation-based methods, most Siamese track-

ers do not explicitly account for distractors, since no online

learning is performed. While this problem has been partly

addressed using simple template update techniques [39], it

has yet to reach the level of strong online-learned models.

In contrast to Siamese methods, we learn the classification

model online, while also utilizing extensive offline training

for the target estimation task.

4661



3. Proposed Method

In this work, we propose a novel tracking approach con-

sisting of two components: 1) A target estimation module

that is learned offline; and 2) A target classification module

that is learned online. That is, following the modern trend

in object detection [27, 28], we separate the subproblems of

target classification and estimation. Yet, both of these tasks

are integrated in a unified multi-task network architecture,

shown in figure 2.

We employ the same backbone network for both the tar-

get classification and estimation tasks. For simplicity, we

use a ResNet-18 model that is trained on ImageNet and re-

frain from fine-tuning the backbone in this work. Target

estimation is performed by the IoU-predictor network. This

network is trained offline on large-scale video tracking and

object detection datasets, and its weights are frozen dur-

ing online tracking. The IoU-predictor takes four inputs:

i) backbone features from current frame, ii) bounding box

estimates in the current frame, iii) backbone features from a

reference frame, iv) the target bounding box in the reference

frame. It then outputs the predicted Intersection over Union

(IoU) score for each of the current-frame bounding box esti-

mates. During tracking, the final bounding box is obtained

by maximizing the IoU score using gradient ascent. The

target estimation component is detailed in section 3.1.

Target classification is performed by another network

head. Unlike the target estimation component, the clas-

sification network is entirely learned during online track-

ing. It is exclusively trained to discriminate the target from

other objects in the scene by predicting a target confidence

score based on backbone features extracted from the cur-

rent frame. Both training and prediction are performed in

a fully convolutional manner to ensure efficiency and cov-

erage. However, training such a network online with con-

ventional approaches, such as stochastic gradient descent,

is suboptimal for our online purpose. We therefore propose

to use an optimization strategy, based on Conjugate Gra-

dient and Gauss-Newton, that enables fast online training.

Moreover, we demonstrate how this approach can be easily

implemented in common deep learning frameworks, such as

PyTorch, by exploiting the back-propagation functionality.

Our target classification approach is described in section 3.2

and our final tracking framework is detailed in section 3.3.

3.1. Target Estimation by Overlap Maximization

In this section, we detail how the target state estimation

is performed. The aim of our state estimation component is

to determine the target bounding box given a rough initial

estimate. We take inspiration from the IoU-Net [15], which

was recently proposed for object detection as an alterna-

tive to typical anchor-based bounding box regression tech-

niques. In contrast to conventional approaches, the IoU-Net

is trained to predict the IoU between an image object and an

ResNet-18

Reference Image

Test Image

ResNet-18

IoU Predictor

Classifier

IoU 
Modulation

Ground Truth BB

Modulation vector

BB estimates

IoU

0.72
0.77
0.61

Confidence

 Pre-trained

 Offline

 Online

Figure 2. Overview of our network architecture for visual track-

ing. We augment two modules to the pretrained ResNet-18 back-

bone network (orange). The target estimation module (blue) is

trained offline on large-scale datasets to predict the IoU overlap

with the target. Using the reference frame and the initial target

box, modulation vectors carrying target-specific appearance infor-

mation are computed. The IoU predictor component then receives

features and proposal bounding boxes in the test frame, along with

the aforementioned modulation vectors. It estimates the IoU for

each input box. The target classification module (green) is trained

online to output target confidences in a fully convolutional manner.

input bounding box candidate. Bounding box estimation is

then performed by maximizing the IoU prediction.

To describe our target estimation component, we first

briefly revisit the IoU-Net model. Given a deep feature rep-

resentation of an image, x ∈ R
W×H×D, and a bounding

box estimate B ∈ R
4 of an image object, IoU-Net predicts

the IoU between B and the object. Here B is parametrized

as B = (cx/w, cy/h, logw, log h), where (cx, cy) are the

image coordinates of the bounding box center. The network

uses a Precise ROI Pooling (PrPool) [15] layer to pool the

region in x given by B, resulting in a feature map xB of a

pre-determined size. Essentially, PrPool is a continuous

variant of adaptive average pooling, with the key advantage

of being differentiable w.r.t. the bounding box coordinates

B. This allows the bounding box B to be refined by maxi-

mizing the IoU w.r.t. B through gradient ascent.

