
A Theoretically Sound Upper Bound on the Triplet Loss for Improving the

Efficiency of Deep Distance Metric Learning

Thanh-Toan Do1, Toan Tran2, Ian Reid2, Vijay Kumar3, Tuan Hoang4, Gustavo Carneiro2

1University of Liverpool 2University of Adelaide 3PARC 4Singapore University of Technology and Design

Abstract

We propose a method that substantially improves the ef-

ficiency of deep distance metric learning based on the op-

timization of the triplet loss function. One epoch of such

training process based on a naı̈ve optimization of the triplet

loss function has a run-time complexity O(N3), where N is

the number of training samples. Such optimization scales

poorly, and the most common approach proposed to ad-

dress this high complexity issue is based on sub-sampling

the set of triplets needed for the training process. Another

approach explored in the field relies on an ad-hoc lineariza-

tion (in terms of N ) of the triplet loss that introduces class

centroids, which must be optimized using the whole train-

ing set for each mini-batch – this means that a naı̈ve imple-

mentation of this approach has run-time complexity O(N2).
This complexity issue is usually mitigated with poor, but

computationally cheap, approximate centroid optimization

methods. In this paper, we first propose a solid theory on

the linearization of the triplet loss with the use of class cen-

troids, where the main conclusion is that our new linear

loss represents a tight upper-bound to the triplet loss. Fur-

thermore, based on the theory above, we propose a training

algorithm that no longer requires the centroid optimization

step, which means that our approach is the first in the field

with a guaranteed linear run-time complexity. We show

that the training of deep distance metric learning meth-

ods using the proposed upper-bound is substantially faster

than triplet-based methods, while producing competitive re-

trieval accuracy results on benchmark datasets (CUB-200-

2011 and CAR196).

1. Introduction

Deep distance metric learning (DML) aims at training a

deep learning model that transforms training samples into

feature embeddings that are close together for samples that

belong to the same class and far apart for samples from dif-

ferent classes [4, 8, 9, 14, 20, 28, 29, 30, 35, 40, 46, 49].

The use of DML is advantageous compared to more tradi-

tional classification models because DML does not rely on

Figure 1. Left: the triplet loss requires the calculation of the loss

over 8× 3× 4 = 96 elements (cubic complexity in the number of

samples). Right: the proposed upper bound to the triplet loss only

requires the loss calculation for 8× 2 = 16 elements (linear com-

plexity in the number of samples and centroids). In addition, note

that the class centroids are fixed during training, overcoming the

expensive centroid optimization step, with quadratic complexity,

found in similar approaches [7, 32, 42, 45].

a classification layer that imposes strong constraints on the

type of problems that the trained model can handle. For in-

stance, if a model is trained to classify 1000 classes, then

the addition of the 1001st class will force the design of a

new model structure that incorporates that extra classifica-

tion node. In addition, DML requires no model structure up-

date, which means that the learned DML model can simply

be fine-tuned with the training samples for the new class.

Therefore, DML is an interesting approach to be used in

learning problems that can be continuously updated, such

as open-world [2] and life-long learning problems [39].

One of the most common optimization functions ex-

plored in DML is the triplet loss, which comprises two

terms: 1) a term that minimizes the distance between pairs

of feature embeddings belonging to the same class, and 2)

another term that maximizes the distance between pairs of

feature embeddings from different classes. The training

process based on this triplet loss has run-time complexity

O(N3/C) per epoch, with N representing the number of

samples and C < N , the number of classes. Given that

training sets are becoming increasingly larger, DML train-

ing based on such triplet loss is computationally challeng-

ing, and a great deal of work has been focused on the re-

duction of this complexity without affecting much the ef-

110404



fectiveness of DML training. One of the main ideas ex-

plored is the design of mechanisms that select representa-

tive subsets of the O(N3) triplet samples — some examples

of this line of research are: hard or semi-hard triplet min-

ing [27, 29, 43] or smart triplet mining [9]. Unfortunately,

these methods still present high computational complexity,

with a worst case training complexity of O(N2). Moreover,

these approaches also present the issue that the subset of se-

lected triplets may not be representative enough, increasing

the risk of overfitting such subsets. The mitigation of this

problem is generally achieved with the incorporation of an

additional loss term that optimizes a global classification to

the whole triplet subset [9, 14, 40] in order to regularize the

training process.

Another idea explored in the field is the ad-hoc lineariza-

tion of the triplet loss [7, 32, 42, 45], consisting of the

use of auxiliary class centroids. The training process con-

sists of two alternating steps: 1) an optimization function

that generally pulls embeddings towards their class centroid

and pushes embeddings away from all other class centroids

(hence, O(NC)); and 2) an optimization of the class cen-

troids using the whole training set after the processing of

each mini-batch (hence, O(N ×N/B), where B represents

the number of samples in each mini-batch). Therefore, a

naı̈ve implementation of this method has run-time complex-

ity proportional to O(N2).
In this paper, we provide a solid theoretical background

that fully justifies the linearization of the triplet loss, pro-

viding a tight upper bound to be used in the DML train-

ing process, which relies on the use of class centroids. In

particular, our theory shows that the proposed upper-bound

differs from the triplet loss by a value that tends to zero

if the distances between centroids are large and these dis-

tances are similar to each other, and as the training process

progresses. Therefore, our theory guarantees that a mini-

mization of the upper bound is also a minimization of the

triplet loss. Furthermore, we derive a training algorithm

that no longer requires an optimization of the class cen-

troids, which means that our method is the first approach

in the field that guarantees a linear run-time complexity for

the triplet loss approximation. Figure 1 motivates our work.

