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Abstract

Binarized Neural Networks (BNNs) can significantly

reduce the inference latency and energy consumption in

resource-constrained devices due to their pure-logical com-

putation and fewer memory accesses. However, training

BNNs is difficult since the activation flow encounters de-

generation, saturation, and gradient mismatch problems.

Prior work alleviates these issues by increasing activation

bits and adding floating-point scaling factors, thereby sac-

rificing BNN’s energy efficiency. In this paper, we propose

to use distribution loss to explicitly regularize the activation

flow, and develop a framework to systematically formulate

the loss. Our experiments show that the distribution loss

can consistently improve the accuracy of BNNs without los-

ing their energy benefits. Moreover, equipped with the pro-

posed regularization, BNN training is shown to be robust to

the selection of hyper-parameters including optimizer and

learning rate.

1. Introduction

Recent years have witnessed tremendous success of

Deep Neural Networks (DNNs) in various applications of

image, video, speech, natural language, etc [16, 31]. How-

ever, the increased computation workload and memory ac-

cess count required by DNNs pose a burden on latency-

sensitive applications and energy-limited devices. Since la-

tency and energy consumption are highly related to com-

putation cost and memory access count, there has been

a lot of research on reducing these two important de-

sign metrics [11, 41, 18, 6]. Binarized Neural Networks

(BNNs) [22] that constrain the network weights and acti-

vations to be ±1 have been proven highly efficient on cus-

tom hardware [51]. We also show later in Sec. 3.1 that a

typical block of a BNN can be implemented in hardware

with merely a few logical operators including XNOR gates,

counters and comparators, and therefore greatly reduce the

energy consumption and circuit area, as shown in Table 1.

In addition to the computational benefit brought by mak-

ing the whole network binarized, another benefit of BNNs

BinConv BN Activation

Forward: 𝐒𝐢𝐠𝐧 𝒙

Backward: 𝐇𝐚𝐫𝐝𝐓𝐚𝐧𝐡 𝒙 = 𝐦𝐢𝐧(𝐦𝐚𝐱 𝒙, −𝟏 ,𝟏)

Pre-activation distribution

Degeneration Saturation Gradient mismatch

Causes difficulty in training

Figure 1: The basic Conv-BN-Act structure for BNN (Bin-

Conv: binary convolution; BN: batch normalization). The

pre-activation distribution may exhibit from degeneration,

saturation or gradient mismatch problem that causes diffi-

culty in training.

is the huge reduction of memory footprint due to their 1-

bit weights and activations. Prior work on extremely low-

bit DNNs [9, 12, 28, 4, 46, 10] mainly focuses on few-

bit weights and uses more bits for activations, while only

a few [22, 29] target 1-bit weights and activations. How-

ever, reading and writing intermediate results (activations)

generate a larger memory footprint than the weights [35].

For example, in the inference phase of a full-precision (32-

bit) AlexNet with batch size 32, 92.7% of the memory foot-

print is caused by activations, while only 7.3% is caused by

weights [35]. Therefore, the memory footprint of BNNs is

significantly reduced due to their binary activations.

However, training accurate BNNs requires careful hyper-

parameter selection [1], which makes the process more dif-

ficult than for their full-precision counterparts. Prior work

has shown that this difficulty arises from the bounded ac-

tivation function and the gradient approximation of the

non-differentiable quantization function [4]. Even for full-

precision DNNs, bounded activation functions (e.g., Sig-

moid or Tanh) usually lead to lower accuracy compared to

the unbounded ones (e.g., ReLU, leaky ReLU, or SELU)
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due to the gradient vanishing problem [13, 5]. For bina-

rized networks, a bounded activation (i.e., Sign function) is

used to lead to binary activations, and the HardTanh acti-

vation function is commonly used for gradient approxima-

tion [22, 38, 46]. As shown in Fig. 1, these bounded ac-

tivation functions bring the following challenges (we use a

convolutional layer as an example for illustration purposes):

(i) Degeneration: If almost all the pre-activations of a chan-

nel have the same sign, then this channel will output nearly

constant activations. In an extreme case, this channel de-

generates to a constant. (ii) Saturation: If most of the pre-

activations of a channel have a larger absolute value than

the HardTanh threshold (i.e., |a| ≥ 1), then the gradients

for these pre-activations will be zero. (iii) Gradient mis-

match: If the absolute values of pre-activations are consis-

tently smaller than the threshold (i.e., |a| < 1), then this is

equivalent to using a straight-through estimator (STE) for

gradient computation [3]. While the STE generally per-

forms well in computing gradients of staircase functions

when training fixed-point DNNs, using STE for computing

the gradient of Sign function causes larger approximation

error than staircase function, and therefore causes worse

gradient mismatch [4].

