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Abstract

Automated deception detection (ADD) from real-life

videos is a challenging task. It specifically needs to ad-

dress two problems: (1) Both face and body contain useful

cues regarding whether a subject is deceptive. How to ef-

fectively fuse the two is thus key to the effectiveness of an

ADD model. (2) Real-life deceptive samples are hard to

collect; learning with limited training data thus challenges

most deep learning based ADD models. In this work, both

problems are addressed. Specifically, for face-body multi-

modal learning, a novel face-focused cross-stream network

(FFCSN) is proposed. It differs significantly from the popu-

lar two-stream networks in that: (a) face detection is added

into the spatial stream to capture the facial expressions ex-

plicitly, and (b) correlation learning is performed across the

spatial and temporal streams for joint deep feature learn-

ing across both face and body. To address the training data

scarcity problem, our FFCSN model is trained with both

meta learning and adversarial learning. Extensive experi-

ments show that our FFCSN model achieves state-of-the-art

results. Further, the proposed FFCSN model as well as its

robust training strategy are shown to be generally appli-

cable to other human-centric video analysis tasks such as

emotion recognition from user-generated videos.

1. Introduction

With the recent rapid development of human-centric AI,

human-centric video analysis [48, 49, 54, 30, 32, 61, 27]

has also begun to draw much attention from the computer

vision community. Other than the conventional video con-

tent analysis that focuses on generic semantic concept anal-

ysis of video content, human-centric video analysis aims to

extract, describe, and organize a wealth of information re-

garding the main objects of interest in most videos: humans.

∗Equal contribution.
†Corresponding author.

This topic covers a wide range of research problems such as

deception detection [36, 37], emotion recognition in videos

[54, 18], personality computing [49, 56], and action recog-

nition [6, 26, 28, 35, 40, 47, 59]. For example, it is often

important to recognize the deceptive behaviors [36, 37], e-

motions [54, 18], or personality traits [49, 56] of the subject

of a video in real-world scenarios.

Deception detection [36, 37] is a late addition to human-

centric video analysis and still under-studied. Deception is

defined as an intentional attempt to mislead others [4]. In

our day-to-day life, deceptive behaviors occur in the form of

intended lies, fabrications, omissions, misrepresentations,

among others. Some deceptive behaviors are simply harm-

less, but others may have major threats to the society, e.g.,

those taking place in a courtroom. Detecting real-world

human deceptive behaviors is a challenging task even for

humans, and often requires well-trained human experts. A

large-scale deployment of deception detection thus depends

upon automated deception detection (ADD) [36, 37]. An

ADD system can find applications in many real-world sce-

narios including airport security screening, court trial, job

interview, and personal credit risk assessment.

The ADD task faces two major challenges. (1) Multi-

modal fusion: As a subtle human behavioral trait, decep-

tion is hard to detect in real-life scenarios. Its reliable detec-

tion needs to resort to multiple modalities including the vi-

sual, verbal, and acoustic [14, 16, 22, 12, 21]. Among them,

the visual modality is considered to be the most informative

one. Multiple visual cues also exist visually. In particular,

facial expressions [58, 33] and body motions [51, 31] are

typically the focus of visual analysis. An important problem

thus arises: How to effectively fuse these modalities/cues?

Such a fusion is not straightforward because they not only

have different strengths in each individual video sequence,

but also are temporally asynchronized. An example of the

asynchronization between the face and body cues is shown

in Figure 1. (2) Data scarcity: Unlike the conventional

physiological and biological methods [44, 5, 19, 45, 8], an
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Figure 1. Illustration of the asynchronization between facial expressions and body motions. It can be seen that a subject who lies tends to

first have a surprised expression before she/he is aroused to take body/hand movements. Notation: ∆t = 2–3 frames.