Network Architecture: For the task of object detection,

independent IoU-Nets are trained in [15] for each object

class. However, in tracking the target class is generally un-

known. Further, unlike object detection, the target is not

required to belong to any set of pre-defined classes or be

represented in any existing training datasets. Class-specific

IoU predictors are thus of little use for generic visual track-

ing. Instead, target-specific IoU predictions are required, by

exploiting the target annotation in the first frame. Due to the

high-level nature of the IoU prediction task, it is not feasi-

ble to train, or even fine-tune the IoU-Net online on a single

frame. Thus, we argue that the target estimation network

needs to be trained offline to learn a general representation

for IoU prediction.

In the context of visual tracking, where the target object

4662



Concatenate

ResNet-18 
Block 1-3

ResNet 
Block 4

Conv

Conv

 FC

ResNet-18 
Block 1-3

ResNet 
Block 4

Conv

Conv

 FC
Conv

Conv

 FC
Concatenate

 FC IoU 

 FC

 FC

Reference Branch

Test Branch

Ground Truth BB

BB Estimate

Modulation 
Vector

PrPool
3x3

PrPool
1x1

PrPool
5x5

PrPool
3x3

Feature Modulation

Figure 3. Full architecture of our target estimation network. ResNet-18 Block3 and Block4 features extracted from the test image are

first passed through two Conv layers. Regions defined by the input bounding boxes are then pooled to a fixed size using PrPool layers.

The pooled features are modulated by channel-wise multiplication with the coefficient vector returned by the reference branch. The features

are then passed through fully-connected layers to predict the IoU. All Conv and FC layers are followed by BatchNorm and ReLU.

is unknown beforehand, the challenge is thus to construct

an IoU prediction architecture that makes effective use of

the reference target appearance given at test-time. Our ini-

tial experiments showed that naive approaches for fusing

the reference image features with the current-frame features

yield poor performance (see section 4.1). We also found

Siamese architectures to provide suboptimal results. In this

work, we therefore propose a modulation-based network ar-

chitecture that predicts the IoU for an arbitrary object given

only a single reference image. The proposed network is vi-

sualized in figure 3. Our network has two branches, both

of which take backbone features from ResNet-18 Block3

and Block4 as input. The reference branch inputs fea-

tures x0 and the target bounding box annotation B0 in the

reference image. It returns a modulation vector c(x0, B0),
consisting of positive coefficients of size 1× 1×Dz . As il-

lustrated in figure 3, this branch consists of a convolutional

layer followed by PrPool and a fully connected layer.

The current image, in which we want to estimate the tar-

get bounding box, is processed through the test branch. It

first extracts a deep representation by feeding the backbone

features x through two convolutional layers followed by a

PrPool with the bounding box estimate B. As the test

branch extracts general features for IoU prediction, which

constitutes a more complex task, it employs more layers and

higher pooling resolution compared to the reference branch

(see figure 3). The resulting representation z(x,B) is of

size K × K × Dz , where K is spatial output size of the

PrPool layer. The computed feature representation of the

test image is then modulated by the coefficient vector c via

a channel-wise multiplication. This creates a target-specific

representation for IoU prediction, effectively incorporating

the reference appearance information. The modulated rep-

resentation is finally fed to the IoU predictor module g, con-

sisting of three fully connected layers. The predicted IoU of

the bounding box B is hence given by

IoU(B) = g
(

c(x0, B0) · z(x,B)
)

. (1)

To train the network, we minimize the prediction error of

(1), given annotated data. During tracking we maximize (1)

w.r.t. B to estimate the target state.

Training: From (1) it is clear that the entire IoU predic-

tion network can be trained in an end-to-end fashion, using

bounding-box-annotated image pairs. We use the training

splits of the recently introduced Large-scale Single Object

Tracking (LaSOT) dataset [8] and TrackingNet [25]. We

sample image pairs from the videos with a maximum gap

of 50 frames. Similar to [39], we augment our training data

with synthetic image pairs from the COCO dataset [21] to

have more diverse classes. From the reference image, we

sample a square patch centered at the target, with an area of

about 52 times the target area. From the test image, we sam-

ple a similar patch, with some perturbation in the position

and scale to simulate the tracking scenario. These cropped

regions are then resized to a fixed size. For each image pair

we generate 16 candidate bounding boxes by adding Gaus-

sian noise to the ground truth coordinates, while ensuring

a minimum IoU of 0.1. We use image flipping and color

4663



jittering for data augmentation. As in [15], the IoU is nor-

malized to [−1, 1].
The weights in our head network are initialized using

[12]. For the backbone network, we freeze all weights dur-

ing training. We use the mean-squared error loss function

and train for 40 epochs with 64 image pairs per batch. The

ADAM [16] optimizer is employed with initial learning rate

of 10−3, and using a factor 0.2 decay every 15 epochs.