Due to the difficulty of BNN training, prior work along

this track has traded the benefit of extremely-low energy

consumption for higher accuracy. Hubara et al. largely in-

crease the number of filters/neurons per convolutional/fully-

connected layer [22]. Thus, while a portion of fil-

ters/neurons are blocked due to degeneration or gradient

saturation, there is still a large absolute number of fil-

ters/neurons that can work well. Similarly, Mishra et al.

also increase the width of the network to keep the BNN ac-

curacy high [35].

In addition to increasing the number of network param-

eters, lots of work sacrifices BNNs’ pure-logical advantage

by relaxing the precision constraint. Rastegari et al. approx-

imate a full-precision convolution by using a binary convo-

lution followed by a floating-point element-wise multiplica-

tion with a scaling matrix. [38]. Tang et al. use multiple-bit

binarization for activations, which requires floating-point

operators to compute the mean and residual error of activa-

tions [46]. Lin et al. approximate each filter and activation

map using a weighted sum of multiple binary tensors [29].

All these approaches use scaling factors for weights and

activations, making fixed-point multiplication and addition

necessary for hardware implementation. Liu et al. added

skip connections with floating point computations to the

model [30]. While the models resulting from these ap-

proaches use XNOR convolution kernels, the extra multi-

plications and additions are not negligible. As shown in

Table. 2, the energy cost for a typical convolutional layer

of BNN is lower than the other binarized DNNs. The layer

setting and the proposed approach for energy cost estima-

Table 1: Computational energy consumption and circuit

area for different computation operators using a commer-

cial 65nm process design kit [44]. The multiplier and adder

are both 16-bit fixed-point operators.

Energy

(pJ)

Relative

cost

Area

(µm2)

Relative

cost

XNOR 7.6×10−4 1× 4.2 1×
Counter 7.8×10−4 10× 52 12×

Comparator 1.1×10−2 14× 52 12×
Multiplier 1.6 2109× 3.0×103 718×

Adder 4.8×10−2 64× 1.6×102 37×

Table 2: Computational energy for a convolutional layer

with different types of binarizations.

Pure-

logical

Energy

(µJ)

Relative

cost

BNN [22] Yes 1.42 1×
XNOR-Net [38] No 4.34 3×
ABC-Net [29] No 24.6 17×

tion are introduced in Appendix 6.1. Furthermore, since the

hardware implementation of BNNs do not require digital

signal processing (DSP) units, they greatly save circuit area

and thus, can benefit IoT applications that have stringent

area constraint [14, 8].

In this paper, we propose a general framework for ac-

tivation regularization to tackle the difficulties encountered

during BNN training. While prior work on weight initializa-

tion [13] and batch normalization [24] also regularizes acti-

vations, it does not address the challenges mentioned earlier

for BNNs, as detailed in Sec. 4.2. Instead of regularizing the

activation distribution in an implicit fashion as done in prior

work [13, 24], we shape the distribution explicitly by em-

bedding the regularization in the loss function. This regu-

larization is shown to effectively alleviate the challenges for

BNNs, and consistently increase the accuracy. Specifically,

adding the distribution loss can improve the Top-1 accuracy

of BNN AlexNet [22] on ImageNet from 36.1% to 41.3%,

and improve the binarized wide AlexNet [35] from 48.3%

to 53.8%. In summary, this paper has the following key

contributions:

(i) To the best of our knowledge, we are the first to pro-

pose a framework for explicit activation regularization for

binarized networks that consistently improve the accuracy.

(ii) Empirical results show that the proposed

distribution loss is robust to the selection of

training hyper-parameters. Code is available at:

https://github.com/ruizhoud/DistributionLoss.

2. Related Work

Prior work has proposed various approaches to regular-

ize the activation flow of full-precision DNNs, mainly to ad-
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dress the gradient vanishing or exploding problem. Ioffe et

al. propose batch normalization to centralize the activation

distribution, accelerate training, and achieve higher accu-

racy [24]. Similarly, Huang et al. normalize the weights

with zero mean and unit norm followed by scaling fac-

tors [20]. Shang et al. extend the normalization idea to

residual networks using normalized propagation [42], while

Ba et al. and Salimans et al. normalize the activations of

Recurrent Neural Network (RNN) by layer-wise normaliza-

tion and weight reparameterization, respectively [2, 40]. In

addition, some prior work develops good initialization strat-

egy to regularize the activations in the initial state [33, 48],

or proposes new activation functions to maintain stable ac-

tivation distribution across layers [27, 32].