We show empirically that the DML training using our pro-

posed loss function is one order of magnitude faster than

the training of recently proposed triplet loss based methods.

In addition, we show that the models trained with our pro-

posed loss produces competitive retrieval accuracy results

on benchmark datasets (CUB-200-2011 and CAR196).

2. Related Work

Classification loss. It has been shown that deep networks

that are trained for the classification task with a softmax loss

function can be used to produce useful deep feature embed-

dings. In particular, in [1, 26] the authors showed that the

features extracted from one of the last layers of the deep

classification models [13, 31] can be used for new classi-

fication tasks, involving classes not used for training. In

addition, the run-time training complexity is quite efficient:

O(NC), where N and C < N represent the number of

training samples and number of classes, respectively. How-

ever, these approaches rely on cross-entropy loss that tries

to pull samples over the classification boundary for the class

of that sample, disregarding two important points in DML:

1) how close the point is to the class centroid; and 2) how

far the sample is from other class centroids (assuming that a

class centroid can be defined to be at the centre of the clas-

sification volume for each class in the embedding space).

Current evidence in the field shows that not explicitly ad-

dressing these two issues made these approaches not attrac-

tive for DML, particularly in regards to the classification

accuracy for classes not used for training.

Pairwise loss. One approach, explored in [25, 29] em-

ploys a siamese model trained with a pairwise loss. One of

the most studied pairwise losses is the contrastive loss [3],

which minimizes the distance between pairs of training

samples belonging to same class (i.e., positive pairs) and

maximizes the distance between pairs of training samples

from different classes (i.e., negative pairs) as long as this

“negative distance” is smaller than a margin. There are few

issues associated with this approach. Firstly, the run-time

training complexity is O(N2), which makes this approach

computationally challenging for most modern datasets. To

mitigate this challenge, mining strategies have been pro-

posed to select a subset of the original O(N2) pairwise

samples. Such mining strategies focus on selecting pairs

of samples that are considered to be hard to classify by the

current model. For instance, Simo-Serra et al. [29] proposed

a method that samples positive pairs and sorts them in de-

scending order with respect to the distance between the two

samples in the embedding space. A similar approach is ap-

plied for negative pairs, but the sorting is in ascending or-

der. Then, the top pairs in both lists are used as the train-

ing pairs. The second issue is that the margin parameter is

not easy to tune because the distances between samples can

change significantly during the training process. Another

issue is the fact that the arbitrary way of sampling pairs of

samples described above cannot guarantee that the selected

pairs are the most informative to train the model. The final

issue is that the optimization of the positive pairs is inde-

pendent from the negative pairs, but the optimization should

force the distance between positive pairs to be smaller than

negative pairs.

Triplet loss. The triplet loss addresses the last issue men-

tioned above [27, 9, 24], and it is defined based on three

data points: an anchor point, a positive point (i.e., a point

10405



belonging to the same class as the anchor), and a negative

point (i.e., a point from a different class of the anchor). The

loss will force the positive pair distance plus a margin to

be smaller than the negative pair distance. However, simi-

larly to pairwise loss, setting the margin in the triplet loss

requires careful tuning. Furthermore, and also similarly

to the pairwise loss, the training complexity is quite high

with O(N3/C), hence several triplet mining strategies have

been proposed. For instance, in [27], the authors proposed a

“semi-hard” criterion, where a triplet is selected if the nega-

tive distance is small (i.e., within the margin) but larger than

the positive distance — this approach reduces the training

complexity to O(N3/CM2), where M < N represents the

number of mini-batches used for training. In [9], the authors

proposed to use fast approximate nearest neighbor search

for quickly identifying informative (hard) triplets for train-

ing, reducing the training complexity to O(N2). In [21],

the mining is replaced by the use of P < N proxies, where

a triplet is re-defined to be an anchor point, a similar and

a dissimilar proxy – this reduces the training complexity to

O(NP 2). Movshovitz et al. [21] show that this loss com-

puted with proxies represents an upper bound to the orig-

inal triplet loss, where this bound gets closer to the origi-

nal triplet loss as P → N , which increases the complexity

back to O(N3). It is worth noting that the idea of using

proxies and learning the embedding such as minimizing the

distances between samples to their proxies has been inves-

tigated in [23]. However, different from [21] which is a

DML approach and is expected to capture the nonlinearity

between samples, thanks to the power of the deep model,

in [23] the authors used precomputed features, and to cap-

ture the nonlinearity, they relied on kernelization. We note

that the approach [21] has a non-linear term that makes

it more complex than the O(NC) complexity of our ap-

proach, for C ≈ P , which is usually the case. Moreover,

the approach [21] also requires the optimization of the num-

ber and locations of proxies [21] during training, while our

approach relies on a set of predefined and fixed C centroids.

Other losses. In [14] the authors proposed a global loss

function that uses the first and second order statistics of

sample distance distribution in the embedding space to al-

low for robust training of triplet network, but the complex-

ity is still O(N3). Ustinova and Lempitsky [40] proposed a

histogram loss function that is computed by estimating two

distributions of similarities for positive and negative pairs.