ADD model is non-contact and non-invasive. This indirect-

ness means that collecting large quantity of high-quality da-

ta containing samples of deceptive behaviors is critical. Ear-

lier data collection efforts focused on human contributors in

a lab or in a crowdsourcing setting. In other words, they are

staged; the usefulness of these datasets for real-world de-

ployment is thus questionable. Recently, the focus of ADD

has been towards detecting deceptive behaviors from real-

life data. Particularly, a new multimodal benchmark dataset

of real-life videos from court trials is introduced in [36, 37].

However, with only 121 video clips and half of them con-

taining deception, this dataset is insufficient for training a

deep neural network based model that has dominated the

recent ADD approaches [9, 20].

We address both problems in this paper. For the mul-

timodal fusion problem, we propose a novel face-focused

cross-stream network (FFCSN). Different from the popu-

lar two-stream networks [40, 6, 47, 35], our FFCSN model

has two novel components: (a) Face detection is added into

the spatial stream subnet to capture the facial expressions

explicitly. (b) Correlation learning is performed across the

spatial and temporal streams for joint deep feature learning

from facial expressions and body motions. Importantly, our

model is able to cope with the asynchronization/temporal

inconsistency between facial expressions and body motions

(see Figure 1). For the training data scarcity problem, we

introduce meta learning [39, 52, 25] and adversarial learn-

ing [11, 23, 24] into the training process of our FFCSN.

Meta learning, based on the principle of learning to learn,

is deployed here to improve the generalization ability of the

model and avoid overfitting to the insufficient training data.

In the meantime, adversarial learning based feature synthe-

sis is adopted as a data augmentation strategy. When these

two are combined, our FFCSN can be trained effectively

even with the very sparse data in the existing real-life de-

ception detection benchmarks [36, 37].

Our contributions are three-fold: (1) We have proposed a

novel face-focused cross-stream network (FFCSN) for joint

deep feature learning from facial expressions and body mo-

tions in real-life videos. Comparing to existing two-stream

networks, our FFCSN model is uniquely able to cope with

the asynchronization/temporal inconsistency between facial

expressions and body motions. (2) To avoid model overfit-

ting and improve generalization ability, meta learning and

adversarial learning are introduced into the training process

of FFCSN. (3) We demonstrate that our FFCSN model can

be easily extended to other human-centric video analysis

problems such as emotion recognition from user-generated

videos [54, 18]. Extensive experiments are carried out on

benchmark datasets and the results show that our model

clearly outperforms existing state-of-the-art alternatives.

2. Related Work

Video-Based Deception Detection. Earlier works on

video-based ADD are limited by the datasets which contain

only staged deceptive behaviors [14, 16, 22, 12, 21]. Their

usefulness for detecting real-life deception is thus in doubt.

The change towards deception detection with real-life data

was first advocated in [7], where the identification of de-

ception in statements issued by witnesses and defendants is

targeted using a corpus collected from hearings in Italian

courts (i.e., no visual data was available). In [36, 37], a new

multimodal deception dataset of real-life videos from court

trials was first introduced, and the combination of features

extracted from different modalities is used for deception de-

tection. Thanks to this benchmark dataset, more advancing

ADD methods [17, 1, 50] have been developed to leverage

multimodal features for detecting deception.

Deep Learning for Deception Detection. Recent ADD

methods typically benefit from the latest development in

deep neural networks [9, 20]. However, it is noted in [50]
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that, given the small size of the real-life ADD benchmark

introduced in [36, 37], hand-crafted features are much bet-

ter than deep features. This is not surprising: deep learning

models are known to be data hungry. The real-life ADD

dataset in [36, 37] only provides around 100 video clips,

which is a number of magnitudes smaller than, for exam-

ple, those YouTube-collected action recognition benchmark

datasets such as UCF101 [41]. Our model differs signif-

icantly from existing deep ADD models in that the data

scarcity problem is addressed explicitly, based on a meta

learning and adversarial learning based training strategy.