However, these approaches on full-precision networks

do not address the difficulty of training networks with bina-

rized activations. Prior work on binarized DNNs alleviates

this problem mainly by approximating the full-precision

activations with multiple-bit representations and floating-

point scaling factors [46, 4, 35, 37, 34, 12, 29, 19]. Tang et

al. introduced scaling layers and use 2 bits for activa-

tions [46]. Cai et al. use multi-level activation function

for inference and variants of ReLU for gradient computa-

tion to reduce gradient mismatch [4]. Polino et al. lever-

age knowledge distillation to guide training and improve the

accuracy with multiple bits for activations [37]. Lin et al.

approximate both weights and activations with multiple bi-

nary bases associated with floating-point coefficients [29].

While these approaches improve the accuracy for binarized

networks, they sacrifice the energy efficiency due to the in-

creased bits and the required DSP units for the additions and

multiplications.

3. Activation Regularization

In this section, we first show that BNN blocks can be

implemented with pure-logical operators in hardware while

the other binarized networks (including XNOR-Net and

ABC-Net) based on scaling factors require additional full-

precision operations. Then, we propose a framework to ad-

dress the problems of activation and gradient flow incurred

in the training process of BNNs. Finally, we discuss the

effectiveness of this framework.

3.1. Binarized DNNs

Binarized DNNs constrain the weights and activations to

be ±1, making the convolution between weights and activa-

tions use only xnor and count operators. In this subsection,

we introduce the structure of three typical binarized DNNs,

and analyze their hardware implication.

BNN: As shown in Fig 2, the basic block for BNN [22]

is composed of a binary convolution, a batch normaliza-

tion (BN) and an optional max pooling layer, followed by a

sign activation function. Without changing the input-output

BinConv BN (MaxPool) Sign

BinConv BN+Sign (MaxPool)

XNOR + Count Comparator Or

Equivalent mapping from Il to Il+1

Il

Il

Il+1

Il+1

Aconv = W * Il Abn = γ
Aconv − μ

σ
− β Apool = maxpool(Abn) Il+1 = sign(Apool)

Aconv = W * Il Abn+sign = sign(Aconv − μ +
σβ

γ
)sign(γ) Il+1 = maxpool(Abn+sign)

Figure 2: Basic block for convolutional BNN [22]. The

activations I l and weights W are binarized to ±1. The in-

ference of this block can be implemented on hardware with

only logical operators.

mapping of this block, we can reorder the max pooling layer

and the sign function, and then, combine the BN layer and

sign function to be a comparator of the convolution results

Aconv and input-independent variables µ + σβ
γ

, where µ
and σ are the moving mean and variance of per-channel ac-

tivations, which are obtained from training data and fixed

in the testing phase; β and γ are trainable parameters in

the BN layer. Therefore, the inference of this BNN block

can be implemented in hardware with pure-logical opera-

tors. This transformation can also be applied to binarized

fully-connected layers followed by BN, pooling and sign

function.

XNOR-Net: Different from BNN, XNOR-Net [38] ap-

proximates the activations Abn after the BN layer with their

signs and scaling factors computed by the average of the

absolute values of these activations, as shown in Fig. 9 in

Appendix. Since the scaling factors are input-dependent,

the full-precision multiplications and additions cannot be

eliminated.

ABC-Net: ABC-Net [29], shown in Fig. 10 in Ap-

pendix, approximates both weights and activations with a

linear combination of pre-defined bases, and therefore mak-

ing the convolution kernel binarized. However, the approx-

imation prior to binary convolution and the scaling opera-

tions after the convolution require full-precision multiplica-

tions and additions that cannot be eliminated.

3.2. Regularizing Activation Distribution

In this section we first introduce some notations and

formally define the difficulties encountered when training

BNNs. We denote Ab,l,c as the pre-activations (activations

prior to the Sign function) for the c-th channel of the l-th
layer for the b-th batch of data. Thus, Ab,l,c is a 3D tensor

with size B × W × H where B is the batch size, W and

H are the width and height of the activation map. From

this point on, to avoid clutter, we will omit the superscript

of A whenever possible. A(q) denotes the q quantile of A’s

elements where 0 ≤ q ≤ 1. We define degeneration, satu-
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0 Pre-activations

Underlying distribution of pre-activations

LD = [(A(0) − 0)+]2

Easily 
affected by 

outliers

A(0)

Penalizing degeneration:

0 Pre-activationsA(0)

+[(0 − A(1))+]2 > 0

LD = [(A(0) − 0)+]2

+[(0 − A(1))+]2 = 0

Figure 3: Motivation for adjusting regularization. The loss

function directly formulated from hypothesis (e.g., degen-

eration) relies on the minimum (or maximum) of the pre-

activations, and therefore is sensitive to outliers.

ration, and gradient mismatch as follows:

Degeneration: A(0) ≥ 0 or A(1) ≤ 0

Saturation: |A|(0) ≥ 1

Gradient mismatch: |A|(1) ≤ 1

(1)

where |A|(q) is the q quantile for |A|, and we use 1 because

it is the threshold of HardTanh activation shown in Fig. 1.