Based on the estimated distributions, the loss will compute

the probability of a positive pair to have a lower similar-

ity score than a negative pair, where the training complex-

ity is O(N2). In [34] the authors proposed a loss which

optimizes a global clustering metric (i.e., normalized mu-

tual information). This loss ensures that the score of the

ground truth clustering assignment is higher than the score

of any other clustering assignment – this method has com-

plexity O(NY 3), where Y < N represents the number of

clusters. Similarly to [21], this approach has a non-linear

term w.r.t. number of clusters, that makes it more complex

than the O(NC) complexity of our approach. In addition,

this method also requires to optimize the locations of clus-

ters during training, while our approach relies on a set of

predefined and fixed C centroids. In [33], the authors pro-

posed the N-pair loss which generalizes the triplet loss by

allowing joint comparison among more than one negative

example – the complexity of this method is again O(N3).
More recent works [22, 44] proposed the use of ensemble

classifiers [22] and new similarity metrics [44] which can in

principle explore the O(NC) training loss that we propose.

A relevant alternative method recently proposed in the field

is related to an ad-hoc linearization of the triple loss that,

differently from our approach, has not been theoretically

justified [7, 32, 42, 45]. In addition, even though these ap-

proaches rely on a loss function that has run-time complex-

ity O(NC), they also need to run an expensive centroid op-

timization step after processing each mini-batch, which has

complexity O(N). Assuming that a mini-batch has N/B
samples, then the run-time complexity of this approach is

O(NC+N2/B). Most of the research developed for these

methods are centered on the mitigation of this O(N2) com-

plexity involved in the class centroid optimization. Interest-

ingly, this step is absent from our proposed approach, which

means that our method is the only approach in the field that

is guaranteed to have linear run-time complexity.

3. Discriminative Loss

Assume that the training set is represented by T =
{Ii, yi}Ni=1 in which Ii ∈ R

H×W and yi ∈ {1, ..., C} de-

note the training image and its class label, respectively. Let

xi ∈ R
D be the feature embedding of Ii, obtained from

the deep learning model x = f(I, θ). To control the mag-

nitude of distance between feature embeddings, we assume

that ‖x‖ = 1 (i.e., all points lie on a unit hypersphere1).

From an implementation point of view, this assumption can

be guaranteed with the use of a normalization layer. Fur-

thermore, without loss of generalization, let us assume that

the dimension of the embedding space equals the number of

classes, i.e., D = C. Note that if D 6= C we can enforce

this assumption by adding a fully connected layer to project

features from D dimensions to C dimensions.

3.1. Discriminative Loss: Upper Bound on the
Triplet Loss

In order to avoid the cubic complexity (in the number

of training points) of the triplet loss and to avoid the com-

plicated hard-negative mining strategies, we propose a new

1We use l2 distance in this work.

10406



loss function that has linear complexity on N , but inherits

the property of triplet loss: feature embeddings from the

same classes are pulled together, while feature embeddings

from different classes are pushed apart.

Assume that we have a set S = {(i, j)|yi =
yj , }i,j∈{1,...,N} representing pairs of images Ii and Ij be-

longing to the same class. Let us start with a simplified form

of the triplet loss:

Lt(T ,S) =
∑

(i,j)∈S,(i,k)/∈S,i,j,k∈{1,...,N}

ℓt(xi,xj ,xk),

(1)

where ℓt is defined as

ℓt(xi,xj ,xk) = ‖xi − xj‖ − ‖xi − xk‖ . (2)

Let C = {cm}Cm=1, where each cm ∈ R
D is an auxiliary

vector in the embedding space that can be seen as the “cen-

troid” for the mth class (note that as the centroids represent

classes in the embedding space, they should be defined in

the same domain with the embedding features, i.e., on the

surface of the unit hypersphere). According to the triangle

inequality, we have

‖xi − xj‖ ≤ ‖xi − cyi
‖+ ‖xj − cyi

‖ , (3)

and

‖xi − xk‖ ≥ ‖xi − cyk
‖ − ‖xk − cyk

‖ . (4)

From (3) and (4) we achieve the upper bound for ℓt as fol-

lows:

ℓt(xi,xj ,xk) ≤ ℓd(xi,xj ,xk), (5)

where

ℓd(xi,xj ,xk) = ‖xi − cyi
‖ − ‖xi − cyk

‖
+ ‖xj − cyi

‖+ ‖xk − cyk
‖ (6)

From (1) and (5), we have

Lt(T ,S) ≤
∑

(i,j)∈S,(i,k)/∈S,i,j,k∈{1,...,N}

ℓd(xi,xj ,xk).

(7)

The central idea in the paper is to minimize the upper bound

defined in (7). Assume that we have a balanced training

problem, where the number of samples in each class is equal

(for the imbalanced training, this assumption can be en-

forced by data augmentation), after some algebraic manip-

ulations, the RHS of (7) is equal to Ld(T ,S) which is our

proposed discriminative loss

Ld(T ,S) = G

N
∑

i=1



‖xi − cyi‖ −
1

3(C − 1)

C
∑

m=1,m 6=yi

‖xi − cm‖





(8)

where the constant G = 3(C − 1)
(

N
C − 1

)

N
C .