3.2. Target Classification by Fast Online Learning

While the target estimation module provides accurate

bounding box outputs, it lacks the ability to robustly dis-

criminate between the target object and background distrac-

tors. We therefore complement the estimation module with

a second network head, whose sole purpose is to perform

this discrimination. Unlike the estimation component, the

target classification module is exclusively trained online, to

predict a target confidence score. Since the goal of the tar-

get classification module is to provide a rough 2D-location

of the object, we wish it to be invariant to the size and scale

of the target. Instead, it should emphasize robustness by

minimizing false detections.

Model: Our target classification module is a 2-layer fully

convolutional neural network, formally defined as

f(x;w) = φ2(w2 ∗ φ1(w1 ∗ x)) . (2)

Here, x is the backbone feature map, w = {w1, w2} are the

parameters of the network, φ1, φ2 are activation functions

and ∗ denotes standard multi-channel convolution. While

our framework is general, allowing more complex models

for this purpose, we found such a simple model sufficient

and beneficial in terms of computational efficiency.

Inspired by the recent success of discriminative correla-

tion filter (DCF) approaches, we formulate a similar learn-

ing objective based on the L2 classification error,

L(w) =
m
∑

j=1

γj‖f(xj ;w)− yj‖2 +
∑

k

λk‖wk‖2 . (3)

Each training sample feature map xj is annotated by the

classification confidences yj ∈ R
W×H , set to a sampled

Gaussian function centered at the target location. The im-

pact of each training sample is controlled by the weight γj ,

while the amount of regularization on wk is set by λk.

Online Learning: A brute-force approach to mini-

mize (3) would be to apply standard gradient descent or

its stochastic twin. These approaches are easily imple-

mented in modern deep learning libraries, but are not well

suited for online learning due to their slow convergence

rates. We therefore develop a more sophisticated optimiza-

tion strategy that is tailored for such online learning prob-

lems, yet requiring only little added implementation com-

plexity. First, we define the residuals of the problem as

rj(w) =
√
γj(f(xj ;w) − yj) for j ∈ {1, . . . ,m} and

rm+k(w) =
√
λkwk for k = 1, 2. The loss (3) is then

equivalently written as the squared L2 norm of the resid-

ual vector L(w) = ‖r(w)‖2, where r(w) is the concate-

nation of all residuals rj(w). We utilize the quadratic

Gauss-Newton approximation L̃w(∆w) ≈ L(w+∆w), ob-

tained from a first order Taylor expansion of the residuals

r(w +∆w) ≈ rw + Jw∆w at the current estimate w,

L̃w(∆w) = ∆wTJT
wJw∆w + 2∆wTJT

wrw + rT
wrw . (4)

Here, we have defined rw = r(w) and Jw = ∂r
∂w

is the

Jacobian of r at w. The new variable ∆w represents the

increment in the parameters w.

The Gauss-Newton subproblem (4) forms a positive def-

inite quadratic function, allowing the deployment of spe-

cialized machinery such as the Conjugate Gradient (CG)

method. While a full description of CG is outside the scope

of this paper (see [29] for a full treatment), intuitively it

finds an optimal search direction p and step length α in each

iteration. Since the CG algorithm consists of simple vector

operations, it can be implemented with only a few lines of

python code. The only challenging aspect of CG is the eval-

uation of the operation JT
wJwp for a search direction p.

We note that CG has been successfully deployed in some

DCF tracking approaches [4, 7, 31]. However, these im-

plementations rely on hand-coding all operations in order

to implement JT
wJwp, requiring much tedious work and

derivations even for a simple model (2). This approach

also lacks flexibility since any minor modification of the

architecture (2), such as adding a layer or changing a non-

linearity, may require comprehensive re-derivation and im-

plementation work. In this paper, we therefore demonstrate

how to implement CG for (4) by exploiting the backpropa-

gation functionality of modern deep learning frameworks,

such as PyTorch. Our implementation only requires the

user to supply the function r(w) for evaluating the residu-

als, which is easy to implement. Our algorithm is therefore

applicable to any shallow learning problem of the form (3).

To find a strategy for evaluating JT
wJwp, we first con-

sider a vector u of the same size as the residuals r(w). By

computing the gradient of their inner product, we obtain
∂
∂w

(r(w)Tu) = ∂r
∂w

T
u = JT

wu. In fact, this is the stan-

dard operation of the backpropagation procedure, namely

to apply the transposed Jacobian at each node in the com-

putational graph, starting at the output. We can thus de-

fine backpropagation of a scalar function s with respect to a

variable v as BackProp(s, v) = ∂s
∂v

. Now, as shown above,

we have BackProp(rTu,w) = JT
wu. However, this only

accounts for the second product in JT
wJwp. We first have to

compute Jwp, which involves the application of the Jaco-

bian itself (not its transpose). Thankfully, the Jacobian of

the function u 7→ JT
wu is trivially JT

w, since the function is

4664



Algorithm 1 Classification component optimization.

