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Abstract

Incremental learning (IL) is an important task aimed at
increasing the capability of a trained model, in terms of
the number of classes recognizable by the model. The key
problem in this task is the requirement of storing data (e.g.
images) associated with existing classes, while teaching the
classifier to learn new classes. However, this is imprac-
tical as it increases the memory requirement at every incre-
mental step, which makes it impossible to implement IL
algorithms on edge devices with limited memory. Hence, we
propose a novel approach, called ‘Learning without Memo-
rizing (LwM)’, to preserve the information about existing
(base) classes, without storing any of their data, while
making the classifier progressively learn the new classes. In
LwM, we present an information preserving penalty: Atten-
tion Distillation Loss (L ap), and demonstrate that penal-
izing the changes in classifiers’ attention maps helps to
retain information of the base classes, as new classes are
added. We show that adding L op to the distillation loss
which is an existing information preserving loss consis-
tently outperforms the state-of-the-art performance in the
iILSVRC-small and iCIFAR-100 datasets in terms of the
overall accuracy of base and incrementally learned classes.

1. Introduction

Most state-of-the-art solutions to visual recognition
tasks use models that are specifically trained for these tasks
[6, 13]. For the tasks involving categories (such as object
classification, segmentation), the complexity of the task
(i.e. the number of target classes) limits the ability of these
trained models. For example, a trained model aimed for
object recognition can only classify object categories on
which it has been trained. However, if the number of target
classes increases, the model must be updated in such a way
that it performs well on the original classes on which it has
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Figure 1: Our problem setup does not store data/model pertaining
to information about classes learned in previous incremental steps.

been trained, also known as base classes, while it incremen-
tally learns new classes as well.

If we retrain the model only on new, previously unseen
classes, it would completely forget the base classes, which
is known as catastrophic forgetting [9, 10], a phenomenon
which is not typically observed in humane learning. There-
fore, most existing solutions [4, 14, 18] explore incre-
mental learning (IL) by allowing the model to retain a
fraction of the training data of base classes, while incre-
mentally learning new classes. Yu et al. [I8] proposed
retaining trained models encoding base class information, to
transfer their knowledge to the model learning new classes.
However, this process is not scalable. This is because
storing base class data or models encoding base class infor-
mation is a memory expensive task, and hence is cumber-
some when used in a lifelong learning setting. Also, in an
industrial setting, when a trained object classification model
is delivered to the end user, the training data is kept private
for proprietary reasons. Therefore, the end user will be
unable to update the trained model to incorporate new target
classes in the absence of base class data.

Moreover, storing base class data for incremen-
tally learning new classes is not biologically inspired.
For example, when a toddler learns to recognize new
shapes/objects, it is observed that it does not completely
forget the shapes or objects it already knows. It also does
not always need to revisit the old information when learning
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new entities. Inspired by this, we aim to explore incre-
mental learning in object classification by adding a stream
of new classes without storing data belonging to classes
that the classifier has already seen. While IL solutions
that do not require base class data, such as [I, 9] have
been proposed, these methods mostly aim at incrementally
learning new tasks, which means that at test time the model
cannot confuse the incrementally learned tasks with tasks it
has already learned, making the problem setup much easier.

We explore the problem of incrementally learning object
classes, without storing any data or model associated with
the base classes (Figure 1) in the previous steps, while
allowing the model to confuse new classes with old ones.
In our problem setup, an ideal incremental learner should
have the following properties:

i It should help a trained model to learn new classes
obtained from a stream of data, while preserving the
model’s knowledge of base class information.

ii At testing time, it should enable the model to consider
all the classes it has learned when the model makes a
prediction.

iii The size of the memory footprint should not grow at all,
irrespective of the number of classes seen thus far.

An existing work targeting the same problem is LwF-MC,
which is one of the baselines in [14]. In the following
sections, we use the following terminology (introduced in
[19]) at incremental step ¢ :

Teacher model, M, i, i.e. the model trained with only
base classes.

Student model, M,, i.e. the model which incrementally
learns new classes, while emulating the teacher model for
maintaining performance on base classes.

