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Abstract

Sparse representation based methods have successfully

put forward a general framework for robust face recogni-

tion through linear reconstruction and sparsity constraints.

However, residual modeling in existing works is not yet ro-

bust enough when dealing with dense noise. In this paper,

we aim at recognizing identities from faces with varying

levels of noises of various forms such as occlusion, pixel

corruption, or disguise, and take improving the fitting abil-

ity of the error model as the key to addressing this prob-

lem. To fully capture the characteristics of different noises,

we propose a mixed model combining robust sparsity con-

straint and low-rank constraint, which can deal with ran-

dom errors and structured errors simultaneously. For ran-

dom noises such as pixel corruption, we adopt a Laplacian-

uniform mixed function for fitting the error distribution. For

structured errors like continuous occlusion or disguise, we

utilize robust nuclear norm to constrain the rank of the error

matrix. An effective iterative reweighted algorithm is then

developed to solve the proposed model. Comprehensive ex-

periments were conducted on several benchmark databases

for robust face recognition, and the overall results demon-

strate that our model is most robust against various kinds of

noises, when compared with state-of-the-art methods.

1. Introduction

As one of the most important problems in computer vi-

sion, face recognition has claimed its importance in iden-

tity verification and security surveillance. Numerous face

recognition methods have been proposed during the years.

At the early beginning, geometric information has been

used for face classification [3]. Then robust appearance

features such as LBP [41, 1], SIFT [4], and Gabor fea-

tures [29, 39] have been put forward successively. The ge-

ometric features or appearance features of facial images are

concerned with the contents of the outer appearance, while

ignoring the intrinsic attributes of the face. Subspace analy-

sis [9, 18, 3] can effectively excavate the intrinsic character-

istics of an image by mapping the original image to a lower

dimension space. However, when the face image contains

occlusion or illumination changes, the subspace projection

methods can easily learn non-face feature components, es-

pecially when facing a small sample problem.

Deep learning has been applied widely in recent years

due to its convenience and learning ability [14, 21]. Com-

pared to early shallow back-propagation models, deeper

models, such as DeepID2+ [30], DeepFace [31], VGG-

Face [27], and FaceNet [28], demonstrate largely improved

performance on face recognition. Although these methods

have achieved great success in practical applications, exist-

ing deep neural networks often rely on a large number of

training samples, and are not robust to inputs with anoma-

lous distributions.

Sparse coding has achieved great performance in many

fields, such as feature extraction, signal processing, image

denoising and pattern recognition. Its core idea is to repre-

sent a test sample as a sparse linear combination of train-

ing samples, so that the smallest reconstruction error can

be achieved using only those training samples of the same

class as the test sample [35]. Usually, a test face image is

denoted by a column vector y in sparse representation. Let

D ∈ R
m×n be a dictionary composed of n samples, each

column of which is a training face sample. The general ob-

jective of sparse coding can be formulated as

min
x

∑

j

ρ(ej) + λ‖x‖1 s.t. y −Dx = e (1)

where ej denotes the j-th component in the residual e. The

objective is composed of two parts, i.e., the penalty for the

reconstruction errors and the sparsity constraint for the rep-

resentation.

Among numerous face recognition methods, sparse rep-

resentation based methods have achieved great robustness

against various types of noises. Most of these methods

focus on finding reasonable penalty for the reconstruction

residual. Many experimental results show that sparse repre-
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sentation based methods have good robustness for dealing

with external interference, such as occlusion and illumina-

tion change [26, 19, 33]. By exploring the intrinsic charac-

teristics of the reconstruction errors, researchers have pro-

posed a number of more robust algorithms. Some focus on

the statistical analysis and others pay more attention to the

structural information.

However, the error image in more challenging situations

could be a complex integration that includes structured and

non-structured parts at the same time. In this paper, we aim

to provide a solution for face recognition with such compli-

cated errors, and a low-rank Laplacian-uniform mixed (LR-

LUM) model is proposed to tackle this problem. The main

contributions of this paper can be summarized as follows:

1. By inspecting the compositions and characteristics of

complex dense noises, we propose an LR-LUM model

which integrates both sparsity and low-rank constraints

for handling various types of noises simultaneously.