Our goal is to minimize Ld(T ,S) which is a discrimi-

native loss that simultaneously pulls samples from the same

class close to their centroid and pushes samples far from

centroids of different classes. A nice property of Ld(T ,S)
is that it is not arbitrary far from Lt(T ,S). The difference

between these two losses is well bounded by Lemma 3.1.

Lemma 3.1. Assuming that ‖xi − cyi
‖ ≤ ǫ/2 (with ǫ ≥ 0),

1 ≤ i ≤ N . Let κmin = min1≤m,n≤C,m 6=n ‖cm − cn‖
and κmax = max1≤m,n≤C,m 6=n ‖cm − cn‖, then

0 ≤ Ld(T ,S) − Lt(T ,S) ≤ H (κmax − κmin + 3ǫ),
where the constant H =

(

N
C − 1

)

N
(

N − N
C

)

is the num-

ber of all possible triplets.

Proof. The proof is provided in the Appendix.

From Lemma 3.1, Ld will approach Lt when ǫ → 0
and κmin → κmax. (i) Note from (8) that ǫ will decrease

because the discriminative loss pulls samples from the same

class close to their corresponding centroid. (ii) In addition,

we can enforce that κmin ≈ κmax by fixing the centroids

before the training starts, such that they are as far as possible

from each other and the distances between them are similar.

Therefore, with the observations (i) and (ii), we can expect

that ǫ → 0 and κmax − κmin → 0, which implies a tight

bound from Lemma 3.1. We discuss methods to generate

centroid locations below.

3.2. Centroid Generation

From the observations above, we should have centroids

on the surface of the unit hypersphere such that they are as

far as possible from each other and the distances between

them are as similar as possible. Mathematically, we want

to maximize the minimum distance between C centroids –

this problem is known as the Tammes problem [38]. Let

F be the surface of the hypersphere, we want to solve the

following optimization:

min
{cm}C

m=1

−w

s.t. w ≤ ‖cm − cn‖ , 1 ≤ m,n ≤ C,m 6= n (9)

cm ∈ F , m = 1, ..., C

Unfortunately, it is not possible to solve (9) analytically in

general [15]. We may solve it as an optimization problem.

However, this optimization will involve O(C2) constraints,

hence the problem is still computationally hard to solve for

large C [11]. To overcome this challenge, we propose two

heuristics to generate the centroids.

One-hot centroids. Inspired by the softmax loss, we de-

fine the centroids as vertices of a convex polyhedron in

which each vertex is a one-hot vector, i.e., the centroid of

the mth class is the standard basis vector in mth direction

of the Cartesian coordinate system. With this configuration,

each centroid is orthogonal to each other and the distance

between each pair of centroids is
√
2.

10407



K-means centroids. We first uniformly generate a large

set of points on the surface of the unit hypersphere. We then

run K-means clustering to group points into C clusters. The

unit normalized cluster centroids will be used as centroids

{cm}Cm=1. Note that the process of uniformly generating

points on the surface of the unit hypersphere is not difficult.

According to [19], for each point, we generate each of its

dimension independently with the standard normal distri-

bution. Then we unit normalize the point to project it to the

surface of the hypersphere.

3.3. Discussion on the Discriminative Loss

Training complexity. Table 1 compares the asymptotic

training complexity of several DML methods, including our

proposed discriminative loss (Discriminative) in terms of

the number of training samples N , number of mini-batches

M , size of mini-batch B, number of classes C, number of

proxies P [21] and number of clusters Y [34]. It is clear

from (8) that our proposed discriminative loss has linear

run-time complexity (in terms of both N and C), analogous

to the softmax loss [1]. The methods that optimize an ap-

proximate triplet loss, which have linear complexity in N
are represented by “centroids” [7, 32, 42, 45] in Table 1,

but note in the table that the optimization of the centroids

must be performed after processing each mini-batch, which

increases the complexity of the approach to be square in

N . Most of the research in the “centroids” approach goes

into the reduction of the complexity in the optimization of

class centroids with the design of poor, but computationally

cheap, approximate methods. For example, in [45], instead

of updating the centroids with respect to the entire training

set, the authors perform the update based on mini-batch.

This leads to a linear complexity in N . However by updat-

ing centroids based on mini-batch, a small batch size (e.g.

due to a large network structure, which is likely) may cause

a poor approximation of the real centroids. In the worst

case, when not all classes are present in a batch, some cen-

troids are even not be updated. Interestingly, the centroid

update step is absent from our proposed approach.

There are other DML methods that are linear in N :

clustering [34] with O(NY 3) and triplet+proxy [21] with

O(NP 2). There are two advantages of our approach com-

pared to these two methods in terms of training complexity:

1) our discriminative loss is linear not only in terms of the

dominant variable N , but also with respect to the auxiliary

variable C < N (where in general C ≈ P, Y ); and 2) in our

work, the number of centroids and their positions are fixed

before the training process starts (as explained in Sec. 3.2),

hence there is no need to optimize the number and positions

of centroids during training — this contrasts with the fact

that the number and positions of clusters and proxies need

to be optimized in [34] and [21].