Information Preserving Penalty (IPP), i.e. the loss to
penalize the divergence between M;_; and M,. Ideally,
this helps M, to be as proficient in classifying base classes
as M;_.

Initialized using M;_1, M, is then trained to learn new
classes using a classification loss, Lo. However, an IPP
is also applied to M, so as to minimize the divergence
between the representations of M;_; and M;. While Lq
helps M; to learn new classes, IPP prevents M; from
diverging too much from M;_;. Since M, is already initial-
ized as M;_1, the initial value of IPP is expected to be close
to zero. However, as M; keeps learning new classes with
L¢, it starts diverging from M;_;, which leads the IPP to
increase. The purpose of the IPP is to prevent the divergence
of My from M;_1. Once M is trained for a fixed number of
epochs, it is used as a teacher in the next incremental step,
using which a new student model is initialized.

In LwF-MC [14], the IPP is the knowledge distillation
loss. The knowledge distillation loss Lp, in this context,

was first introduced in [12]. It captures the divergence
between the prediction vectors of M;_; and M;. In an
incremental setup, when an image belonging to a new class
(I,) is fed to M;_q, the base classes which have some
resemblance in I,, are captured. Lp enforces M, to capture
the same base classes. Thus, Lp essentially makes M,
learn ‘what’ are the possible base classes in [,,, as shown
in Figure 1. Pixels that have significant influence on the
models’ prediction constitute the attention region of the
network. However, L does not explicitly take into account
the degree of each pixel influencing the models predictions.
For example, in Figure 2, in the first row, it is seen that
at step n, even though the network focuses on an incor-
rect region while predicting ‘dial_telephone’, the numerical
value of Lp (0.09) is same as that when the network focuses
on the correct region in step n, in the bottom row.

We hypothesize that attention regions encode the
models’ representation more precisely. Hence, constraining
the attention regions of M; and M;_; using an Attention
Distillation Loss (Lp, explained in Sec. 4.1), to mini-
mize the divergence of the representations of M from that
of M;_; is more meaningful. This is because, instead
of finding which base classes are resembled in the new
data, attention maps explain ‘why’ hints of a base class are
present (as shown in Figure 1). Using these hints, Lp, in an
attempt to make the attention maps of M;_; and M, equiva-
lent, helps to encode some visual knowledge of base class in
M. We show the utility of L 4 p in Figure 2, where although
the model correctly predicts the image as ’dial_telephone’,
the value of Lp in step n increases if the attention regions
diverge too much from the region in Step 0.

We propose an approach where an Attention Distilla-
tion Loss (L 4p) is applied to M, to prevent its divergence
from M;_1, at incremental step . Precisely, we propose to
constrain the L, distance between the attention maps gener-
ated by M,_; and M, in order to preserve the knowledge of
base classes. The reasoning behind this strategy is described
in Sec 4.1. This is applied in addition to the distillation loss
L p and a classification loss for the student model to incre-
mentally learn new classes.

The main contribution of this work is to provide an
attention-based approach, termed as ‘Learning without
Memorizing (LwM)’, that helps a model to incrementally
learn new classes by restricting the divergence between
student and teacher model. LwM does not require any data
of the base classes when learning new classes. Different
from contemporary approaches that explore the same
problem, LwM takes into account the gradient flow infor-
mation of teacher and student models by generating atten-
tion maps using these models. It then constrains this infor-
mation to be equivalent for teacher and student models,
thus preventing the student model to diverge too much from
the teacher model. Finally, we show that LwM consis-
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Knowledge Distillation Loss
Attention Distillation Loss

Knowledge Distillation Loss - 0.08 0.09
Attention Distillation Loss - 0.12 0.15

Figure 2: (Top) Example of a case where attention regions degrade
in later incremental steps.(Bottom) Example of a case where atten-
tion regions do not vary across incremental steps. Distillation loss
is seen to be unaffected by degrading attention regions, whereas
Attention Distillation Loss is sensitive to the attention regions

tently outperforms the state-of-the-art performance in the
iILSVRC-small [14] and iCIFAR-100 [14] datasets.