2. An iterative algorithm is developed to effectively ex-

cavate the discriminative ability and robustness of the

proposed model.

3. We evaluate the proposed joint model on several

representative face databases under various settings.

The overall experimental results demonstrate that our

method achieves the best robustness under many com-

plex circumstances.

2. Related Work

Since sparse representation classification (SRC) was

proposed and successfully applied to robust face recogni-

tion [35], many extended methods have emerged and made

their contributions. ESRC [7] extended SRC by construct-

ing an auxiliary dictionary to describe intra-class variations

and improve generalization. Deng et al. further developed

SLRC [8], which represents a test image as a superposition

of class centroids and intra-class differences. To improve

the robustness, He et al. [12] proposed maximum corren-

tropy criterion. In the later work [13], they tried to inte-

grate the error detection and error correction mechanism in-

to a unified additive or multiplicative half-quadratic (HQ)

framework. Inspired by robust regression theory, Yang et

al. proposed robust sparse coding (RSC) [37], looking for

a maximum likelihood estimation (MLE) solution for s-

parse representation. In a following work, they proposed

regularized robust coding (RRC) [40]. Assume that re-

construction errors ej and coding coefficients xi are i.i.d

with probability density functions f(ej) and h(xi), respec-

tively. Let ρ(ej) = − ln f(ej) and π(ej) = − lnh(ej).
RRC employs local quadratic approximation to minimize
∑m

j=1 ρ(yj −Djx) +
∑n

i=1 π(xi) (Dj is the j-th row in

D) and leads to an iteratively reweighted least square solu-

tion, in which the weights are calculated by

wt
j = ρ′(yj −Djx

t)/(yj −Djx
t) (2)

where ρ′ is the first derivative of ρ. The minimization of

such an objective function finally becomes ℓ2- or ℓ1-norm

regularized problem, denoted as RRC-L2 or RRC-L1.

To address partial occlusion, Liao et al. [23] proposed

an alignment-free approach based on multi-task multi-

keypoint feature descriptor. In [25, 35], block-wise sparse

representation has been demonstrated to be robust for oc-

clusion. Jia et al. [19] attempted to recover the occluded

part by the statistical law discovered from the training set.

The above methods stretch a two-dimensional face im-

age into a vector, which obviously ignores the structured

information of error images in the spatial domain useful

for further improving the robustness. Therefore, some re-

searchers proposed to exploit the structured information of

error images to enhance the ability of models for error de-

scription, by using, e.g., Markov random fields and struc-

tured sparsity. Inspired by structured sparsity theory, Jia

et al. [20] introduced structural information into SRC and

proposed the structured sparse representation classifier (SS-

RC). Face images suffering from continuous occlusion or il-

lumination change would result in approximately low-rank

error images through sparse reconstruction, as Zhang et al.

revealed in [42]. Thus the rank function is used to restrain

the structured characteristic of error images, as follows,

min
x

rank(E) s.t. E = TM (y −Dx) (3)

where TM (·) transforms a vector back into a 2D image. D-

ifferent from (1), the error image is represented as a matrix

here for rank computation. But rank minimization is an NP-

hard problem difficult to be optimized directly. Nuclear-

norm based matrix regression (NMR) [38] was proposed

to approximate a rank function and achieved great perfor-

mance. The nuclear norm of an input matrix, denoted as

||·||∗, is equal to the sum of all singular values of the matrix.

Compared to other methods relying on the structured infor-

mation of error images, NMR is more concise and effective,

which has attracted much attention in recent years. Howev-

er, nuclear norm is sensitive to large singular values, which

may increase the instability for face classification. Xie et

al. [36] proposed a robust NMR, which takes a weighted

form to enhance the approximation ability and guarantee an

optimal solution. The robust NMR can be formulated as

min
x

‖TM (y −Dx)‖w,∗ =
∑

i

ρ(di) · di (4)

where di is the i-th largest singular value of E = TM (y −
Dx). A weight function ρ(d) = d−κ is employed with a

regulating factor κ ≥ 0. When κ = 0, ||E||w,∗ is equal to

the regular nuclear-norm constraint ||E||
∗
.
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Figure 1. An example of a contaminated face image.