Softmax [1] Pair-naı̈ve Trip.-naı̈ve Trip.-hard [27]

O(NC) O(N2) O(N3/C) O(N3/(M2C))
Trip.-smart [9] Trip.-cluster [34] Trip.-proxy [21] Centroids [7, 32, 42, 45]

O(N2) O(NY 3) O(NP 2) O(NC +N2/B)
Discriminative

O(NC)

Table 1. Run-time training complexity of various DML approaches

and our proposed discriminative loss in terms of the number of

training samples N , number of mini-batches M , size of mini-

batch B, number of classes C, number of proxies P [21] and num-

ber of clusters Y [34].

Simplicity. The discriminative loss only involves the

calculation of Euclidean distance between the embedding

features and the centroids. Hence it is straightforward to

implement and integrate into any deep learning models to

be trained with the standard back-propagation. Further-

more, different from most of the traditional DML losses

such as pairwise loss, triplet loss, and their improved ver-

sions [27, 33, 14, 21, 9], the discriminative loss does not

require setting margins, mining triplets, and optimizing the

number and locations of centroids during training. This re-

duction in the number of hyper-parameters makes the train-

ing simpler and improves the performance (compared to

standard triplet methods), as showed in the experiments.

4. Experiments

4.1. Dataset and Evaluation Metric

We conduct our experiments on two public benchmark

datasets that are commonly used to evaluate DML meth-

ods, where we follow the standard experimental protocol

for both datasets [9, 33, 34, 35]. The CUB-200-2011

dataset [41] contains 200 species of birds with 11,788 im-

ages, where the first 100 species with 5,864 images are used

for training and the remaining 100 species with 5,924 im-

ages are used for testing. The CAR196 dataset [12] con-

tains 196 car classes with 16,185 images, where the first 98

classes with 8,054 images are used for training and the re-

maining 98 classes with 8,131 images are used for testing.

We report the K nearest neighbor retrieval accuracy using

the Recall@K metric. We also report the clustering quality

using the normalized mutual information (NMI) score [18].

4.2. Network Architecture and Implementation De­
tails

For all experiments in Sections 4.3 and 4.4, we initialize

the network with the pre-trained GoogLeNet [36] – this is

also a standard practice in the comparison between DML

approaches [9, 33, 34, 35]. We then add two randomly

initialized fully connected layers. The first layer has 256
nodes, which is the commonly used embedding dimension

10408



in previous works, and the second layer has C nodes. We

train the network for a maximum of 40 epochs. For the last

two layers, we start with an initial learning rate of 0.1 and

gradually decrease it by a factor of 2 every 5 epochs. Fol-

lowing [35], all GoogLeNet layers are fine-tuned with the

learning rate that is ten times smaller than the learning rate

of the last two layers. The weight decay and the batch size

are set to 0.0005 and 128, respectively in all experiments.

As normally done in previous works, random cropping and

random horizontal flipping are used when training.

4.3. Ablation Study

Effect of features from different layers. In this exper-

iment we evaluate the embedding features from the last

two fully connected layers with dimensions 256 and C
(C = 100 for CUB-200-2011 and C = 98 for CAR196).

These results are based on the one-hot centroid generation

strategy, but note that the same evidence was produced with

the K-means centroid generation. The results in Table 2

show that the features from the second to last layer produce

better generalization for unseen classes than those from the

last layer. The possible reason is that the features from the

last layer may be too specific to the set of training classes.

Hence for tasks on unseen classes, the features from the sec-

ond to last layer produce better performance. The same ob-

servation is also found in [1] (although Razavian et al. [1]

experimented with AlexNet [13]). Hereafter, we only use

the features from the second to last fully connected layer

for the remaining experiments. Note that this also allows

for a fair comparison between our work and previous ap-

proaches in terms of feature extraction complexity because

these other approaches also use the feature embeddings ex-

tracted from the same layer.

Effect of centroid generation method. In this section,

we evaluate the two proposed centroid generation methods,

explained in Sec. 3.2, where the hypersphere for the K-

means approach has C dimensions. The comparative per-

formances and statistics of distances between centroids are

shown in Table 3. The results show that there is not a sig-

nificant difference in performance between the two centroid

generation methods. In the worst case, K-means is 1.5%

worse than one-hot on CAR196 dataset while on CUB-200-

2011 dataset, these two methods are comparable. Hereafter,

we only use one-hot centroid generation strategy for all re-

maining experiments.

According to Table 3, we note that the difference be-

tween the minimum and the maximum distances between

centroids is quite small for K-means and 0 for the one-hot

centroid generation methods. This is an important fact for

the triplet loss bound in the Lemma 3.1, where the smaller

this difference, the tighter the bound to the triplet loss.

4.4. Comparison with Other Methods

We compare our method to the baseline DML methods

that have reported results on the standard datasets CUB-

200-2011 and CAR196: the softmax loss, the triplet loss

with semi-hard negative mining [27], the lifted structured

loss [35], the N-pair [33] loss, the clustering loss [34],

the triplet combined with global loss [14], the histogram

loss [40], the triplet with proxies [21] loss, triplet with

smart mining [9] loss which uses the fast nearest neighbor

search for mining triplets.