2. Related work

In object classification, Incremental learning (IL) is the
process of increasing the breadth of an object classifier,
by training it to recognize new classes, while retaining its
knowledge of the classes on which it has been trained orig-
inally. In the past couple of years, there has been consid-
erable research efforts in this field [9, 12]. Moreover, there
exist several subsets of this research problem which impose
different constraints in terms of data storage and evaluation.
We can divide existing methods based on their constraints:

Task incremental (TI) methods: In this problem, a
model trained to perform object classification on a specific
dataset is incrementally trained to classify objects in a new
dataset. A key characteristic of these experiments is that
during evaluation, the final model is tested on different
datasets (base and incrementally learned) separately. This
is known as multi-headed evaluation [4]. In such an eval-
uation, the classes belonging to two different tasks have
no chance to confuse with one another. One of the earlier
works in this category is LWF [12], where a distillation loss
is used to preserve information of the base classes. Also,
the data from base classes is used during training, while
the classifier learns new classes. A prominent work in
this area is EWC [9], where at each incremental task the
weights of the student model are set to those of their corre-
sponding teacher model, according to their importance of

network weights. Aljundi et al. present MAS [1], a tech-
nique to train the agents to learn what information should
not be forgotten. All experiments in this category use multi-
headed evaluation, which is different from the problem
setting of this paper where we use single-headed evalua-
tion, defined explicitly in [4]. Single-headed evaluation
is another evaluation method wherein the model is evalu-
ated on both base and incrementally learned classes jointly.
Multi-headed evaluation is easier than single-headed evalu-
ation, as explained in [4].

Class incremental (CI) methods: In this problem, a
model trained to perform object classification on specific
classes of a dataset is incrementally trained to classify new
unseen classes in the same dataset. Most of the existing
work exploring this problem use single-headed evaluation.
This makes the CI problem more difficult than the TI
problem because the model can confuse the new class with
a base class in the CI problem. iCaRL [14] belongs to this
category. In iCaRL [14], Rebuffi et al. propose a technique
to jointly learn feature representation and classifiers. They
also introduce a strategy to select exemplars which is used
in combination with the distillation loss to prevent catas-
trophic forgetting. In addition, a new baseline: LwF-MC
is introduced in [14], which is a class incremental version
of LwF [12]. LwWF-MC uses the distillation loss to preserve
the knowledge of base classes along with a classification
loss, without storing the data of base classes and is evalu-
ated using single-headed evaluation. Another work aiming
to solve the CI problem is [4], which evaluates using both
single-headed and multi-headed evaluations and highlights
their difference. Chaudhry et al. [4] introduce metrics to
quantify forgetting and intransigence, and also propose the
Riemannian walk to incrementally learn classes.

A key factor of most incremental learning frameworks is
whether or not they allow storing the data of base classes
(i.e. classes on which the classifier is originally trained).
We can also divide existing methods based on this factor:

Methods which use base class data: Several exper-
iments have been proposed to use a small percentage of
the data of base classes while training the classifier to
learn new classes. iCaRL [14] uses the exemplars of base
classes, while incrementally learning new classes. Simi-
larly, Chaudhry et al. [4] also use a fraction of the data
of base classes. Chaudhry et al. [4] also show that this
is especially useful for alleviating intransigence, which is
a problem faced in single-headed evaluation. However,
storing data for base classes increases memory requirement
at each incremental step, which is not feasible when the
memory budget is limited.

Methods which do not use base class data: Several
TI methods described earlier (such as [1, 9] ) do not use
the information about base classes while training the clas-
sifier to learn new classes incrementally. To the best of
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Constraints Use base class data No base class data
CI methods iCaRL [14], [4], [18] LwF-MC [ '], LwM
TI methods LwF [12] IMM[10], EWC [V],

MAS [1], [2], [8]

Table 1: Categorization of recent related works in incremental
learning. We focus on the class incremental (CI) problems where
base class data is unavailable when learning new classes.

our knowledge, LWF-MC [14] is the only CI method which
needs no base class data but uses single-headed evaluation.