3. Our Proposed Method

3.1. LowRank LaplacianUniform Mixed Model

For robust face recognition, we aim to develop a method

capable of recognizing the identity of a face image contam-

inated by dense noises as shown in Fig. 1. Although dense

noises in real scenarios could be complex combinations in-

duced by different sources, they can be generally catego-

rized into two types according to the characteristics, i.e.,

unpredictable random noises such as random pixel corrup-

tion and structured noises such as continuous occlusion. To

handle errors induced by these two types of noises simulta-

neously, we construct an objective function as follows,

J(x) = αC1(e1) + (1− α)C2(e2) + β‖x‖1

s.t. y −Dx = e1 + e2 (5)

where C1(·) and C2(·) are penalty functions associated with

these two types of errors, respectively. For the structured er-

rors, e.g., that corresponding to the sunglasses in Fig. 1, we

can easily observe that the error matrix exhibits a low-rank

structure in comparison to the matrix size. We utilize the

robust nuclear norm proposed in [36] as a close relaxation

for the rank function, i.e., C1(·) is a robust nuclear norm

regularization term.

As for the random errors, the most significant charac-

teristic that we can exploit is the statistical distribution.

Specifically, different assumptions about the error distribu-

tion may lead to different constraints on the random errors.

Assume that random errors e
(i)
2 (i-th element in e2) are

i.i.d. with a probability density f(e
(i)
2 ), and let ρ(e

(i)
2 ) =

− ln(f(e
(i)
2 )). The MLE for e2 would be

C2(e2) =
∑

i

ρ
(

e
(i)
2

)

(6)

In order to better describe random errors in challenging sit-

uations, we adopt a Laplacian-uniform mixed (LUM) func-

tion for fitting the error distribution, which can be expressed

as

f(e
(i)
2 ) = α

(

exp(−|e
(i)
2 |/b) + c

)

(7)

where b > 0 corresponds to the scale of the Laplacian com-

ponent and c > 0 corresponds to a uniform distribution.

α > 0 is a distribution normalization factor.

The rationale behind this mixed distribution model

comes from a more in-depth analysis of the causes of re-

construction residuals. First, no matter how well a test face

can be reconstructed from the training set, there are bound

to be minor position shift, expression variations, and even

illumination changes between the original face and the re-

construction, which causes small coding residuals that take

place at random positions. Second, in worse conditions,

pixels at random positions might be corrupted to unpre-

dictable values with unknown characteristics. The LUM

model can appropriately fit such situation, with a Laplacian

function addressing the first case and a uniform distribution

addressing the latter case.

For a more intuitive demonstration, we computed the re-

construction residuals of an example face with 50% pixel

corruption. The empirical distribution curve of reconstruc-

tion residuals and other fitted distribution curves are shown

in Fig. 2. The peak around zero comes from inaccurate re-

construction on face position, pose, expression, etc., as dis-

cussed above. A higher peak around zero is fitted by the

LUM function for inclining to inlier pixels with small resid-

uals. And the long tail is caused by randomly corrupted out-

liers. We can see that the LUM function is able to describe

both characteristics well.
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Figure 2. The empirical distribution of the reconstruction errors

and different fitted distributions.