To alleviate the aforementioned problems, we propose

to add the distribution loss in the objective function to reg-

ularize the activation distribution. Using degeneration as an

example, an intuitive way of formulating a loss to avoid the

degeneration problem for A is LD = [(A(0)−0)+]
2+[(0−

A(1))+]
2, where (.)+ is the ReLU function. However, this

may lead to too loose regularization since a small outlier

can make this loss zero, as shown in Fig. 3. In addition,

this formulation of LD is not differentiable w.r.t. the pre-

activations A.

Therefore, we propose a three-stage framework consist-

ing of hypothesis formulation, adjusting regularization, and

enabling differentiability, to systematically formulate an

outlier-robust and differentiable regularization, as shown in

Fig. 4. First, based on the prior hypothesis about the acti-

vation distribution, we can formulate a loss function to pe-

nalize the unwanted distribution. Then, if this formulation

uses large-variance estimators (e.g., maximum or minimum

of samples), we can use relaxed estimators (e.g., quantiles)

to increase robustness to outliers. Finally, if the formulated

loss is not differentiable, we need to approximate it by as-

suming the type of parametric distribution (e.g., Gaussian),

and approximate the non-differentiable estimators with the

distribution parameters.

Degeneration. We first formulate the degeneration hy-

pothesis in the loss function as LD = [(A(0)−0)+]
2+[(0−

A(1))+]
2. To make the loss function more robust to outliers,

we adjust the regularization by using relaxed quantiles ǫ and

1− ǫ, with LD = [(A(ǫ)−0)+]
2+[(0−A(1−ǫ))+]

2. Then,

to make LD differentiable so that it can fit in the backpropa-

gation training, we first assume a parameterized distribution

Formulating 

hypothesis

Adjusting 

regularization

Enabling 

differentiability

0A(0)

Degeneration

0 A(ϵ)
0 μ − k

ϵ
σ

LD = [(A(0) − 0)+]2 LD = [(A(ϵ) − 0)+]2 LD = [( |μ | − k
ϵ
σ)+]2

0

|A |
(0)

Saturation

LS = [( |A |
(0)

− 1)+]2

1-1 0

|A |
(ϵ)

LS = [( |A |
(ϵ)

− 1)+]2

1-1 0

k
ϵ
σ

LS = [(k
ϵ
σ − 1)+]2

1-1

0 A(1)

Gradient 

Mismatch

LM = [min(1 − A(1), A(0) + 1)+]2

1-1 0 A(1−ϵ)
1-1

LM = [(1 − |μ | − k
ϵ
σ)+]2

+[(0 − A(1))+]2
+[(0 − A(1−ϵ))+]2

A(0)

LM = [min(1 − A(1−ϵ), A(ϵ) + 1)+]2

A(ϵ)
0

μ + k
ϵ
σ
1-1

μ − k
ϵ
σ

Figure 4: Proposed framework for formulating the differ-

entiable loss function to regularize activation distribution.

Starting from the three hypotheses (“degeneration”, “satu-

ration” and “gradient mismatch”), we can formulate the loss

function LD, LS and LM for them, respectively. We omit

the superscript for A and L for better representation.

for the pre-activations A and then use its parameters to for-

mulate a differentiable LD. Based on the heuristics from

prior art [28, 4, 36], we assume that the values of A fol-

low a Gaussian distribution N (µ, (σ)2), where the µ and σ
can be estimated by the sample mean and standard deviation

over the 3D tensor. Thus, we can formulate the ǫ quantile

by µ − kǫσ where kǫ is a constant determined by ǫ. There-

fore, LD = [(µ − kǫσ − 0)+]
2 + [(0 − (µ + kǫσ))+]

2 =
[(|µ| − kǫσ)+]

2.

Saturation. The saturation problem can be penalized by

LS = [(|A|(0) − 1)+]
2, where |A|(0) is the minimum value

of |A|. By adjusting the regularization, we have LS =
[(|A|(ǫ) − 1)+]

2. Since LD already eliminates the degen-

eration problem, we find that simply assuming A has a zero

mean (i.e., N (0, (σ)2)) works well empirically. Thus, the

loss function is formulated as LS = [(kǫσ − 1)+]
2.

Gradient mismatch. When most of the activations lie in

the range of [-1,1], the backward pass is simply using a STE

for the gradient computation of the sign function, causing

the gradient mismatch problem. Therefore, we can formu-

late the loss as LM = [min(1 − A(1), A(0) + 1)+]
2. Sim-

ilarly, relaxing the regularization leads to LM = [min(1 −
A(1−ǫ), A(ǫ) + 1)+]

2. With a Gaussian assumption, we

have LM = [min(1 − µ − kǫσ, µ − kǫσ + 1)+]
2 =

[(1− |µ| − kǫσ)+]
2.