Table | presents a taxonomy of previous works in this
field. We propose a technique to solve the CI problem,
without using any base class data. We can infer from the
discussion above that LWF-MC [14] is the only existing
work which uses single-headed evaluation, and hence use
it as our baseline. We intend to use attention maps in an
incremental setup, instead of only knowledge distillation,
to transfer more comprehensive knowledge of base classes
from teacher to student model. Although in [19], enforcing
equivalence of attention maps of teacher and student models
has been explored previously for transferring knowledge
from teacher to student models, the same approach cannot
be applied to an incremental learning setting. In our incre-
mental problem setup, due to the absence of base class
data, we intend to utilize the attention region in the new
data which resembles one of the base classes. But these
regions are not prominent since the data does not belong to
any of the base classes, thus making class-specific atten-
tion maps a necessity. Class-specificity is required to
mine out base class regions in a more targeted fashion,
which is why generic attention maps such as activation-
based attention maps in [19] are not applicable as they
can not provide a class-specific explanation about relevant
patterns corresponding to the target class. We define class-
specific interpretation as how a network understands the
spatial locations of specific kinds of object. Such loca-
tions are determined by computing Grad-CAM [16] atten-
tion maps. Also, in LwM, by using class-specific atten-
tion map, we can enforce the consistency on class-specific
interpretation between teacher and student models. More-
over, our problem setup is different from knowledge distil-
lation because at incremental step ¢, we freeze M;_, while
training My, and do not allow M; to access data from the
base classes, and therefore M;_; and M; are trained using a
completely different set of classes. This makes the problem
more challenging as the output of M, on feeding data from
unseen classes is the only source of base class data. This is
further explained in Sec. 4.1.

We intend to explore the CI problem by proposing to
constrain the attention maps of the teacher and student
models to be equivalent (in addition to their prediction

vectors), to improve the information preserving capability
of LWF-MC [14]. In LwF-MC and our proposed method
LwM, storing teacher models trained in previous incre-
mental steps is not allowed since it would not be feasible
to accumulate models from all the previous steps when the
memory budget is limited.

3. Background

Before we discuss LwM, it is important to introduce
distillation loss L p, which is our baseline IPP, as well as
how we generate attention maps.

3.1. Distillation loss (L)

L p was first introduced in [ 2] for incremental learning.
It is defined as follows:

N
Lo(y,9)=—>_ y;.log(y)), (1)
i=1

where y and ¥ are prediction vectors (composed of prob-
ability scores) of M;_; and M, for base classes at incre-
mental step ¢, each of length N (assuming that M; 4
is trained on N base classes). Also, y;, = o(y;) and
y; = o(y;) (where o(-) is sigmoid activation). This defi-
nition of Lp is consistent with that defined in LwF-MC
[14]. Essentially, L enforces the base class prediction of
M, and M,_; to be equivalent, when an image belonging
to one of the incrementally added classes is fed to each
of them. Moreover, we believe that there exist common
visual semantics or patterns in both base and new class
data. Therefore, it makes sense to encourage the feature
responses of M; and M;_; to be equivalent, when new class
data is given as input. This helps to retain the old class
knowledge (in terms of the common visual semantics).

3.2. Generating attention maps

We describe the technique employed to generate atten-
tion maps. In our experiments we use the Grad-CAM [16]
for this task. In [15], Grad-CAM maps have been shown
to encode information to learn new classes, although not in
an incremental setup. For using the Grad-CAM, the image
is first forwarded to the model, obtaining a raw score for
every class. Following this, the gradient of score y¢ for a
desired class ¢ is computed with respect to each convolu-
tional feature map Aj. For each Ay, global average pooling
is performed to obtain the neuron importance «, of Ay. All
the Ay weighted by oy, are passed through a ReL.U activa-
tion function to obtain a final attention map for class c.