In order to optimize the C2(e2) term with the LUM prior,

we need to make a relaxation by preserving the first order

Taylor expansion of ρ(e
(i)
2 ), at the current estimation e

(i),t
2 ,

ρ(e
(i)
2 ) = ρ(|e

(i),t
2 |) + ρ′(|e

(i),t
2 |)(|e

(i)
2 | − |e

(i),t
2 |) (8)

Inserting (8) into (6), and removing constant terms, the C2

term becomes a reweighted ℓ1-norm constraint,

C2(e2) =
∑

i

|w(i),te
(i)
2 | = ‖We2‖1 (9)

where W is a diagonal matrix, with i-th diagonal element

w(i),t =
exp(−|e

(i),t
2 |/b)

exp(−|e
(i),t
2 |/b) + c

∝ ρ′(|e
(i),t
2 |) (10)
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After understanding the motivation of choosing the cor-

responding penalties for the two types of errors, we con-

struct the final objective function as follows,

min
x

α‖TM (e1)‖w,∗ + (1− α)‖We2‖1 + β‖x‖1

s.t. y −Dx = e1 + e2 (11)

where 0 < α < 1 is a weight for balancing the reweighted

ℓ1-norm penalty and the low-rank penalty corresponding to

the two types of residuals. β is the weight of the sparsity

penalty of coding coefficients.

The proposed model is denoted as low-rank Laplacian-

uniform mixed model (LR-LUM). It is different from pre-

vious mixed models proposed in [36, 17]. Iliadis et al. pro-

posed an objective function that utilized both sparsity and

low-rank constraints for error penalties [17]. However, their

model was designed against errors caused by occlusion, and

they assigned both constraints to the same type of errors in

their model. Moreover, they fitted the errors to a distribu-

tion based on a tailored loss function, rather than the LUM

function adopted in our model. Nuclear norm was used for

low-rank constraint rather than the robust (weighted) nucle-

ar norm. In [36], ℓ1-norm was utilized to penalize random

errors. However, as demonstrated in Fig. 2 and argued in

the above, the Laplacian distribution does not fit the ran-

dom errors as well as the LUM function in practice.

3.2. Optimization

Now that we have the final objective function. We de-

velop an algorithm to optimize it in the following. Let

B = [ 1
β
WD, 1

1−α
I], c = [βx; (1 − α)We2], then the

minimization problem in (11) becomes

min
c, e1

α‖TM (e1)‖w,∗ + ‖c‖1

s.t. Wy = Bc+We1 (12)

To solve the above optimization problem, we first make an

equivalent transformation by introducing an auxiliary vari-

able d, to make this complex problem able to be decom-

posed into several easier subproblems. Let ẽ2 = We2.

Then (12) can be rewritten as

min
c, e1, ẽ2

α‖TM (d)‖w,∗ + (1− α)‖ẽ2‖1 + β‖x‖1

s.t. W (y −Dx− e1) = ẽ2, d = e1 (13)

As a constrained optimization problem, (13) can be

solved iteratively through the ADMM method [5]. Then

the augmented Lagrangian function is defined as

Lµ(e1, ẽ2, x, d, z1, z2) =

α‖TM (d)‖w,∗ + (1− α)‖ẽ2‖1 + β‖x‖1

+ zT
1 (W (y −Dx− e1)− ẽ2) + zT

2 (d− e1)

+
µ

2
(‖W (y −Dx− e1)− ẽ2‖

2
2 + ‖d− e1‖

2
2) (14)

We can decompose the optimization problem into several

subproblems as follows, and solve the subproblems and up-

date the corresponding variables alternately.

et+1
1 =argmin

e1

Lµ(e1, ẽ
t
2, x

t, dt, zt
1, z

t
2) (15)

ẽt+1
2 =argmin

ẽ2

Lµ(e
t+1
1 , ẽ2, x

t, dt, zt
1, z

t
2) (16)

xt+1 =argmin
x

Lµ(e
t+1
1 , ẽt+1

2 , x, dt, zt
1, z

t
2) (17)

dt+1 =argmin
d

Lµ(e
t+1
1 , ẽt+1

2 , xt+1, d, zt
1, z

t
2) (18)

zt+1
1 =zt

1 + µ(W (y −Dxt+1 − et+1
1 )− ẽt+1

2 ) (19)

zt+1
2 =zt

2 + µ(dt+1 − et+1
1 ) (20)

where t denotes the iteration index in the algorithm.