Then, in the training phase, we add the distribution loss

for the b-th batch of input data:

Lb
DL =

∑

l,c

Lb,l,c
DL =

∑

l,c

Lb,l,c
D + Lb,l,c

S + Lb,l,c
M , (2)
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and the total loss for b-th batch is:

Lb
total = Lb

CE + λLb
DL (3)

where Lb
CE is the cross-entropy loss, and λ is a coefficient

to balance the losses.

3.3. Intuition for the Proposed Distribution Loss

The distribution loss is proposed to alleviate training

problems for pure-logical binarized networks. In contrast

with full-precision networks, BNNs use a bounded activa-

tion function and therefore exhibit the gradient saturation

and mismatch problems. By regularizing the activations,

the distribution loss maintains the effectiveness of the back-

propagation algorithm, and thus, can speedup training and

improve the accuracy.

Since the distribution loss changes the optimization ob-

jective, one concern may be that it will lead to a configu-

ration far from the global optimal of the cross-entropy loss

function. However, prior theoretical [43, 25, 7] and empir-

ical [23] work has shown that a deep neural network can

have many high-quality local optima. Kawaguchi proved

that under certain conditions, every local minimum is a

global minimum [25]. Through experiments, Im et al. show

that using different optimizers, the achieved local optima

are very different [23]. These insights show that adding

the distribution loss may deviate the training away from the

original optimal, but can still lead to a new optimal with

high accuracy. Moreover, the distribution loss diagnoses the

poor conditions of the activation flow, and therefore may

achieve higher accuracy. Our experiment results confirm

this hypothesis.

4. Experimental Results

In this section, we first evaluate the accuracy improve-

ment by the proposed distribution loss on CIFAR-10,

SVHN, CIFAR-100 and ImageNet. Then, we visualize the

histograms of the regularized activation distribution. Fi-

nally, we analyze the robustness of our approach to the

hyper-parameter selection.

4.1. Accuracy Improvement

Training configuration. We use fully convolutional

VGG-style networks for CIFAR-10 and SVHN, and ResNet

for CIFAR-100. All of them use the ADAM optimizer [26]

as suggested by Hubara et al. [22]. For the BNN trained

with distribution loss (BNN-DL), we compute the loss with

the activations prior to each binarized activation function

(i.e., Sign function that uses HardTanh for gradient com-

putation). Unless noted otherwise, we set the coefficient kǫ
to be 1, 0.25 and 0.25 for LD, LS and LM , respectively, and

set λ to be 2. To show the statistical significance, all the ex-

periments for CIFAR-10 and SVHN are averaged over five

experiments with different parameter initialization seeds.

The details of the network structure and training scheme for

each dataset is as follows:

CIFAR-10. The network structure can be formulated

as: xC-xC-MP-2xC-2xC-MP-4xC-4xC-10C-GP, where

xC indicates a convolutional layer with x filters, MP and

GP indicate max pooling and global pooling layers, respec-

tively. 3× 3 filter size is used for all the convolutional lay-

ers. We vary the x to different values ({128, 179, 256, 384})

to explore the trade-off between accuracy and energy cost,

which are shown in Table 3 as networks 2-5. We also train

a small BNN without the two 4xC layers for CIFAR-10,

which is network 1 in Table 3. Each convolutional layer

has binarized weights and is followed by a batch normal-

ization layer and a sign activation function. The learning

rate schedule follows the code from BNN authors [21]. All

networks are trained for 200 epochs.

SVHN. The network structure for SVHN is the

same as CIFAR-10, except that the x is varied from

{51, 64, 96, 128}, shown by networks 6-9 in Table 3. The

initial learning rate value is 1e-2, and decays by a factor of

10 at epochs 20, 40 and 45. We train 50 epochs in total.

CIFAR-100. We use the full pre-activation variant of

ResNet [17] with 20 layers for CIFAR-100. Prior work

has shown the difficulty of training ResNet-based BNNs

without scaling layers [49]. Since in ResNet-based BNNs

the main path activations and residual path activations do

not have matching scales, directly adding the two activa-

tions will cause difficulty in training. Therefore, we add

two batch normalization layers after these two activations to

maintain stable activation scales. Similar to CIFAR-10 and

SVHN, we also vary the number of filters per layer. Details

on the network structure are included in Appendix 6.3. The

initial learning rate is set to 1e-4, and reduced by a factor of

3 every 80 epochs. The networks are trained for 300 epochs.