Input: Net weights w, residual function r(w), NGN, NCG

1: for i = 1, . . . , NGN do

2: r ← r(w) , u← r
3: h← BackProp(rTu,w) # Treat u as constant

4: g ← −h , p← 0 , ρ1 ← 1 , ∆w ← 0
5: for n = 1, . . . , NCG do

6: ρ2 ← ρ1 , ρ1 ← gTg , β ← ρ1

ρ2

7: p← g + βp
8: q1 ← BackProp(hTp, u) # Treat p as constant

9: q2 ← BackProp(rTq1, w) # Treat q1 as constant

10: α← ρ1

qT
2
p

11: g ← g − αq2
12: ∆w ← ∆w + αp
13: end for

14: w ← w +∆w
15: end for

linear. We can therefore transpose it by applying backprop-

agation. By letting h := JT
wu = BackProp(rTu,w), we get

Jwp = ∂
∂u

(hTp) = BackProp(hTp, u).

Given the above mentioned result, we outline the en-

tire optimization procedure in algorithm 1. It applies NGN

Gauss-Newton iterations, each encompassing NCG Conju-

gate Gradient iterations for minimizing the resulting sub-

problem (4). Each CG iteration requires two BackProp

calls for evaluating q1 = Jwp and q2 = JT
wq1, respectively.

There is a need for computing h = JT
wu once in the outer

loop. Note that in each call to BackProp in algorithm 1, one

of the vectors in the inner product is treated as constant, i.e.

gradients are not propagated through it. This is highlighted

as comments in algorithm 1 for clarity. It is noteworthy

that the optimization algorithm is virtually parameter free,

only the number of iterations need to be set. In comparison

to gradient descent, the CG-based method adaptively com-

putes the learning rate α and momentum β in each iteration.

Observe that g is the negative gradient of (4).

3.3. Online Tracking Approach

Our tracker ATOM is implemented in Python, using Py-

Torch. It runs at over 30 FPS on an Nvidia GT-1080 GPU.

Feature extraction: We use ResNet-18 pretrained on Im-

ageNet as our backbone network. For target classification,

we employ block 4 features, while the target estimation

component uses both block 3 and 4 as input. Features are

always extracted from patches of size 288×288 from image

regions corresponding to 5 times the estimated target size.

Note that ResNet-18 feature extraction is shared and only

performed on a single image patch every frame.

Classification Model: The first layer in our classification

head (2) consists of a 1 × 1 convolutional layer w1, which

reduces the feature dimensionality to 64. As in [4], the pur-

pose of this layer is to limit memory and computational re-

quirements. The second layer employs a 4 × 4 kernel w2

with a single output channel. We set φ1 to identity since

we did not observe any benefit of using a non-linearity at

this layer. We use a continuously differentiable paramet-

ric exponential linear unit (PELU) [33] as output activation:

φ2(t) = t, t ≥ 0 and φ2(t) = α(e
t

α − 1), t ≤ 0. Setting

α = 0.05 allows us to ignore easy negative examples in the

loss (3). We found the continuous differentiability of φ2 to

be advantageous for optimization.

In the first frame, we perform data augmentation by ap-

plying varying degrees of translation, rotation, blur, and

dropout, similar to [3], resulting in 30 initial training sam-

ples xj . We then apply algorithm 1 with NGN = 6 and

NCG = 10 to optimize the parameters w. Subsequently,

we only optimize the final layer w2, using NGN = 1 and

NCG = 5 every 10th frame. In every frame, we add the ex-

tracted feature map xj as a training sample, annotated by a

Gaussian yj centered at the estimated target location. The

weights γj in (3) are updated with a learning rate of 0.01.

Target Estimation: We first extract features at the pre-

viously estimated target location and scale. We then apply

the classification model (2) and find the 2D-position with

the maximum confidence score. Together with the previ-

ously estimated target width and height, this generates the

initial bounding box B. While it is possible to perform state

estimation using this single proposal, we found that local

maxima are better avoided using multiple random initializa-

tions. We therefore generate a set of 10 initial proposals by

adding uniform random noise to B. The predicted IoU (1)

of each box is maximized using 5 gradient ascent iterations

with a step length of 1. The final prediction is obtained by

taking the mean of the 3 bounding boxes with highest IoU.

No further post-processing or filtering, as in e.g. [18] is per-

formed. This refined state also annotates the training sam-

ple (xj , yj), as described earlier. Note that the modulation

vector c(x0, B0) in (1) is precomputed in the first frame.