To update e1, we fix the other variables, and remove ir-

relevant terms in the subproblem. Then e1 can be updated

by solving the following problem,

et+1
1 =argmin

e1

‖W (y −Dxt)− ẽt2 + zt
1/µ−We1‖

2
2

+ ‖dt + zt
2/µ− e1‖

2
2 (21)

Let g1 = W (y−Dxt)− ẽt2+zt
1/µ, and g2 = dt+zt

2/µ.

This problem has a closed form solution,

et+1
1 = (WTW + I)−1(WTg1 + g2) (22)

To update ẽ2, we have the following equation,

ẽt+1
2 =argmin

ẽ2

1

2
‖W (y −Dxt − et+1

1 ) + zt
1/µ− ẽ2‖

2
2

+ ((1− α)/µ) ‖ẽ2‖1 (23)

This ℓ1-min problem has also a closed form solution. Let

g3 = W (y −Dxt − et+1
1 ) + zt

1/µ. The optimal solution

of ẽ2 can be obtained by soft-thresholding [6] as follows,

ẽt+1
2 = soft (g3, ((1− α)/µ)) (24)

The soft-thresholding operator is defined element-wise as

soft(x, α)i = sign(xi) ·max(|xi| − α, 0) (25)

Let g4 = W (y − et+1
1 ) + zt

1/µ− ẽt+1
2 . The minimization

problem for updating x is

xt+1 = argmin
x

1

2
‖g4 −WDx‖22 +

β

µ
‖x‖1 (26)

This is a ℓ1-ℓ2 minimization problem, which can be

solved via the fast iterative shrinkage-thresholding algorith-

m (FISTA) [2].

Let g5 = et+1
1 − zt

2/µ. The optimization problem for d

is

dt+1 =argmin
d

1

2
‖d− g5‖

2
2 +

α

µ
‖TM (d)‖w,∗ (27)
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Algorithm 1 : The iterative optimization algorithm for the

proposed LR-LUM model

Input: A test image y ∈ R
m, the dictionary D ∈ R

m×n

Output: The identity of y

1: Initialize t = 0, xt = [ 1
n
, 1
n
, · · · , 1

n
], et1 = et2 = dt =

1
2 (y −Dxt), zt

1 = zt
2 = 0

2: repeat

3: Update the weight matrix W via (10)

4: repeat

5: Update e1 and ẽ2 via (22) and (24)

6: Update x via FISTA

7: Update d via (28)

8: Update z1 and z2 via (19) and (20)

9: t = t+ 1

10: until convergence or maximum iterations.

11: until convergence or maximum iterations.

12: Output the identity with the converged W ∗ and x∗

identity(y) = argmin
i

‖W ∗(y −Dδi(x
∗))‖22,

where δi(x
∗) is a vector whose nonzero components

are only those of x∗ corresponding to the i-th class.

This problem can be solved by singular value thresholding

(SVT) as in [36]. Let G = TM (g5), and G = UΣV T be

the SVD of G, where Σ is a semi-positive diagonal matrix.

The optimal solution for d can be obtained as follows,

dt+1 = vec(USω,α
µ
(Σ)V T ) (28)

where Sω,λ(·) is the weighted SVT operator defined as

Sω,λ(Σ) = diag (max(Σi,i − ωiλ, 0)) (29)

Now that we have the solutions for all the subproblems.

We only need to update the variables alternately and itera-

tively until convergence (relevant variables only show neg-

ligible changes). The weight matrix W for random errors is

fixed during the above iteration, and updated using (10) in

an outer loop. The overall algorithm can be summarized as

in Algorithm 1.