Results on CIFAR-10, SVHN and CIFAR-100. As

shown in Table 3, the accuracy for BNN-DL is consistently

higher than the baseline BNN. The accuracy gap between

BNN and BNN-DL is generally larger than their standard

deviations. Using t-test, the p-values for all the network 1-

9 are smaller than 0.005, which demonstrates the statistical

significance of our improvements. In addition to accuracy

results, we also show the computational energy cost for each

network, obtained by summing up the energy of each oper-

ation for the inference of a single input image. Note that

this cost excludes the energy of memory accesses, which

is the same for BNN and BNN-DL in the inference phase.

We also visualize the trade-off between accuracy and energy

cost in Fig. 5. In most cases, the BNN-DL with a smaller

model size can achieve the same or higher accuracy than the

BNN with a larger size.

The use of the distribution loss improves the testing ac-

curacy mostly because it regularizes the activation and gra-
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Table 3: Accuracy improvement with distribution loss. Network depth is defined as the number of convolutional layers, while

the network width is defined as the number of filters in the largest layer. The best results are shown in bold face. All the

accuracy for CIFAR-10 and SVHN is averaged over five experiments with different weight initialization.

Dataset Network ID Depth/width Params storage Energy cost (µJ)
Accuracy (mean ± std) (%)

BNN BNN-DL

CIFAR-10

1 5/256 0.4 MB 0.30 80.61 ± 0.49 83.33 ± 0.32

2 7/512 0.6 MB 0.47 87.54 ± 0.38 89.13 ± 0.23

3 7/716 1.1 MB 0.93 88.99 ± 0.13 90.28 ± 0.28

4 7/1024 2.3 MB 1.89 90.09 ± 0.10 91.01 ± 0.09

5 7/1536 3.8 MB 4.23 90.68 ± 0.11 91.56 ± 0.16

SVHN

6 7/204 0.09 MB 0.08 96.23 ± 0.15 96.57 ± 0.12

7 7/256 0.15 MB 0.12 96.53 ± 0.11 96.95 ± 0.10

8 7/384 0.3 MB 0.27 97.15 ± 0.15 97.34 ± 0.05

9 7/512 0.6 MB 0.47 97.34 ± 0.07 97.51 ± 0.03

CIFAR-100

10 20/1024 5.6 MB 53.7 60.40 68.17

11 20/1536 12.6 MB 120.9 64.57 71.53

12 20/2048 22.3 MB 215.0 66.07 73.42

Figure 5: Accuracy and energy Pareto-optimal curve for

CIFAR-10, SVHN and CIFAR-100. The error bars for

CIFAR-10 and SVHN show the standard deviation of test-

ing accuracy.

dient flow in the training phase, so that the networks can

better fit the dataset. As shown in Fig. 6, the training loss

for BNN-DL is consistently lower than the BNN baseline

after a few epochs. For most of the experiments, distribu-

tion loss is found to converge to a very small number (e.g.,

1/10000 of the initial value) in the first few epochs. This

indicates that the network can be easily regularized by the

distribution loss, which then improves the rest of the train-

ing process.

Comparison with prior art. We also compare our results

with prior work on binarized networks as shown in Table 4.

For CIFAR-10 and SVHN, we follow the same network

configuration by Hou et al., and also split the dataset into

training, validation and testing sets as they do [19]. Ta-

ble 4 shows that by just applying the distribution loss when

training BNNs can achieve higher accuracy than the base-

line BNN [22], XNOR-Net [38] and LAB [19]. We also

show the normalized energy cost for the models. Since

XNOR-Net and LAB use scaling factors for the weights

and activations, which introduces the need for full-precision

operations, XNOR-Net and LAB require 4.5× energy cost

than BNN and BNN-DL. We use 16-bit fixed-point mul-

tipliers and adders instead of 32-bit floating-point opera-

(a) CIFAR-10, network-1 (b) CIFAR-10, network-5

(c) SVHN, network-6 (d) SVHN, network-9

(e) CIFAR-100, network-10 (f) CIFAR-100, network-12

Figure 6: Training loss and testing accuracy curves for

different networks with or without distribution loss. The

widths of the curves for CIFAR-10 and SVHN are 2 stan-

dard deviation ranges.

tors to estimate the energy cost of these full-precision op-

erations because prior quantization work shows that 16-bit

fixed-point operation is generally enough for maintaining

accuracy [15]. For CIFAR-100, the closest work that re-

ports 1-bit weights and low-bit activations is by Polino et

al. [37], where they use a 7.9MB ResNet with 2-bit activa-

tions for CIFAR-100, which presumably has larger energy

cost than our 5.6MB model with 1-bit activations, and our

results on accuracy surpass theirs by a large margin.

Results on ImageNet. Having shown the effectiveness of

the distribution loss on small datasets, we extend our analy-
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Table 4: Comparison with prior art using 1-bit weights and activations, in terms

of accuracy and computation energy on different datasets. The best results are

shown in bold face.