Tables 4 and 5 show the recall and NMI scores for the

baseline methods and our approach (Discriminative). The

results on Tables 4 and 5 show that for the NMI metric,

most triplet-based methods achieve comparable results, ex-

cept for Triplet+proxy [21] which has a 5.2% gain over the

second best Discriminative on the CAR196 dataset. Un-

der Recall@K metric, the Discriminative improves over

most of methods that are based on triplet, (e.g., Semi-

hard [27]) or generalization of triplet (e.g., N-pair [33],

Triplet+Global [14]). Compared to the softmax loss, al-

though both discriminative loss and softmax loss have the

same complexity, Discriminative improves over Softmax

by a large margin for all measures on both datasets. This

suggests that the discriminative loss is more suitable for

DML than the softmax loss.

Discriminative also compares favorably with the recent

triplet+smart mining method [9], i.e., on the CAR196

dataset, Discriminative has 3.6% improvement in R@1

over the triplet+smart mining. Compared to the recent

Triplet+proxy on the CUB-200-2011 dataset, Discrimina-

tive shows better results at all ranks of K, where larger

improvements are observed at larger K, i.e., Discrimina-

tive has 10.4% (14.4% relative) improvement in R@8 over

Triplet+proxy. On the CAR196 dataset, Triplet+proxy

outperforms the Discriminative at low values of K, i.e.,

Triplet+proxy has 4.9% (7.2% relative) higher accuracy

than Discriminative at R@1. However, for increas-

ing values of K, the improvement of Triplet+proxy de-

creases, and Discriminative achieves a higher accuracy

than Triplet+proxy at R@8.

We are aware that there are other triplet-based meth-

ods that achieve better performance on CUB and CAR196

datasets [5, 16, 22, 44, 48]. Table 6 presents their results.

However, it is important to note that although these meth-

ods use the triplet loss, they rely on additional techniques to

boost their accuracy. For instance, Yuan et al. [48] used

cascaded embedding to ensemble a set of models; Opitz

et al. [22] relied on boosting to combine different learners;

Wang et al. [44] combined angular loss with N-pair loss [33]

to boost performance; Duan et al. [5] and Lin et al. [16] used

generative adversarial network (GAN) to generate synthetic

training samples. We note that these techniques can in prin-

ciple replace their triplet loss by our discriminative loss to

10409



CUB-200-2011 CAR196

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

Last layer 49.49 62.32 72.52 81.57 65.32 76.44 84.10 89.84

Second to last layer 51.43 64.23 74.31 82.83 68.31 78.21 85.22 91.18

Table 2. Performance of embedding features from the last two layers.

CUB-200-2011

R@1 R@2 R@4 R@8 min dist. max dist. mean dist. std dist.

one-hot cent. 51.43 64.23 74.31 82.83
√
2

√
2

√
2 0

K-means cent. 50.75 63.54 73.26 82.36 1.21 1.63 1.418 0.061

CAR196

one-hot cent. 68.31 78.21 85.22 91.18
√
2

√
2

√
2 0

K-means cent. 66.93 76.74 83.80 90.37 1.18 1.65 1.416 0.066

Table 3. Performance of two different centroid generation strategies and the statistics of distances (dist.) between centroids.

NMI R@1 R@2 R@4 R@8

SoftMax 57.21 48.34 60.16 71.21 80.30

Semi-hard [27] 55.38 42.59 55.03 66.44 77.23

Lifted structure [35] 56.50 43.57 56.55 68.59 79.63

N-pair [33] 57.24 45.37 58.41 69.51 79.49

Triplet+Global [14] 58.61 49.04 60.97 72.33 81.85

Clustering [34] 59.23 48.18 61.44 71.83 81.92

Triplet+smart mining [9] 59.90 49.78 62.34 74.05 83.31

Triplet+proxy [21] 59.53 49.21 61.90 67.90 72.40

Histogram [40] - 50.26 61.91 72.63 82.36

Discriminative 59.92 51.43 64.23 74.31 82.83

Table 4. Clustering and Recall performance on the CUB-200-2011 dataset.

NMI R@1 R@2 R@4 R@8

SoftMax 58.38 62.39 72.96 80.86 87.37

Semi-hard [27] 53.35 51.54 63.78 73.52 82.41

Lifted structure [35] 56.88 52.98 65.70 76.01 84.27

N-pair [33] 57.79 53.90 66.76 77.75 86.35

Triplet+Global [14] 58.20 61.41 72.51 81.75 88.39

Clustering [34] 59.04 58.11 70.64 80.27 87.81

Triplet+smart mining [9] 59.50 64.65 76.20 84.23 90.19

Triplet+proxy [21] 64.90 73.22 82.42 86.36 88.68

Histogram [40] - 54.34 66.72 77.22 85.17

Discriminative 59.71 68.31 78.21 85.22 91.18

Table 5. Clustering and Recall performance on the CAR196 dataset.

improve training efficiency. However, this is out of scope of

this paper, but we consider this to be future work.

Training time complexity. To demonstrate the efficiency

of the proposed method, we also compare the empirical

training time of the proposed discriminative loss to other

triplet-based methods, i.e., Semi-hard [27] and triplet with

smart mining [9]. All methods were tested on the same ma-

chine and we use the default configurations of [27] and [9].

[48] [22] [44] [5] [16] Discrim.

CUB-200-2011 53.6 55.3 54.7 52.7 52.7 51.4

CAR196 73.7 78.0 71.4 75.1 82.0 68.3

Table 6. R@1 comparison to the state of the art on CUB-200-

2011 and CAR196 datasets. Although all these methods relied

on the triplet loss, they also use additional techniques specifically

designed to boost classification accuracy.