4. Experiments

4.1. Databases & Parameter Settings

To verify the effectiveness of the LR-LUM model and

Algorithm 1, we conduct extensive experiments on several

face recognition benchmark databases, including Extend-

ed Yale-B (EYB) [10, 22], AR [24], and Labeled Face in

the Wild (LFW) [15, 16]. Face images in EYB and AR

are all collected in restricted condition with frontal view,

while faces in LFW are captured in uncontrolled environ-

ments. Images from the EYB and AR databases are resized

to 96×84 and 42×30 pixels, respectively, to verify the per-

formance of the proposed method in dealing with face im-

ages of different resolutions. EYB is divided into 5 subsets

according to different illumination conditions. AR contains

Session 1 and Session 2, which are collected on different

dates. Faces from LFW are detected using the Viola-Jones

face detector [32], and then cropped and aligned as in [11]

and resized to 90× 90 pixels.

The parameters b and c in (10) should fit the actual dis-

tribution of coding residuals. They are estimated in each

iteration using the mean em of the absolute value of cod-

ing residuals. Specifically, b and c are set to etm/k and

c0 exp (−etm/b), respectively. k = 10 and c0 = 50 in

all experiments, except for testing on clean LFW images,

for which we set k = 2 and c0 = 0.01 to incline to small

residuals caused by inaccurate alignment. To balance the

penalties, we set α = 0.25 and β = 0.2 in the objective

function (11). µ in (14) is set to 2m/‖y‖1 as in [37]. The

maximum iteration number of the outer loop in Algorithm 1

is set to 25. We set the maximum iteration number of the

inner loop to 8 in the first 20 iterations of the outer loop for

higher efficiency, and to 200 in the last 5 iterations of the

outer loop to guarantee convergence.

Comparison is carried out between the proposed mod-

el and a number of state-of-the-art and competitive robust

methods, including CESR [12], S-SRC [35], R-SRC [35],

RRC-L1 [40], RRC-L2 [40], HQ-M [13], HQ-A [13], F-

IRNNLS [17], and F-LR-IRNNLS [17].

4.2. Evaluation on the EYB Database

Two types of evaluation settings are adopted on EYB,

which are denoted as “single training sample” and “mul-

ti training samples” protocols, respectively. For the single

training sample setting, we choose the first sample of each

subject in Subset 1 for training, and all images in Subset 3

(more extreme lighting conditions) for testing. In the case

of multi training samples, we use all images from Subset

1 and Subset 2 for training, and Subset 3 for testing, as

in [35], [40], and [17].

4.2.1 Face recognition on clean images

The basic recognition performances of all methods on clean

images of EYB, i.e., images without further occlusion or

corruption, are shown in Fig. 3. For multi training samples,

there are 17-19 training samples for each subject. Most of

the compared methods achieved pretty good performances

under this setting. However, when only one training sample

is available, the performances of all compared methods de-

grade significantly, while the proposed method still demon-

strates an accuracy of 87.2%, which outperforms the other

methods by over 27%.
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Figure 3. Face recognition accuracies on clean images of the EYB

database.

4.2.2 Robust face recognition under various noises

We evaluate the robustness of the proposed method against

various noises, including pixel corruption, block occlusion,

and their mixture. The test set is further subject to different

illumination conditions, which can be considered as anoth-

er type of noise. Examples of face images under different

noises are shown in Fig. 4.

(a) (b) (c) (d)

Figure 4. Face images of EYB under different noises. (a) A clean

face image. (b) With 20% pixel corruption. (c) With 20% occlu-

sion. (d) With 20% occlusion and 20% pixel corruption.

We evaluate all methods under 10 to 60 percent of three

types of noises, i.e., pixel corruption, block occlusion, and

their mixture. For example, 10% pixel corruption is intro-

duced by setting 10% pixels at random locations of the face

image to random values, and 10% occlusion is added by re-

placing a square block (10% size of the image) at a random

position with a commonly used baboon image. 10% mixed

noises means 10% occlusion plus 10% pixel corruption.