Hard Negative Mining: To further robustify our classifi-

cation component in the presence of distractors, we adopt

a hard negative mining strategy, common in many visual

trackers [26, 39]. If a distractor peak is detected in the clas-

sification scores, we double the learning rate of this training

sample and instantly run a round of optimization with stan-

dard settings (NGN = 1, NCG = 5). We also determine the

target as lost if the score falls below 0.25. While the hard

negative strategy is not fundamental to our framework, it

provides some additional robustness (see section 4.2).

4. Experiments

We evaluate the proposed tracker ATOM on five bench-

marks: Need for Speed (NFS) [9], UAV123 [24], Track-

ingNet [25], LaSOT [8], and VOT2018 [17]. Detailed re-

sults are provided in the supplementary material.

4665



4.1. IoU Prediction Architecture Analysis

Here, we study the impact of various architectural

choices for the IoU prediction module, presented in sec-

tion 3.1. Our analysis is performed on the combined

UAV123 [24] and NFS (30 FPS version) [9] datasets, sum-

ming to 223 videos. These datasets contain a high variety

of videos that are challenging in many aspects, such as de-

formation, view change, occlusion, fast motion and distrac-

tors. We evaluate the trackers based on the overlap precision

metric (OPT ), defined as the percentage of frames having

bounding box IoU overlap larger than a threshold T with

the ground truth. We also report the area-under-the-curve

(AUC) score, defined as AUC =
∫ 1

0
OPT dT . In all experi-

ments, we report the average result over 5 runs.

Reference image: We compare with a baseline approach

that excludes target specific information by removing the

reference branch in our architecture. That is, the baseline

network only uses the test frame to predict the IoU. The re-

sults of this investigation are shown in table 1. Excluding

the reference frame deteriorates the results by over 5.5%
AUC score. This demonstrates the importance of exploit-

ing target-specific appearance information in order to accu-

rately predict the IoU for an arbitrary object.

Integration of target appearance: We investigate differ-

ent network architectures for integrating the reference im-

age features for IoU prediction. We compare our feature

modulation based method, presented in section 3.1, with

two alternative architectures. Concatenation: Activations

from the reference and test branches are concatenated be-

fore the final IoU prediction layers. Siamese: Using iden-

tical architecture for both branches and performing final

IoU prediction as a scalar product of their outputs. All the

networks are trained using the same setup, with ResNet18

Block3 and Block4 features as input. For a fair compar-

ison, we ensure that all networks have the same depth and

similar number of trainable parameters. Results are shown

in table 1. Naively concatenating the features from the ref-

erence image and the test image achieves an AUC of 56.3%.

Our Siamese-based architecture obtains better results, with

an AUC of 61.7% and OP0.50 of 75.1%. Our modulation-

based method further improves the results, giving an abso-

Baseline Modulation Concatenation Siamese Modulation Modulation

(Block 3&4) (Block 3&4) (Block 3&4) (Block 3&4) (Block 3) (Block 4)

OP0.50(%) 68.3 76.3 67.5 75.1 73.4 73.6

OP0.75(%) 38.6 48.4 37.9 47.6 44.5 38.9

AUC (%) 56.7 62.3 56.3 61.7 60.3 58.5

Table 1. Analysis of different architectures for IoU prediction on

the combined NFS and UAV123 datasets. For each method, we

indicate in parenthesis the backbone feature layers that are used

as input. The baseline approach, which does not employ a refer-

ence branch to integrate target specific information, provides poor

results. Among the different architectures, the modulation based

approach, using both block 3 and 4, achieves the best results.

ATOM Multi-Scale No Classif. GD GD++ No HN

OP0.50(%) 76.3 66.2 52.3 74.5 74.8 75.9

OP0.75(%) 48.4 26.0 35.1 47.4 47.3 48.1

AUC (%) 62.3 53.7 43.0 60.9 61.1 61.9

Table 2. Impact of each component in the proposed approach on

the combined NFS and UAV123 datasets. We compare the target

estimation component with the brute-force multi-scale approach

and analyze the impact of our classification module, online opti-

mization strategy, and hard-negative mining scheme.

lute gain of 1.2% in OP0.50 and achieves an AUC of 62.3%.

Backbone feature layers: We evaluate the impact of using

different feature blocks from the backbone ResNet-18 (table

1). Using features from only Block3 leads to an AUC of

60.3%, while only Block4 gives an AUC of 58.5%. Fus-

ing features from both the blocks leads to a significant im-

provement, giving an AUC score of 62.3%. This indicates

that Block3 and Block4 features have complementary

information useful for predicting the IoU.

4.2. Ablation Study

We perform an ablation study to demonstrate the impact

of each component in the proposed method. We use the

same dataset and the evaluation criteria as in section 4.1.