Adversarial learning [11, 23, 24] has recently been used as a

data augmentation strategy to deal with the lack of training

data. However, meta-learning [39, 52, 25] was originally

proposed for transfer learning. Here, we re-purpose it for

learning with scarce data and uniquely combine it with ad-

versarial learning to cope with the extreme challenge of da-

ta scarcity in ADD. We show in experiments that our model

outperforms [17, 1, 50] by big margin, thanks to the pro-

posed training strategy (see Tables 1 and 2).

Two-Stream Network. Our FFCSN model adopts a two-

stream network architecture, one for RGB still frame mod-

eling and the other for optical flow extracted from consecu-

tive frames. Such a two-stream architecture was originally

proposed for action recognition in videos and has been pop-

ular for many human-centric video analysis tasks [40, 6].

Various improvements such as temporal segment network

(TSN) [47] and its variants [60, 62] have been designed by

capturing the long-range temporal structure and learning the

ConvNet models with limited training samples. Similarly,

[35] proposed to add faster R-CNN [38] so that attention

can be focused on objects detected in a video. Our FFC-

SN model is different from existing two-stream models in

that: (1) face detection is added into the spatial stream sub-

net to capture the facial expressions explicitly; (2) correla-

tion learning is performed across the spatial and temporal

streams to cope with the temporal inconsistency between

facial expressions and body motions for ADD.

Video-Based Emotion Recognition. Deception detection

is closely related to emotion recognition: deception could

be considered as a specific emotion state of humans, albeit it

is much more subtle and harder to detect than others such as

happy and angry. Note that emotion recognition from user-

generated videos [18] is a challenging problem. Because of

the complicated and unstructured nature of user-generated

videos and the sparsity of video frames that express the

emotion content, it is often hard to understand emotions

conveyed in user-generated videos. To address this prob-

lem, multi-modal fusion and knowledge transfer approach-

es have been proposed in recent works [34, 53, 57, 54]. In

this paper, we show that our FFCSN model can be easily ex-

tended to emotion recognition from user-generated videos,

with state-of-the-art results achieved.

3. Methodology

As illustrated in Figure 2, our full FFCSN model for

video-based ADD consists of three main modules: face-

focused cross-stream network including a facial expression

branch as well as a body motion branch, meta learning mod-

ule, and adversarial learning module. In the following, we

give the details of the three main modules.

3.1. Cross-Stream Network Module

In this work, we focus on joint deep feature learning

from facial expressions and body motions for video-based

ADD. Different from the traditional video-based action

recognition, the facial expressions and body motions of a

subject are found to be related to his/her deceptive behav-

iors [58, 33, 51, 31], rather than the whole frame appear-

ance. Therefore, we choose to modify the original two-

stream temporal segment network [47] designed for video-

based action recognition by replacing its appearance branch

with a face expression branch (see Figure 2).

3.1.1 Cross-Stream Base Network

The spatial stream (i.e. face expression branch) is a face

detection model based on the popular faster R-CNN [38].

This branch follows the deep learning framework of faster

R-CNN, which has been shown to achieve state-of-the-art

results in generic object detection. As illustrated in Fig-

ure 2, it essentially consists of two parts: (1) a region pro-

posal network (RPN) for generating a list of region pro-

posals which may contain objects, called regions of interest

(RoIs); (2) a R-CNN network for classifying the regions of

each frame into objects and refining the boundaries of these

regions. The two parts share common parameters in the

convolutional layers used for feature extraction, allowing it

to accomplish the face detection task efficiently.

In our model, faster R-CNN is generalized for both face

detection and expression feature extraction. Note that the

traditional faster R-CNN takes only 9 anchors, which some-

times fails to recall small objects. For our face detection

task, however, small faces tend to be fairly common. We

thus add a size group of 64×64 and increase the number

of anchors to 12. In this paper, the RPN batchsize is set to

256, and the ResNet50 [13] is used as the backbone model

for the face expression branch.