Dataset Model Pure-logical Energy cost Accuracy

CIFAR-10

BNN [22] Yes 1× 87.13%

XNOR-Net [38] No 4.5× 87.38%

LAB [19] No 4.5× 87.72%

BNN-DL Yes 1× 89.90%

SVHN

BNN [22] Yes 1× 96.50%

XNOR-Net [38] No 4.5× 96.57%

LAB [19] No 4.5× 96.64%

BNN-DL Yes 1× 97.23%

CIFAR-100

BNN [22] No 1× 60.40%

DQ-2bit [37] No - 49.32%

BNN-DL No 1× 68.17%

Table 5: Robustness to the selection

of optimizer, learning rate, and net-

work structure. CIFAR-10 is used for

illustrating the results.

BNN BNN-DL

Momentum 66.02% 89.37%

Nesterov 68.66% 89.22%

Adam 88.12% 89.62%

RMSprop 87.39% 90.24%

lrinit=1e-1 82.19% 89.60%

lrinit=5e-3 88.12% 89.62%

lrinit=2e-4 85.62% 88.73%

VGG 88.12% 89.62%

ResNet-18 85.71% 90.47%

sis to a larger image dataset - ImageNet ILSVRC-2012 [39].

We consider AlexNet, which is the most commonly adopted

network in prior art on binarized DNNs [22, 38, 52, 46, 35].

We compare our BNN-DL with the baseline BNN [22],

XNOR-Net [38], DoReFa-Net [52], Compact Net [46], and

WRPN [35]. The BNN uses binarized weights for the whole

network [22], while XNOR-Net and DoReFa-Net keep the

first convolutional layer and last fully-connected layer with

full-precision weights [38, 52]. Compact Net uses full-

precision weights for the first layer but binarizes the last

layer, and uses 2 bits for the activations [46]. WRPN dou-

bles the filter number of XNOR-Net, and uses full-precision

weights for both the first and last layers [35]. Also, BNN

uses 64 and 192 filters while the other networks use 96

and 256 filters (or doubling these numbers as WRPN does)

for the first two convolutional layers. We train our BNN-

DL using the same settings as prior work, except that we

use 1-bit activations instead of 2-bit when comparing with

Compact Net. The learning rate policy follows prior imple-

mentations [21], but starts from 0.01. As shown in Table 6,

BNN-DL consistently outperforms the accuracy of the base-

line models. All baseline models except BNN use scaling

factors to approximate activations while we keep them bina-

rized. Therefore, our model also has lower energy cost than

the prior models. In addition, we highlight that our BNN-

DL can outperform Compact Net though we use fewer bits

for activations.

4.2. Regularized Activation Distribution

To show the regularization effect of the distribution loss,

we plot the distribution of the pre-activations for the base-

line BNN and for our proposed BNN-DL. More specifically,

we conduct inference for network 2 on CIFAR-10, and ex-

tract the (floating-point) activations right after the batch nor-

malization layer prior to the binarized activation function

of the fourth convolutional layer with 256 filters. There-

Table 6: Comparison with prior art on ImageNet with

AlexNet-based topology. We use the same model structure

as prior work, except that Compact Net uses 2 bits for acti-

vations while we only use 1 bit. Training with distribution

loss outperforms prior work consistently.

Model
Baseline Ours

Top-1 Top-5 Top-1 Top-5

BNN [22] 36.1% 60.1% 41.3% 65.8%

XNOR-Net [38] 44.2% 69.2% 47.8% 71.5%

DoReFa-Net [52] 43.5% - 47.8% 71.5%

Compact Net [46] 46.6% 71.1% 47.6% 71.9%

WRPN [35] 48.3% - 53.8% 77.0%

fore, for each of the 256 output channels, we get its values

across the whole dataset. Then, for illustration purposes, we

select four channels from baseline BNN and our proposed

BNN-DL, respectively, and plot the histogram of these per-

channel values, as shown in Fig. 7. The four channels’ acti-

vation distributions for the baseline BNN are picked to show

the degeneration, gradient mismatch, and saturation prob-

lems, while the distributions for BNN-DL are randomly se-

lected. From Fig. 7a we can see that the good weight initial-

ization strategy [13] and batch normalization [24] adopted

for BNNs do not solve the distribution problems.

To show that BNN-DL alleviates these challenges, we

compute the standard deviation of activations for each of

these 256 channels, as well as their positive ratio, which

is the proportion of positive values. As shown in Fig. 8,

the standard deviation of BNN-DL is more regularized and

centralized than that of BNN. The channel with very small

standard deviation like the middle two histograms in Fig. 7a

is rarely seen in BNN-DL, while BNN has a long tail in the

area of small standard deviations. This indicates that with-

out explicit regularization, the scale factors of batch nor-

malization layer could shrink to very small values, causing

the gradient mismatch problem. From Fig. 8, we can also
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(a) Baseline BNN

(b) BNN trained with distribution loss

Figure 7: Activation distribution for BNN trained (a) with-

out or (b) with distribution loss. Each histogram refers to

the activations of one channel. In (a), the channel in the

left histogram shows a generation problem, the middle two

show gradient mismatch, and the right one shows saturation

problem. σ is standard deviation, and “positive” refers to

the ratio of positive activations.