As shown in Fig. 5, our method demonstrates the best

overall performance. In particular, with a single training

sample, the proposed model significantly outperforms the

other methods, which means that our method can be applied

in difficult scenarios when only few training samples are

available. For example, such an algorithm can potentially

provide useful information for law enforcement department

to identify faces captured in a crime scene, in which case

extreme illumination condition, occlusion, and corruption

often take place, and only limited gallery samples are avail-

able for verification. As for the setting with multi training

samples, the proposed method achieves the best results a-

gainst pixel corruption and mixed noises, and the second

best against block occlusion. F-LR-IRNNLS [17] performs
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Figure 5. Recognition accuracies on EYB under different test pro-

tocols. (a), (c), and (e): With a single training sample under 10%–

60% pixel corruption, occlusion, and mixed noises, respectively.

(b), (d), and (f): With multi training samples under pixel corrup-

tion, occlusion, and mixed noises.

slightly better against occlusion, owing to its stronger priori

assumption for contiguous occlusion. The proposed method

is significantly more robust against various contamination-

s than F-LR-IRNNLS, when looking at the overall perfor-

mance.

Contaminations such as pixel corruption and block oc-

clusion introduced in the above experiments are artificially

synthesized, which may not be the case in real scenarios.

Noises occur in real scenes could be more complicated and

in more unpredictable forms. However, the above experi-

ments do provide us comprehensive evaluations of how the

proposed model performs against various types of individ-

ual or mixed noises. The evaluation of the robustness of

our method against noises in real scenarios will be further

demonstrated in the following sections.

4.3. Evaluation on the AR Database

We also adopt two evaluation protocols, i.e., the single

and multi training sample settings, to evaluate the proposed

method on the AR database. For each subject in each ses-

sion of the AR database, there are three face images with

sunglass disguise and three with scarf, where several exam-
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ples are shown in Fig. 6. We randomly selected 50 male and

50 female subjects for the experiments. For the single train-

ing sample setting, we conduct experiments on each session

separately. The only natural clean face image of each sub-

ject in each session is used for training. The three samples

with sunglasses and the other three with scarf are used for

testing, respectively. As for the multi training sample set-

ting, we use the two natural clean face images from both

sessions for training, and six samples with sunglasses and

six with scarf from both sessions for testing.

(a) (b) (c) (d) (e)

Figure 6. Face images in AR under real disguise. (a) A clean face

image. (b) With sunglasses. (c) With scarf. (d) With sunglasses

and left side light on. (e) With sunglasses and right side light on.

4.3.1 Evaluation under real disguise

The comparison of recognition accuracies under real dis-

guise is shown in Fig. 7. The proposed method outperform-

s all the other methods under both single and multi train-

ing sample settings, against sunglass or scarf disguise. Un-

der the single training sample setting, our method achieves

88% accuracy in Session 1 and 92% in Session 2 against

sunglass occlusion, and 68.2% in Session 1 and 66.8% in

Session 2 against scarf occlusion, which are over 3%, 5%,

10%, and 7% improvements, respectively, compared to all

other methods. Under the multi training sample setting, our

method achieves the highest accuracies of 92.5% against

sunglasses and 66.9% against scarf, which are over 4% and

5% improvements compared to all other methods.

4.3.2 Recognition under mixed noises

To further evaluate the effectiveness of the proposed mod-

el under more extreme circumstances, we conduct experi-

ments on the AR database with mixed noises of real dis-

guise and pixel corruption. The test samples are further sub-

ject to 10 to 60 percent pixel corruption. The performance

comparison is shown in Fig. 8.

From Fig. 8, we can observe that the proposed model

outperforms other compared methods in all experiments,

which indicates that our method can handle various type-

s of noises and manages to maintain good and stable per-

formance in complex circumstances. The experimental re-

sults verify that the proposed model successfully captures

the characteristics of both non-structured random noise and

structured occlusion, by using the Laplacian-uniform mixed
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Figure 7. Face recognition under real disguise on the AR database.

(a) With sunglasses. (b) With scarf.

distribution to model random errors and robust nuclear nor-

m to constrain structured errors.

4.4. Evaluation on the LFW Database

In order to verify the robustness of our method against

uncontrolled conditions in practice, we carry out further

experiments on the LFW database. Face images in LFW

contain many unpredictable variations, such as illumination

changes, head pose variations, etc., which pose serious chal-

lenges for recognition. We selected 100 experimental sub-

jects, each of which contains no less than 14 face images.