The temporal stream (i.e. body motion branch) operates

on a stack of consecutive warped optical flow fields to cap-

ture the motion information. Inspired by the representative

work on improved dense trajectories [46], we extract the

warped optical flow by first estimating the homography ma-

trix and then compensating the camera motion. This branch

can thus avoid concentrating on the camera motion but not

on the body motion. As shown in Figure 2, ResNet50 is

used to compute the temporal feature maps.
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Figure 3. Architecture of our cross-stream fusion block.

3.1.2 Cross-Stream Fusion

In our cross-stream base network, one stream focuses on

the face that is only a part of the whole frame, and the other

focuses on the body motion that is captured using multiple

whole frames. These two parts are clearly complementary

to each other. We thus combine the two branches by cross-

stream fusion as illustrated in Figure 3. Importantly, the

fusion is based on deep correlation analysis rather than sim-

ply concatenating the feature vectors extracted from the two

streams as in conventional two-stream networks. Specifical-

ly, to cope with the asynchronization/temporal inconsisten-

cy between facial expressions and body motions (see Fig-

ure 1), we choose to learn the correlation among adjacent

frames (only 5 adjacent frames are considered here). For

the spatial stream, we downsample the feature maps of the

final residual block of ResNet50 [13] in the dimension of

depth and obtain a 1024-dimension feature vector. For the

temporal stream, given that five motion frames are matched

to one face frame, we utilize the reshape pooling to obtain

one 5×512-dimension feature vector after the third residu-

al block of ResNet50. The outputs of the two streams are

then concatenated and fed into two fully-connected layers

(with the dimension of 128 and 5, respectively). Finally, we

compute the correlation scores α = [α1, ..., α5] for the five

face-motion pairs using the softmax function, and weight

them with α for final two-stream fusion.
To extract deep visual features from a long-term video,

our model essentially works on a sequence of short snip-
pets sparsely sampled from the entire video. After each
snippet of this sequence predicts its own result, a consen-
sus among all snippets is obtained as the final video-level
prediction. For all obtained video-level predictions, we can
define a segmental consensus classification loss similar to
that of temporal segment network [47]. Specifically, we di-
vide each video into K segments {S1, S2, . . . , SK} of e-
qual duration. From each segment Sk (k = 1, ...,K), we
then randomly sample a short snippet Tk. In our prob-
lem, the short snippet Tk consists of one spatial frame
(denoted as Tk(sf1)) and five temporal frames (denoted
as Tk(tf1), ..., Tk(tf5)). Suppose that all snippets/frames
have been represented as feature maps here. We thus have

Tk = [Tk(sf1),
∑5

j=1
αjTk(tfj)]. Let F(Tk;W ) denote

the classification probability predicted by our model with
parameters W for Tk. The outputs of all short snippets are
combined by the segmental consensus function E to obtain
a consensus of prediction among them. With the softmax
loss, the overall loss of our model is defined as:

LBASE(y,E) = −

Nc∑

i=1

yi(Ei − log

Nc∑

j=1

expEj), (1)

where E is the segment consensus computed by E =
E(F(T1;W ),F(T2;W ), . . . ,F(TK ;W )), Nc is the num-

ber of target classes (Nc = 2 in our problem), and yi is

the ground truth label with respect to class i. We define the

consensus function E with average pooling, as in [47].
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3.2. Meta Learning Module

Deception detection is a challenging task due to the sub-

tle differences between truthful and deceptive behaviors.

Learning to differentiate the two types of behaviors with

only a handful of samples of each is extremely challenging.

This is especially true when the behaviors are modeled with

deep neural networks with a large number of model param-

eters. To deal with the data scarcity problem, we propose to

use meta learning [39, 52, 25, 42] to train our FFCSN (see

Figure 2). To best utilize the limited training samples, we

introduce pair-wise comparison of them. Specifically, our

cross-stream base network can be viewed as the encoding

submodule f of our meta learning module. A comparison

submodule g is then introduced for meta learning. The meta

learning pipeline is illustrated in Figure 4. Examples of the

two classes (yellow deceptive and blue truthful) are shown

in different colors. In this case, the meta-train set contains

five samples (four truthful and one deceptive). The decep-

tive sample in the meta-validation set is used to form five

pairs with the meta-train samples. The final model output,

after softmax, is a 5D logit vector supervised to produce

a close-to-one value in the third element and close-to-zero

values in all other elements. This meta-learning pipeline

turns a two-class (deceptive/deceptive) classification prob-

lem into a multi-case classification problem and makes full

use of the limited training samples.
Formally, in each mini-batch (with the mini-batch size