Figure 8: Histogram of standard deviation and positive ratio

of per-channel activations.

observe that the positive ratio of BNN has more extreme

values (i.e., those close to 0 or 1) than BNN-DL. This indi-

cates that the degeneration problem is reduced by distribu-

tion loss. Interestingly, we can see that the positive ratio of

BNN-DL also deviates away from 0.5. We conjecture that

this is because the activations centered at 0 are more prone

to gradient mismatch, and thus, be penalized by LM .

4.3. Robustness to Hyper­parameter Selection

Another benefit of the distribution loss is its robustness

to the selection of the training hyper-parameters. Prior

work [1] has shown that the accuracy of BNNs is sensitive

to the training optimizer. We observe the same phenomenon

by training BNNs with different optimizers including SGD

with momentum, SGD with Nesterov [45], Adam [26] and

RMSprop [47]. However, when training BNN with distri-

bution loss, these optimizers can be consistently improved,

as shown in Table 5. We use CIFAR-10 for the experi-

ments in this subsection. We use the same weight decay

and learning rate schedule as Zagoruyko et al. [50] for Mo-

mentum and Nesterov, and change the initial learning rate

to 1e-4 for RMSprop. We use the same setting as Hubara

et al. [21] for Adam. Each model is trained for 200 epochs,

and the best testing accuracy is reported. Then, we vary

the learning rate schedule of Hubara et al.’s implementa-

tion [21] by scaling the learning rate at each epoch by a

constant. Table 5 shows that BNN-DL is more robust to the

selection of learning rate values. Furthermore, we show that

the BNN-DL can work well for both VGG-style networks

with stacked convolutional layers and ResNet-18 which in-

Table 7: Accuracy for BNN-DL on CIFAR-10 with varied

regularization levels. λ = 0 indicates the baseline BNN.

λ 0 0.2 2 20 200 2000

Acc. (%) 87.39 90.12 90.16 90.18 90.61 90.20

cludes skip connections. The VGG-style network uses the

network 2 in Table 3. The ResNet-18 structure uses the pre-

activation variant [17] with added batch normalization lay-

ers as described in Sec. 4.1. Since BNN has non-regularized

activations, maintaining the activation flow in the training

process requires more careful picking of hyper-parameter

values. However, the distribution loss applies regulariza-

tion to the activations, making the network easier to train,

and therefore reduces the sensitivity to hyper-parameter se-

lection.

We also show that the distribution loss is robust to the

selection of the introduced hyper-parameter, λ coefficient,

which indicates the regularization level of the distribution

loss. As shown in Table 7, by varying λ from 0.2 to 2000,

the accuracy for BNN-DL is consistently higher than the

baseline BNN. As mentioned in Sec. 4.1, the distribution

loss quickly decays to a small magnitude in the first few

epochs, and we find that this holds for a wide range of λ.

The robustness analysis indicates that the distribution loss

is a handy tool to regularize activations, without the need of

much hyper-parameter tuning.

5. Conclusion
In this paper, we tackle the difficulty of training BNNs

with 1-bit weights and 1-bit activations. The difficulty

arises from the unregularized activation flow that may cause

degeneration, saturation and gradient mismatch problems.

We propose a framework to embed this insight into the

loss function by formulating our hypothesis, adjusting reg-

ularization and enabling differentiability, and thus, explic-

itly penalizing the activation distributions that may lead to

the training problems. Our experiments show that BNNs

trained with the proposed distribution loss have regular-

ized activation distribution, and consistently outperform the

baseline BNNs. The proposed approach can significantly

improve the accuracy of the state-of-the-art networks us-

ing 1-bit weights and activations for AlexNet on ImageNet

dataset. In addition, this approach is robust to the selection

of training hyper-parameters including learning rate and op-

timizer. These results show that distribution loss can gener-

ally benefit the training of binarized networks which enable

latency and energy efficient inference on mobile devices.

Acknowledgement
This research was supported in part by NSF CCF Grant

No. 1815899, and NSF award number ACI-1445606 at the

Pittsburgh Supercomputing Center (PSC).

11415



References

[1] M. Alizadeh, J. Fernndez-Marqus, N. D. Lane, and Y. Gal.

A systematic study of binary neural networks’ optimisation.

In International Conference on Learning Representations,

2019.

[2] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.
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