10410



Semi-hard [27] Triplet Discrim.

+smart mining [9]

CUB-200-2011 660 680 54

CAR196 1200 1240 73

Table 7. Training time in minutes between different methods. The

CUB-200-2011 dataset consists of 5864 training images with 100

classes, and the CAR196 dataset consists of 8054 training images

with 98 classes.

NMI R@1 R@2 R@4 R@8

CUB-200-2011 61.49 57.74 68.46 78.07 85.40

CAR196 62.14 78.15 85.70 90.71 94.21

Table 8. Clustering and recall performance when using VGG-16

network with discriminative loss.

The results in Table 7 show that the training time of the

proposed methods (Discrim.) is around 13 and 17 times

faster than the recent state-of-the-art triplet with smart

mining [9] on CUB and CAR196 datasets, respectively.

The results also confirm that our loss scales linearly w.r.t.

number of training images and number of classes, i.e.,

(5864× 100)/(8054× 98) ≈ 54/73.

4.5. Improving with Different Network Architec­
tures

As presented in Section 3.3, the proposed loss is simple

and it is easy to integrate into any deep learning models. To

prove the flexibility of the proposed loss, in this section we

experiment with the VGG-16 network [31]. Specifically,

we apply a max-pooling on the last convolutional layer of

VGG to produce a 512-D feature representation. After that,

similarly to GoogleNet in Section 4.2, we add two fully con-

nected layers whose dimensions are 256 and C. The outputs

of the second to last layer are used as embedding features.

Table 8 presents the results when using our discriminative

loss with VGG network. From Tables 4, 5 and 8, we can

see that using discriminative loss with VGG network sig-

nificantly boosts the performance on both datasets, e.g., at

R@1, it improves over GoogleNet 6.3% and 9.8% for CUB-

200-2011 and CAR196, respectively.

We note that using other advance network architec-

tures such as Inception [37], ResNet [10] rather than

GoogleNet [36], VGG [31], may give performance boost

as showed in recent works [6, 17, 47]. However, that is not

the focus of this paper. Our work targets on developing a

linear complexity loss that approximates the triplet loss but

offers faster training process with a similar accuracy to the

triplet loss.

5. Conclusion

In this paper we propose the first deep distance metric

learning method that approximates the triplet loss and is

guaranteed to have linear training complexity. Our pro-

posed discriminative loss is based on an upper bound to

the triplet loss, and we theoretically show that this bound

is tight depending on the distribution of class centroids. We

propose two methods to generate class centroids that en-

force that their distribution guarantees the tightness of the

bound. The experiments on two benchmark datasets show

that in terms of retrieval accuracy, the proposed method is

competitive while its training time is one order of magni-

tude faster than triplet-based methods. Consequently, this

paper proposes the most efficient DML approach in the

field, with competitive DML retrieval performance.

Acknowledgments

This work was partially supported by the Australian Re-

search Council project (DP180103232).

Appendix: Proof for the Lemma 3.1

Proof. The lower bound, i.e., 0 ≤ Ld(T ,S) − Lt(T ,S) is

straightforward by (5). Here we prove the upper bound.

By the assumption, for any xi and its centroid cyi
we

have

‖xi − cyi
‖ ≤ ǫ/2 (10)

By using the triangle inequality and (10), for any xi and the

centroids cyi
, cyk

where cyk
6= cyi

, we have

‖xi − cyk
‖ ≥ ‖cyi

− cyk
‖ − ‖xi − cyi

‖ ≥ κmin − ǫ/2
(11)

From (6), (10), (11), for any triplet (xi,xj ,xk) we have

ℓd ≤ −κmin + 2ǫ (12)

By using the norm property and (10), for any pair of xi

and xk that are not same class, we have

‖xi − xk‖ = ‖xi − cyi
+ cyi

− cyk
+ cyk

− xk‖
≤ κmax + ǫ (13)

From (2), (13), for any triplet (xi,xj ,xk) we have

− ℓt ≤ κmax + ǫ (14)

The upper bound for Ld − Lt is achieved by adding (14)

and (12) over all possible triplets.

References

[1] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and

S. Carlsson. From generic to specific deep representations

for visual recognition. In CVPR Workshops, 2015. 2, 5, 6

[2] A. Bendale and T. Boult. Towards open world recognition.

In CVPR, 2015. 1

[3] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.

In CVPR, 2005. 2

10411



[4] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and

T. Brox. Discriminative unsupervised feature learning with

convolutional neural networks. In NIPS, 2014. 1

[5] Y. Duan, W. Zheng, X. Lin, J. Lu, and J. Zhou. Deep adver-

sarial metric learning. In CVPR, 2018. 6, 7

[6] W. Ge. Deep metric learning with hierarchical triplet loss. In

ECCV, 2018. 8

[7] S. Guerriero, B. Caputo, and T. Mensink. Deepncm: Deep

nearest class mean classifiers. In ICLR Workshop, 2018. 1,

2, 3, 5

[8] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.