Target Estimation: We compare our target state estima-

tion component, presented in section 3.1, with a brute-force

multi-scale search approach employing only the classifica-

tion model. This approach mimics the common practice

in correlation filter based methods, extracting features at 5
scales with a scale ratio of 1.02. The classification compo-

nent is then evaluated on all scales, selecting the location

and scale with the highest confidence score as the new tar-

get state. Results are shown in table 2. Our approach sig-

nificantly outperforms the multi-scale method by 8.6% in

AUC. Further, our approach almost doubles the percentage

of highly accurate bounding box predictions, as measured

by OP0.75. These results highlight the importance of treat-

ing target state estimation as a high-level visual task.

Target Classification: We investigate the impact of the

target classification component (section 3.2) by excluding

it from our tracking framework. No Classif in table 2 only

employs the target estimation module for tracking, using

a larger search region. The resulting method achieves an

AUC of 43.0%, almost 20% less than our approach.

Online Optimization: We investigate the impact of the

optimization strategy presented in algorithm 1, by compar-

ing it with gradient descent. We use carefully tuned learning

rate and momentum parameters for the gradient descent ap-

proach. In the version termed GD, we run the same number

of BackProp operations as in our algorithm, obtaining the

same speed as of our tracker. We also compare with GD++,

running 5 times as many iterations as in GD, thus running at

significantly slower frame rates. In both cases, the proposed

Gauss-Newton approach outperforms gradient descent by

4666



0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

10

20

30

40

50

60

70

80

90

O
v
e
rl
a
p
 P

re
c
is

io
n
 [
%

]

Success plot

ATOM [59.0]

UPDT [54.2]

CCOT [49.2]

ECO [47.0]

MDNet [42.5]

HDT [40.0]

DaSiamRPN [39.5]

FCNT [39.3]

SRDCF [35.3]

BACF [34.2]

(a) NFS

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

10

20

30

40

50

60

70

80

90

O
v
e
rl
a
p
 P

re
c
is

io
n
 [
%

]

Success plot

ATOM [65.0]

DaSiamRPN [58.4]

SiamRPN [57.1]

UPDT [55.0]

ECO [53.7]

CCOT [51.7]

SRDCF [47.3]

Staple [45.3]

ASLA [41.5]

SAMF [40.3]

(b) UAV123

Figure 4. Success plots on NFS (a) and UAV123 (b). In both cases,

our approach improves the state-of-the-art by a large margin.

Staple SAMF CSRDCF ECO DaSiam- SiamFC CFNet MDNet UPDT ATOM

[1] [20] [22] [4] RPN [39] [2] [34] [26] [3]

Precision (%) 47.0 47.7 48.0 49.2 41.3 53.3 53.3 56.5 55.7 64.8

Norm. Prec. (%) 60.3 59.8 62.2 61.8 60.2 66.6 65.4 70.5 70.2 77.1

Success (%) 52.8 50.4 53.4 55.4 56.8 57.1 57.8 60.6 61.1 70.3

Table 3. State-of-the-art comparison on the TrackingNet test set

in terms of precision, normalized precision, and success. Our ap-

proach significantly outperforms UPDT, achieving a relative gain

of 15% in terms of success.

more than 1.2% AUC score (Table 2). Note that even a 5-

fold increase of iterations does not provide any significant

improvement (only 0.2%), indicating slow convergence.

Hard Negative Mining: We evaluate our method without

the Hard Negative mining component (section 3.3), result-

ing in an AUC of 61.9%. This suggests the hard negative

mining adds some robustness (0.4% AUC) to our tracker.

4.3. State­of­the­art Comparison

We present the comparison of our tracker with state-of-

the-art methods on five challenging tracking datasets.

Need For Speed [9]: We evaluate on the 30 FPS version

of the dataset. Figure 4a shows the success plot over all the

100 videos, reporting AUC scores in the legend. CCOT [7]

and UPDT [3], both based on correlation filters, achieve

AUC scores of 49.2% and 54.2% respectively. Our tracker

significantly outperforms UPDT with a relative gain of 9%.

UAV123 [24]: Figure 4b displays the success plot over

all the 123 videos. DaSiamRPN [39] and its predeces-

sor SiamRPN [18] employ a target estimation component

based on bounding box regression. Compared to other ap-

proaches, DaSiamRPN achieves a superior AUC of 58.4%,

owing to its accuracy. Our tracker, employing an overlap

maximization strategy for target estimation, significantly

outperforms DaSiamRPN by achieving an AUC of 65.0%.