Nb), videos xi (i = 1, 2, . . . , Nb) are fed through the en-
coding submodule f , which outputs the concatenated fea-
ture maps f(xi) (i = 1, 2, . . . , Nb). We split the videos in
the mini-batch into the meta-train and meta-validation sets.
A sample xa is randomly chosen from the meta-validation
set. The output f(xa) is combined with each f(xj) (j �= a)
in the meta-train set using the operator C(f(xa), f(xj)). In
our meta learning module, we set C(·, ·) as the concatena-
tion of feature maps in the dimension of depth. The com-
bined feature maps of the sample pairs are fed into the com-
parison submodule g, which produces a pairwise score rep-
resenting the similarity between xa and xj . We thus gener-
ate the pairwise scores for each mini-batch as:

ra,j = g(C(f(xa), f(xj))), j �= a. (2)

We train our meta learning module by fitting the pair-
wise score ra,j to the ground truth pairwise similarity with
a cross entropy loss as follows:

LML=
−1

Nb − 1

∑

j �=a

yj log(ra,j)+(1− yj) log(1− ra,j), (3)

where yj = 1 if (xa, xj) is an intra-class sample pair, and

yj = 0 if (xa, xj) is an inter-class sample pair.

As illustrated in Figure 4, the encoding submodule of our

meta learning module is just our cross-stream base network.

In the following, we give the details of the comparison sub-

module of our meta learning module. Specifically, the com-

parison submodule consists of two convolutional blocks and
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Figure 4. Architecture of the meta learning module used in our full

FFCSN model for video-based ADD. See text for details.

two fully-connected layers: (1) Each convolutional block

has a 3 × 3 convolution layer followed by batch normal-

ization and RELU activation. The number of filters of the

convolution layer in the first block is 512 and the number of

filters in the second block is 128. The output size of the two

blocks is 128×3×3 = 1, 152. (2) The two fully-connected

layers are 8 and 2 dimensional, respectively.

3.3. Adversarial Learning Module

In this paper, we aim to synthesize feature vectors for

data augmentation in the ADD task. Note that synthesiz-

ing raw videos explicitly is an unsolved problem in itself.

Therefore, we choose to generate a 256-dimension feature

vector for each synthesized video instead, which is a much

easier task. In particular, we propose to synthesize fake fea-

ture vectors and attack the classifier for deception detection

during training of our full FFCSN model, in order to over-

come the training data scarcity problem.

Adversarial training involves a discriminator and a gen-

erator. In our case, the discriminator network aims to classi-

fy the inputs into two classes: real or fake. In this paper, the

observed variable x is the 256-dimensional vector produced

by our cross-stream base network. Given that the discrim-

inator network D consists of 3 fully-connected layers with

the ELU activation, D(x) thus denotes the probability that

x comes from the real (but not fake) class.

As for the generator network G of our adversarial learn-

ing module, the input 32-dimensional noise z is sampled

from a zero-mean Gaussian distribution pz(z) with the s-

tandard deviation 1. We use 3 hidden layers to represent G

with the size 32, 64, and 256, respectively. The first fully-

connected layer uses the ELU activation, and the second

fully-connected layer uses the sigmoid activation. G(z) de-

notes a generated sample drawn from the data space.

The adversarial training of D and G can be formulated
as the following min-max problem:

min
G

max
D

LAL(G,D) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))], (4)

where LAL denotes the loss function of our adversarial

learning module and pdata(x) denotes the data distribution.
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3.4. Training Process

Our full FFCSN model for video-based ADD is trained
using an end-to-end training strategy. The loss function of
our full FFCSN model is defined as follows:

L = LBASE + β1LML + β2LAL, (5)

where β1 and β2 denote the hyper-parameters. In this paper,

we empirically set β1 = β2 = 1 in all experiments.