Matchnet: Unifying feature and metric learning for patch-

based matching. In CVPR, 2015. 1

[9] B. Harwood, B. G. V. Kumar, G. Carneiro, I. D. Reid, and

T. Drummond. Smart mining for deep metric learning. In

ICCV, 2017. 1, 2, 3, 5, 6, 7, 8

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 8

[11] H. Huang, P. M. Pardalos, and Z. Shen. A point balance

algorithm for the spherical code problem. Journal of Global

Optimization, 19(4):329–344, 2001. 4

[12] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object rep-

resentations for fine-grained categorization. In ICCV Work-

shops, 2013. 5

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 2, 6

[14] B. G. V. Kumar, G. Carneiro, and I. Reid. Learning local im-

age descriptors with deep siamese and triplet convolutional

networks by minimising global loss functions. In CVPR,

2016. 1, 2, 3, 5, 6, 7

[15] P. Leopardi. Distributing points on the sphere: Partitions,

separation, quadrature and energy. PhD thesis, School of

Mathematics and Statistics, the University of New South

Wales, 2006. 4

[16] X. Lin, Y. Duan, Q. Dong, J. Lu, and J. Zhou. Deep varia-

tional metric learning. In ECCV, 2018. 6, 7

[17] R. Manmatha, C. Wu, A. J. Smola, and P. Krähenbühl. Sam-

pling matters in deep embedding learning. In ICCV, 2017.

8

[18] C. D. Manning, P. Raghavan, and H. Schütze. Introduction

to Information Retrieval. Cambridge University Press, 2008.

5

[19] G. Marsaglia. Choosing a point from the surface of a sphere.

The Annals of Mathematical Statistics, 43(2):645–646, 1972.

5

[20] J. Masci, D. Migliore, M. M. Bronstein, and J. Schmidhuber.

Descriptor learning for omnidirectional image matching. In

Registration and Recognition in Images and Videos, pages

49–62. Springer, 2014. 1

[21] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and

S. Singh. No fuss distance metric learning using proxies. In

ICCV, 2017. 3, 5, 6, 7

[22] M. Opitz, G. Waltner, H. Possegger, and H. Bischof. Bier-

boosting independent embeddings robustly. In ICCV, 2017.

3, 6, 7

[23] M. Perrot and A. Habrard. Regressive virtual metric learning.

In NIPS, 2015. 3

[24] Q. Qian, R. Jin, S. Zhu, and Y. Lin. Fine-grained visual cat-

egorization via multi-stage metric learning. In CVPR, 2015.

2

[25] F. Radenovic, G. Tolias, and O. Chum. CNN image retrieval

learns from bow: Unsupervised fine-tuning with hard exam-

ples. In ECCV, 2016. 2

[26] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carls-

son. CNN features off-the-shelf: An astounding baseline for

recognition. In CVPR Workshops, 2014. 2

[27] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In CVPR,

2015. 2, 3, 5, 6, 7, 8

[28] A. Shrivastava, A. Gupta, and R. Girshick. Training region-

based object detectors with online hard example mining. In

CVPR, 2016. 1

[29] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and

F. Moreno-Noguer. Discriminative learning of deep convo-

lutional feature point descriptors. In ICCV, 2015. 1, 2

[30] K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local

feature descriptors using convex optimisation. TPAMI, 2014.

1

[31] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. CoRR, 2014. 2,

8

[32] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks

for few-shot learning. In NIPS, 2017. 1, 2, 3, 5

[33] K. Sohn. Improved deep metric learning with multi-class

n-pair loss objective. In NIPS, 2016. 3, 5, 6, 7

[34] H. O. Song, S. Jegelka, V. Rathod, and K. Murphy. Deep

metric learning via facility location. In CVPR, 2017. 3, 5, 6,

7

[35] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep

metric learning via lifted structured feature embedding. In

CVPR, 2016. 1, 5, 6, 7

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 5, 8

[37] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

CVPR, 2016. 8

[38] P. M. L. Tammes. On the origin of number and arrangements

of the places of exit on the surface of pollen-grains. Recueil

des Travaux Botaniques Néerlandais, pages 1–84, 1930. 4

[39] S. Thrun and L. Pratt. Learning to learn. Springer Science

& Business Media, 2012. 1

[40] E. Ustinova and V. S. Lempitsky. Learning deep embeddings

with histogram loss. In NIPS, 2016. 1, 2, 3, 6, 7

[41] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD birds-200-2011 dataset. 2011. 5

[42] F. Wang, X. Xiang, J. Cheng, and A. L. Yuille. Normface: L2

hypersphere embedding for face verification. In ACM MM,

2017. 1, 2, 3, 5

[43] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang,

J. Philbin, B. Chen, and Y. Wu. Learning fine-grained im-

age similarity with deep ranking. In CVPR, 2014. 2

10412



[44] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin. Deep metric

learning with angular loss. In ICCV, 2017. 3, 6, 7

[45] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative fea-

ture learning approach for deep face recognition. In ECCV,

2016. 1, 2, 3, 5

[46] P. Wohlhart and V. Lepetit. Learning descriptors for object

recognition and 3d pose estimation. In CVPR, 2015. 1

[47] H. Xuan, R. Souvenir, and R. Pless. Deep randomized en-

sembles for metric learning. In ECCV, 2018. 8

[48] Y. Yuan, K. Yang, and C. Zhang. Hard-aware deeply cas-

caded embedding. In ICCV, 2017. 6, 7

[49] S. Zagoruyko and N. Komodakis. Learning to compare im-

age patches via convolutional neural networks. In CVPR,

2015. 1

10413