TrackingNet [25]: This is a recently introduced large-

scale dataset consisting of real-world videos sampled from

YouTube. The trackers are evaluated using an online eval-

uation server on a test set of 511 videos. Table 3 shows

the results in terms of precision, normalized precision, and

success. In terms of precision and success, MDNet [26]

achieves scores of 56.5% and 60.6% respectively. Our

tracker outperforms MDNet with relative gains of 14% and

STRCF SINT ECO DSiam StructSiam SiamFC VITAL MDNet DaSiam- ATOM

[19] [32] [4] [10] [38] [2] [30] [26] RPN[39]

Norm. Prec. (%) 34.0 35.4 33.8 40.5 41.8 42.0 45.3 46.0 49.6 57.6

Success (%) 30.8 31.4 32.4 33.3 33.5 33.6 39.0 39.7 41.5 51.5

Table 4. State-of-the-art comparison on the LaSOT dataset in terms

of normalized precision and success.

DLSTpp SASiamR CPT DeepSTRCF DRT RCO UPDT DaSiam- MFT LADCF ATOM

[17] [11] [17] [19] [31] [17] [3] RPN [39] [17] [36]

EAO 0.325 0.337 0.339 0.345 0.356 0.376 0.378 0.383 0.385 0.389 0.401

Robustness 0.224 0.258 0.239 0.215 0.201 0.155 0.184 0.276 0.140 0.159 0.204

Accuracy 0.543 0.566 0.506 0.523 0.519 0.507 0.536 0.586 0.505 0.503 0.590

Table 5. State-of-the-art comparison on the public VOT2018

dataset in terms of expected average overlap (EAO), robustness

(tracking failure), and accuracy. Our tracker outperforms all the

previous methods in terms of EAO.

16% in terms of precision and success respectively.

LaSOT [8]: We evaluate our approach on the test split

consisting of 280 videos. Table 4 shows the results in terms

of normalized precision and success. Among previous ap-

proaches, DaSiamRPN achieves the best success scores.

Our approach significantly outperforms DaSiamRPN with

an absolute gain of 10.0% in success.

VOT2018 [17]: This dataset consists of 60 videos and

the performance is evaluated in terms of robustness (failure

rate) and accuracy (average overlap in the course of suc-

cessful tracking). The two measures are merged in a sin-

gle metric, Expected Average Overlap (EAO), which pro-

vides the overall performance ranking. Table 5 shows the

comparison of our approach with the top-10 trackers in the

VOT2018 competition [17]. Among the top trackers, only

DaSiamRPN uses an explicit target state estimation compo-

nent, achieving higher accuracy compared to its DCF-based

counterparts like LADCF [36] and MFT. Our approach

ATOM achieves the best accuracy, while having competi-

tive robustness. Further, our tracker obtains the best EAO

score of 0.401, with a relative gain of 3% over LADCF.

5. Conclusions

We propose a novel tracking architecture with explicit

components for target estimation and classification. The es-

timation component is trained offline on large-scale datasets

to predict the IoU overlap between the target and a bound-

ing box estimate. Our architecture integrates target-specific

knowledge by performing feature modulation. The clas-

sification component consists of a two-layer fully convo-

lutional network head and is trained online using a dedi-

cated optimization approach. Comprehensive experiments

are performed on four tracking benchmarks. Our ap-

proach provides accurate target estimation while being ro-

bust against distractor objects in the scene, outperforming

previous methods on all four datasets.

Acknowledgments: This work was supported by SSF

(SymbiCloud), Swedish Research Council (EMC2, grant

2018-04673), ELLIIT, and WASP.

4667



References

[1] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and

P. H. S. Torr. Staple: Complementary learners for real-time

tracking. In CVPR, 2016. 8

[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. Torr. Fully-convolutional siamese networks for object

tracking. In ECCV workshop, 2016. 2, 8

[3] G. Bhat, J. Johnander, M. Danelljan, F. S. Khan, and M. Fels-

berg. Unveiling the power of deep tracking. In ECCV, 2018.

1, 2, 6, 8

[4] M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Felsberg.

ECO: efficient convolution operators for tracking. In CVPR,

2017. 1, 5, 6, 8

[5] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Dis-

criminative scale space tracking. TPAMI, 39(8):1561–1575,

2017. 2

[6] M. Danelljan, G. Häger, F. Shahbaz Khan, and M. Felsberg.

Learning spatially regularized correlation filters for visual

tracking. In ICCV, 2015. 1, 2

[7] M. Danelljan, A. Robinson, F. Khan, and M. Felsberg. Be-

yond correlation filters: Learning continuous convolution

operators for visual tracking. In ECCV, 2016. 2, 5, 8

[8] H. Fan, L. Lin, F. Yang, P. Chu, G. Deng, S. Yu, H. Bai,

Y. Xu, C. Liao, and H. Ling. Lasot: A high-quality bench-

mark for large-scale single object tracking. In CVPR, 2019.

2, 4, 6, 8

[9] H. K. Galoogahi, A. Fagg, C. Huang, D. Ramanan, and

S. Lucey. Need for speed: A benchmark for higher frame

rate object tracking. In ICCV, 2017. 2, 6, 7, 8

[10] Q. Guo, W. Feng, C. Zhou, R. Huang, L. Wan, and S. Wang.