4. Experiments

4.1. Video-Based Deception Detection

4.1.1 Dataset and Setting

Real-Life Dataset. We evaluate our full FFCSN model for

deception detection on a real-life multimodal dataset [36].

This dataset consists of 121 court room trial video clips. S-

ince videos from this trial dataset are collected under uncon-

strained conditions, we need to cope with the change of the

viewing angle of the person, the variation in video quality,

and the background noise. In this paper, we select a subset

of 104 videos from the original trial dataset, including 50

truthful videos and 54 deceptive videos, as in [50].

Evaluation Setting. Our dataset consists of only 58 identi-

ties. Since the number of identities is smaller than the num-

ber of video clips, the same identity often appear in both de-

ceptive truthful clips. When the videos of the same identity

are divided into both the training and test sets, a deception

detection method tends to suffer from over-fitting to identi-

ties. To address this over-fitting issue, we perform 10-fold

cross validation over identities (but not over video samples)

as in [50], which ensures that the identities in the test set

have no overlap with that in the training set.

Evaluation Metrics. To evaluate the performance of a de-

ception detection method, we compute two metrics as fol-

lows: (1) ACC – the classification accuracy (ACC) over the

test video samples; (2) AUC – the area under the precision-

recall curve (AUC) over the test set, which is originally de-

fined to cope with the imbalance of the positive and nega-

tive classes. The former has been widely used in previous

research on deception detection [36, 37, 17, 9], while the

latter is mainly used in recent works [50, 20].

Network Initialization. We pretrain the face branch of our

cross-stream base network using the WIDER-FACE [55]

and CK+ [29] datasets, and then pretrain the motion branch

of our cross-stream base network as in [47] on the UCF101

[41] dataset. Moreover, for G and D of the adversarial

learning module, we adopt the Kaiming initialization. All

the other layers are randomly initialized by drawing weight-

s from a zero-mean Gaussian distribution with the standard

deviation 0.01 (along with zero biases).

Implementation Details. After network initialization, our

full FFCSN model is trained in an end-to-end manner us-

ing back-propagation and stochastic gradient descent. The

Model ACC AUC

Face 84.33 84.11

Motion 86.00 88.63

Face+Motion 88.21 90.57

Face+Motion+CL 89.16 91.89

Face+Motion+CL+ML 92.33 95.83

Face+Motion+CL+ML+AL 93.16 96.71

Table 1. Ablation study results (%) for our full FFCSN model.

truthful deceptive
0

0.05

0.1

0.15

0.2

0.25
α1 α2 α3 α4 α5

Figure 5. Illustration of the two mean correlation distributions (i.e.

α = [α1, ..., α5]) obtained with our cross-stream network aver-

aged over the truthful and deceptive test samples, respectively.

learning rate is set to 0.0005 for the first 10 epochs, and

then reduced to one tenth with a step size of 10 (epochs).

The maximum number of epochs is set to 100. A momen-

tum of 0.9 and a weight decay of 0.01 are also set for model

training. We train our full FFCSN model on two Tesla K40

GPUs, with the batch size 12. Our implementation is devel-

oped within the PyTorch framework.

4.1.2 Ablation Study Results

To show the contribution of each main module of our full

FFCSN model, we make comparison to its five simplified

versions: (1) Face - Only the face branch of our cross-

stream base network used for ADD; (2) Motion - Only

the motion branch of our cross-stream base network used

for ADD; (3) Face+Motion – our cross-stream base net-

work including the face and motion branches (but without

cross-stream correlation learning); (4) Face+Motion+CL –

our cross-stream base network with cross-stream correla-

tion learning (CL); (5) Face+Motion+CL+ML – our cross-

stream base network further boosted with meta learning (M-

L). Our full model including adversarial learning (AL) is

denoted as Face+Motion+CL+ML+AL.