More precisely, let ap = g‘—f‘;. Let a =
[a1,@,...,ak] and A = [A1, A, ..., Ak], where K is
the number of convolutional feature maps in the layer using
which attention map is to be generated. The attention map
@ can be defined as
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Figure 3: At incremental step t, LwWM accepts images belonging
to one of the new classes. Three losses (Lc,Lp and Lap ) are
applied to M while Mt 1 remains frozen. The new classes are
depicted in the lower part of the classifier of M.

Q = ReLU(a”A) )

4. Proposed approach

We introduce an information preserving penalty (L 4p)
based on attention maps. We combine L 4 p with distillation
loss Lp and a classification loss L to construct LwM, an
approach which encourages attention maps of teacher and
student to be similar. Our LwM framework is shown in
Figure 3. The loss function of LwM is defined below:

Liwym =Le+ B8Lp +~Lap 3)

Here 3, ~y are the weights used for L, L 4 p respectively. In
comparison to LwM, LWF-MC [14] only uses a classifica-
tion loss combined with distillation loss and is our baseline.

4.1. Attention distillation loss (L 4p)

At incremental step ¢, we define student model My,
initialized using a teacher model M;_;. We assume M; is
proficient in classifying /N base classes. M, is required to
recognize N + k classes, where k is the number of previ-
ously unseen classes added incrementally. Hence, the sizes
of the prediction vectors of M;_; and My are N and N + k
respectively. For any given input image ¢, we denote the
vectorized attention maps generated by M;_1 and M;, for
class ¢ as %, and Q)°, respectively. We generate these
maps using Grad-CAM [16], as explained above.

Q"¢ = vector(Grad-CAM(i, M,_1, ¢)) (4)

i’c = vector(Grad-CAM(i, My, c)) ®)

We assume that the lengths of each vectorized attention map
is . In [19], it has been mentioned that normalizing the
attention map by dividing it by the Lo norm of the map is

an important step for student training. Hence we perform
this step while computing L 4p. During training of M;, an
image belonging to one of the new classes to be learned
(denoted as I,,), is given as input to both M;_; and M;.
Let b be the top base class predicted by M; (i.e. base class
having the highest score) for I,,. For this input, L4p is
defined as the sum of element wise L, difference of the
normalized, vectorized attention map:

l I, 1b Ln,b
Lap = bl T 6
w= 2 ort, “grm @
From the explanation above, we know that for training M,
M;_1 is fed with the data from the classes that it has not
seen before (/). Essentially, the attention regions gener-
ated by M,_; for I,, represent the regions in the image
which resemble the base classes. If M; and M;_; have
equivalent knowledge of base classes, they should have
a similar response to these regions, and therefore Qf’“b
should be similar to Qfﬁ’lb . This implies that the attention
outputs of M,;_; are the only traces of base data, which
guides M,’s knowledge of base classes. We use the L,
distance between QtIle and Q""" as a penalty to enforce
their similarity. We experimented with both L; and Lo
distance in this context. However, as we obtained better
results with L, distance on held-out data, we chose L1 over
Lo distance.

According to Eq. 2, attention maps encode gradient
of the score of class b, y® with respect to convolutional
feature maps A. This information is not explicitly captured
by the distribution of class scores (used by Lp). By
encouraging Qtli’lb and Qf"’b to be equivalent, we are

icti - 9y’ feitid
restricting the divergence between [ oA ] and [ o | -
t—1 t

This ensures the consistency on class-specific interpretation
between teacher and student. We know that every feature
map in A encodes a visual feature. While there can be
several factors that can cause changes to yb, L 4p forces
the changes with respect to a specific visual feature encap-
sulated in A to be equivalent for M; and M;_;. Hence, we
hypothesize that combining Lp, which captures the score
distribution of the model for base classes (y, ¥), with a loss
that captures the gradient flow information of the model,
would result in a more wholesome information preserving
penalty. Moreover, the attention maps are a 2D manifes-
tation of the prediction vectors (y,y), which means that
they capture more spatial information than these vectors,
and hence it is more advantageous to use attention maps
than using only prediction vectors.

5. Experiments

We first explain our baseline, which is LwF-MC [14].
Following that, we provide information about the datasets
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