Learning dynamic siamese network for visual object track-

ing. In ICCV, 2017. 8

[11] A. He, C. Luo, X. Tian, and W. Zeng. Towards a better match

in siamese network based visual object tracker. In ECCV

workshop, 2018. 8

[12] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, 2015. 5

[13] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. TPAMI,

37(3):583–596, 2015. 1, 2

[14] P. Jaccard. The distribution of the flora in the alpine zone.

New Phytologist, 11(2):37–50, 1912. 2

[15] B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang. Acquisition

of localization confidence for accurate object detection. In

ECCV, 2018. 2, 3, 5

[16] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In ICLR, 2014. 5

[17] M. Kristan, A. Leonardis, J. Matas, M. Felsberg,

R. Pfugfelder, L. C. Zajc, T. Vojir, G. Bhat, A. Lukezic,

A. Eldesokey, G. Fernandez, and et al. The sixth visual ob-

ject tracking vot2018 challenge results. In ECCV workshop,

2018. 1, 2, 6, 8

[18] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu. High performance

visual tracking with siamese region proposal network. In

CVPR, 2018. 2, 6, 8

[19] F. Li, C. Tian, W. Zuo, L. Zhang, and M. Yang. Learn-

ing spatial-temporal regularized correlation filters for visual

tracking. In CVPR, 2018. 8

[20] Y. Li and J. Zhu. A scale adaptive kernel correlation filter

tracker with feature integration. In ECCV workshop, 2014.

2, 8

[21] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Gir-

shick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.

Zitnick. Microsoft COCO: common objects in context. In

ECCV, 2014. 4

[22] A. Lukezic, T. Vojı́r, L. C. Zajc, J. Matas, and M. Kris-

tan. Discriminative correlation filter tracker with channel and

spatial reliability. IJCV, 126(7):671–688, 2018. 1, 8

[23] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical

convolutional features for visual tracking. In ICCV, 2015. 2

[24] M. Mueller, N. Smith, and B. Ghanem. A benchmark and

simulator for uav tracking. In ECCV, 2016. 2, 6, 7, 8

[25] M. Müller, A. Bibi, S. Giancola, S. Al-Subaihi, and

B. Ghanem. Trackingnet: A large-scale dataset and bench-

mark for object tracking in the wild. In ECCV, 2018. 2, 4, 6,

8

[26] H. Nam and B. Han. Learning multi-domain convolutional

neural networks for visual tracking. In CVPR, 2016. 2, 6, 8

[27] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.

In CVPR, 2017. 3

[28] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:

towards real-time object detection with region proposal net-

works. In NIPS, 2015. 3

[29] J. R. Shewchuk. An introduction to the conjugate gradient

method without the agonizing pain. Technical report, Pitts-

burgh, PA, USA, 1994. 5

[30] Y. Song, C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen,

R. W. H. Lau, and M.-H. Yang. VITAL: Visual tracking via

adversarial learning. In CVPR, 2018. 8

[31] C. Sun, D. Wang, H. Lu, and M. Yang. Correlation tracking

via joint discrimination and reliability learning. In CVPR,

2018. 1, 5, 8

[32] R. Tao, E. Gavves, and A. W. M. Smeulders. Siamese in-

stance search for tracking. In CVPR, 2016. 8

[33] L. Trottier, P. Giguère, and B. Chaib-draa. Parametric expo-

nential linear unit for deep convolutional neural networks. In

ICMLA, 2017. 6

[34] J. Valmadre, L. Bertinetto, J. F. Henriques, A. Vedaldi, and

P. H. S. Torr. End-to-end representation learning for correla-

tion filter based tracking. In CVPR, 2017. 1, 8

[35] Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark.

TPAMI, 37(9):1834–1848, 2015. 2

[36] T. Xu, Z. Feng, X. Wu, and J. Kittler. Learning adaptive dis-

criminative correlation filters via temporal consistency pre-

serving spatial feature selection for robust visual tracking.

CoRR, abs/1807.11348, 2018. 8

[37] J. Zhang, S. Ma, and S. Sclaroff. MEEM: robust tracking

via multiple experts using entropy minimization. In ECCV,

2014. 1

[38] Y. Zhang, L. Wang, J. Qi, D. K. Wang, M. Feng, and H. Lu.

Structured siamese network for real-time visual tracking. In

ECCV, 2018. 8

4668



[39] Z. Zhu, Q. Wang, L. Bo, W. Wu, J. Yan, and W. Hu.

Distractor-aware siamese networks for visual object track-

ing. In ECCV, 2018. 1, 2, 4, 6, 8

4669