The ablation study results are presented in Table 1. It can

be seen that: (1) The performance continuously increases

when more modules are used for ADD, showing the con-

tribution of each module. (2) The improvements achieved

by Face+Motion over Face/Motion show that both face ex-

pression and body motion are important cues for ADD. (3)
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Model ACC AUC

[36] (visual+verbal) 75.20 –

[37] (visual+verbal) 77.11 –

[17] (visual+acoustic+verbal) 78.95 –

[9] (visual+acoustic+verbal) 96.42 –

[50] (visual+acoustic+verbal) – 92.21

[20] (visual+acoustic+verbal) 96.14 97.99

Ours (visual) 93.16 96.71

Ours (visual+acoustic+verbal) 97.00 99.78

Table 2. Comparative results (%) for video-based ADD. Note that

extra human annotated micro-expressions are used in [50, 20].

Both ML and AL clearly lead to performance improve-

ments, which provides evidence that they have a good a-

bility of alleviating the training data scarcity. (4) The effec-

tiveness of cross-stream correlation learning is validated by

the comparison Face+Motion+CL vs. Face+Motion. This is

further supported by Figure 5, where our cross-stream cor-

relation learning is found to learn quite different correlation

distributions for the truthful/deceptive classes. That is, the

learned correlations indeed improve the discriminativeness

of deep visual features for deception detection.

4.1.3 Comparative Results

We further make comparison to the state-of-the-art alterna-

tives [17, 9, 50, 20]. Since all of these methods are multi-

modal, we also include the acoustic and verbal modalities:

Acoustic Feature Learning. We extract the spectrum map

from each wave audio of 44,100 Hz sampling rate, and con-

vert each spectrum map into images of fixed size using a

sliding window with the window size 300. By taking only

the last 300 dimensions along the spectrum height, we ob-

tain a set of samples of the size 300*300. These samples are

finally used to train ResNet50. For robust training, ML and

AL are similarly exploited for acoustic feature learning.

Verbal Feature Learning. We segment the transcript of

each video to words, and then employ the word2vec tech-

nique [10] to convert each word into a 300-dimensional fea-

ture vector. The feature vectors of all words are averaged as

the verbal feature vector of a video. The average vector is

fed into three layers of fully connected layers (of the size

300*128, 128*64, and 64*32), resulting in a final vector of

32 dimensions. For robust verbal feature learning, ML and

AL are also used like visual feature learning.

The comparative results on the real-life benchmark

dataset [36] are given in Table 2. We observe that: (1) Our

robust deep feature learning approach clearly performs the

best under the multimodal setting, validating the effective-

ness of exploiting ML and AL for addressing the training

data scarcity issue associated with real-life ADD. (2) When

only the visual modality is concerned, our robust deep fea-

ture learning approach even outperforms the state-of-the-art

ACC AUC
65

70

75

80

85

90

95

100

A
C

C
/A

U
C

 (
%

)

visual visual+acoustic visual+acoustic+verbal

Figure 6. Comparative results obtained by multi-modality fusion.
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Figure 7. Comparison to temporal segment network (TSN).

multimodal deception detection method [50]. (3) Our mul-

timodal approach achieves performance improvements over

the latest deep learning methods [9, 20], due to the extra use

of ML and AL in our approach. In addition, we also provide

the comparative results of modality fusion for our approach

in Figure 6. As expected, our approach is shown to obtain

more significant improvements when more modalities are

used for deception detection in videos.

4.1.4 Further Evaluations

Comparison to Temporal Segment Network. Different

from the state-of-the-art temporal segment network (TSN)

[47], our FFCSN model has two novel components: face

detection and correlation learning. To show the contribu-

tion of these two components, we obtain two variants of our

FFCSN model by adding face detection (FD) and correla-

tion learning (CL) into TSN: (1) TSN+FD: face detection

is added to the spatial stream of TSN; (2) TSN+FD+CL:

cross-stream correlation learning is further used to boost T-

SN+FD. The comparative results in Figure 7 clearly show

that both components are effective for ADD.