For each subject, 7 face images were randomly selected for

training, and the other 7 for testing. Finally, there are 700

face images in each of the training and testing sets.

We evaluate all methods on the clean test images as well

as those with 20% and 40% mixed noises of block occlu-

sion and pixel corruption. As shown in Table 1, the pro-

posed method demonstrates the best robustness among all

compared methods. When the test samples are contami-

nated by 40% block occlusion and 40% pixel corruption,

our method still achieves a recognition accuracy of 60.8%,

which is over 15% higher than the second best. Note that

the overall noises are very complicated and challenging by

combining the mixed noises that we intentionally added to

the test samples with the intrinsic noises that the dataset o-

riginally contains. The experimental results demonstrate the

strong robustness of our method.
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Figure 8. Recognition accuracies on AR under different test proto-

cols. (a) and (b): Performance against sunglass disguise in Session

1 and Session 2, respectively, under the single training sample set-

ting. (c) and (d): Performance against scarf disguise in Session 1

and Session 2, respectively, under the single training sample set-

ting. (e) and (f): Performance against sunglasses and scarf, respec-

tively, under the multi training sample setting.

Methods Clean 20% OC 40% OC

CESR [12] 66.3 60.3 32.4

S-SRC [35] 77.1 47.6 14.1

R-SRC [35] 79.9 69.3 30.7

RRC-L1 [40] 76.0 74.7 32.6

RRC-L2 [40] 76.7 67.7 24.4

HQ-M [13] 81.4 65.4 23.6

HQ-A [13] 81.3 65.4 24.0

F-IRNNLS [17] 78.9 73.0 45.7

F-LR-IRNNLS [17] 81.0 71.9 45.0

LR-LUM 83.5 77.6 60.8

Table 1. Accuracies (in percentage) under mixed noises on LFW.

20% OC means 20% block occlusion plus 20% pixel corruption.

5. Discussion

One issue to be noticed is that the recognition accura-

cy of our model on clean test samples in LFW might seem

unsatisfying, considering many deep learning approaches

could achieve accuracies of higher than 90%. However, this

could be an unfair comparison, since deep learning need-

s massive extra training data to achieve good performance.

Moreover, deep neural networks for regular face recogni-

tion achieve poor performance under contaminated condi-

tion. We have tested a pre-trained VGG-Face model [27] on

the LFW dataset constructed in Section 4.4, and its perfor-

mance drops to about 1% under 20% mixed noises.

Another reason why we did not consider experimental

comparison to deep learning methods in the above experi-

ments is, to the best of our knowledge, that there is lack of

comprehensive works using deep neural networks for face

recognition against dense noises. We noticed one specific

work [34], which employed a MaskNet trained to be bet-

ter activated on non-occluded facial regions to avoid errors

caused by contiguous occlusion. However, as mentioned

above, they used a large face dataset to pre-train their net-

work. Besides, occluded samples are used for fine-tuning,

which actually assumes that the type and the form of noises

are known beforehand. Also, there is still lack of evalua-

tion to demonstrate its robustness under more challenging

situations, such as random corruption or mixed noises.

6. Conclusion

In this paper, we attempt to better model errors caused

by complicated noises in robust face recognition, by intro-

ducing appropriate penalty terms. A low-rank Laplacian-

uniform mixed (LR-LUM) model is proposed, which mod-

els complex errors as a combination of two types of noises,

i.e., continuous structured noises and random noises. The

joint model integrates the LUM function to better fit the

empirical distribution of random noises, and robust nuclear

norm to enforce the low-rank constraint on the structured

errors. An iteratively reweighted algorithm is developed to

effectively solve the proposed objective function. A series

of experiments have been designed to verify the discrimina-

tive ability and robustness of the proposed algorithm under

various challenging circumstances. Extensive experimental

comparison with many classical and state-of-the-art meth-

ods demonstrates the superiority of our method in terms of

robustness against various types of contaminations.
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