Model Selection for Meta Learning. As illustrated in Fig-

ure 4, the number of sample pairs in each sampled task in

the meta-learning pipeline is empirically set to 5. To eval-

uate the impact of the task size on the model performance,

Figure 8 compares different task sizes. It can be clearly seen

that our model approaches the peak at 5, but it is in general

insensitive to the task size selection.
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Figure 8. Illustration of the effect of the number of sample pairs

used for pairwise comparison on the performance of meta learning.
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Figure 9. Comparative results obtained by employing differen-

t losses for pairwise comparison.

Alternative Losses for Pairwise Comparison. In this pa-

per, our loss defined in Eq. (3) is used for pairwise compar-

ison. To show its effectiveness, we compare it to two typi-

cal pairwise losses under the same setting: loss of Siamese

network [3, 43], and loss of triplet network [2, 15]. The

conventional non-pairwise loss is also included as the base-

line. The comparative results in Figure 9 show that: (1) All

three pairwise losses clearly lead to better results than the

conventional non-pairwise loss, validating the effectiveness

of pairwise comparison for deception detection. (2) The

loss defined in Eq. (3) performs the best among the three

pairwise losses, i.e., the meta learning module is more capa-

ble of modelling the complicated relationships among video

samples than the Siamese network and triplet network.

4.2. Video-Based Emotion Recognition

4.2.1 Dataset and Setting

The YouTube-8 dataset [18] is used for performance eval-

uation. This dataset consists of 1,101 videos (downloaded

from YouTube) annotated with 8 basic emotions: anger, an-

ticipation, disgust, fear, joy, sadness, surprise, and trust. We

randomly generate 10 train/test splits, each using 2/3 of the

dataset for training and 1/3 for testing. The averaged recog-

nition accuracy (ACC) over 10 random train/test splits is

Model multimodal ACC

[18] visual+acoustic+attribute 46.1

[34] visual+acoustic+attribute 51.1

[57] visual+attribute 52.5

[54] visual+acoustic 52.6

[53] visual+acoustic 52.6

Ours visual 57.8

Table 3. Comparative results (%) of video-based emotion recogni-

tion on the YouTube-8 dataset.

used as the evaluation metric. Our FFCSN model is trained

exactly the same as in Section 4.1, and only visual features

are extracted from raw videos for emotion recognition.

4.2.2 Comparative Results

We compare our FFCSN model to the state-of-the-art alter-

natives [18, 34, 53, 57, 54]. The comparative results are pre-

sented in Table 3. We have the following observations: (1)

Our FFCSN model achieves significant improvements over

the state-of-the-art models, validating the effectiveness of

our face-focused cross-stream network for emotion recog-

nition from user-generated videos. Note that the biggest

challenge of this emotion recognition task lies in the com-

plicated and unstructured nature of user-generated videos

and the sparsity of video frames that express the emotion

content. Our FFCSN model is clearly effective in overcom-

ing this challenge. (2) The improvements obtained by our

FFCSN model are really impressive, given that only visu-

al features are extracted by our model, whilst at least two

modalities are used by all other models.

5. Conclusion

In this paper, we have investigated the challenging prob-

lem of deception detection from real-life videos. For joint

deep feature learning from facial expressions and body mo-

tions, we have proposed a novel face-focused cross-stream

network (FFCSN). Importantly, different from existing two-

stream networks, our FFCSN model enables us to cope with

the temporal inconsistency between facial expressions and

body motions for ADD. Moreover, we have also developed

a new training approach for our FFCSN model by induc-

ing meta learning and adversarial learning into the training

process of our base model. As a result, our FFCSN model

can be trained effectively even with only a handful of train-

ing samples. Extensive experiments show that the proposed

FFCSN model achieves state-of-the-art results.
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