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Abstract

Given a set of input views, multi-view stereopsis tech-

niques estimate depth maps to represent the 3D reconstruc-

tion of the scene; these are fused into a single, consistent,

reconstruction – most often a point cloud. In this work we

propose to learn an auto-regressive depth refinement directly

from data. While deep learning has improved the accuracy

and speed of depth estimation significantly, learned MVS

techniques remain limited to the planesweeping paradigm.

We refine a set of input depth maps by successively reproject-

ing information from neighbouring views to leverage multi-

view constraints. Compared to learning-based volumetric

fusion techniques, an image-based representation allows

significantly more detailed reconstructions; compared to tra-

ditional point-based techniques, our method learns noise

suppression and surface completion in a data-driven fashion.

Due to the limited availability of high-quality reconstruction

datasets with ground truth, we introduce two novel synthetic

datasets to (pre-)train our network. Our approach is able to

improve both the output depth maps and the reconstructed

point cloud, for both learned and traditional depth estima-

tion front-ends, on both synthetic and real data.

1. Introduction

Multi-view stereopsis techniques constitute the current

state-of-the-art in 3D point cloud reconstruction [21]. Given

a set of images and camera matrices, MVS techniques esti-

mate depth maps for all input views and subsequently merge

them into a consistent 3D reconstruction. While the deep

learning paradigm has led to drastic improvements in the

depth estimation step itself, the existing learned MVS ap-

proaches [11, 38] consist of plane-sweeping, followed by

classical depth fusion approaches [7,30] (which mainly filter

out invalid estimates). Instead, we propose to learn depth

map fusion from data; by incorporating and fusing infor-

mation from neighbouring views we refine the depth map

estimate of a central view. We dub our approach DeFuSR:

Depth Fusion Through Successive Reprojections.
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Figure 1: The center view depth estimate is inaccurate

around the center of the Buddha, even though the neigh-

bouring view has a confident estimate for these areas. By

reprojecting the neighbour’s information onto the center im-

age, we efficiently encode this information for the refinement

network to resolve the uncertain areas. Iteratively perform-

ing this refinement further improves the estimates.

In volumetric space, learned approaches [2, 16, 17, 29]

that fuse depth information from multiple views have shown

great promise but are inherently limited because of com-

putation time and memory requirements. Working in the

image domain bypasses these scaling issues [8, 30, 38], but

existing image-based fusing techniques focus on filtering out

bad estimates in the fusion step rather than improving them.

However, neighbouring views often contain information that

is missing in the current view, as illustrated in Figure 1. We

show that there is still a significant margin for improvement

of the depth estimates by auto-regressively incorporating

information from neighbouring views.
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As the absence of large-scale high-quality ground truth

depth maps is a potential hurdle in training our model, we

introduce two novel synthetic MVS datasets for pre-training.

The first is similar to Flying Chairs [4] and Flying Things

3D [24]. To close the domain gap between this dataset and

the DTU [14] dataset, we also use Unreal Engine to render

the unrealDTU dataset, a drop-in replacement for DTU.

To summarize our contributions: we propose auto-

regressive learned depth fusion in the image domain, we

create two synthetic MVS datasets for pretraining, we em-

pirically motivate the design choices with ablation stud-

ies, and we compare our approach with state-of-the-art

depth fusion baselines. Code and datasets are available via

https://github.com/simon-donne/defusr/.

2. Related Work

We first discuss the estimation of the depth maps before

we go on to discuss their fusion. We give only an overview of

the most influential recent work in both areas; an exhaustive

historical overview can be found in [6].

2.1. Multiview Depth Estimation

Traditional MVS: Based on the popular PatchMatch al-

gorithm for rectified stereomatching [1], Gipuma [8] and

COLMAP [30] are popular state-of-the-art approaches [21,

31]; they propagate best fitting planes to estimate per-pixel

depth. While Gipuma selects neighbouring views on a per-

view basis, COLMAP does so per-pixel for better results.

Deep Stereo: Initial learning-based depth estimation con-

sidered only the binocular task, using Siamese Networks

to learn patch-based descriptors that are aggregated using

winner-takes all [40] or global optimization [41]. By com-

bining patch description, matching cost and cost volume

processing in a single network, disparity estimation can

be learned end-to-end [19, 20, 23]. Finally, Ummenhofer

et al. [35] demonstrate a model which jointly predicts depth,

camera motion, normals and optical flow from two views.

Deep MVS: Hartmann et al. succesfully showed the gen-

eralization of two-view matching-based costs to multiple

views [10]. While the end-to-end approaches for disparity

estimation mentioned above were restricted to the binocular

case, Leroy et al. [22], DeepMVS [11] and MVSNet [38]

show that depth map prediction can benefit from multiple

input views. Similarly, Xu et al. recently proposed AMH-

MVS [36], a learning-based version of Gipuma [8]. Paschali-

dou et al. [27] exploit the combination of deep learning and

Markov random fields for highly accurate depth maps, but

are restricted to relatively low resolutions. All of these meth-

ods have focused on the depth estimation problem. However,

we show that fusing and incorporating depth from multiple

views is a viable avenue for improvements.

2.2. Depth Map Fusion

Depth-based stereopsis techniques are subsequently faced

with the task of fusing a set of depth maps into a consistent

reconstruction. This part, too, can be split up into volumet-

ric and image-based fusion approaches. Intuitively, volu-

metric fusion can better leverage spatial information, but

image-domain techniques such as ours are more efficient

and lightweight, enabling higher output resolutions.

Volumetric Fusion, initially proposed by Curless et al. [3],

was made increasingly popular by Zach et al. [39] and Kinect-

Fusion [26], fusing various depth maps into a single trun-

cated signed distance field (TSDF). Leroy et al. have re-

cently integrated this TSDF-based fusion into an end-to-end

pipeline [22]. Fuhrmann et al. discuss how to handle the case

of varying viewing distances and at the same time do away

with the volumetric grid in favour of a point list [5] which

scales better. Other non-learning-based techniques have

been proposed to counter this scaling behaviour, such as a

hybrid Delaunay-volumetric approach [25] and octrees [34].

The first does not lean itself well for learning-based ap-

proaches, but three concurrent works have leveraged hier-

archical surface representations (i.e., octrees) to improve

execution speed [9, 29, 32]. However, even such approaches

have issues scaling beyond 5123 voxels: eventually, they hit

a computational ceiling. By working in the image domain,

we largely sidestep the scaling issue and can additionally

lean on the large amount of work and understanding avail-

able for image-based deep learning.

Image-based Fusion promises quadratic rather than cubic

scaling. Traditionally, it only discards reconstructed points

that are not supported by multiple views. This is imple-

mented in Gipuma as the Fusibile algorithm [8], and Xu

et al. [36] use the same fusion technique in AMHMVS, their

learning-based version of Gipuma. In COLMAP [30], the

accepted pixels are clustered in “consistent pixel clusters”

that are combined into a single reconstructed point cloud:

clusters not supported by a minimum number of views are

discarded. Similarly, Poggi et al. [28] and Tosi et al. [33]

have leveraged deep learning to yield confidence estimates.

While the former techniques filter out bad depth estimates,

they do not attempt to improve the estimates. We argue

that the depth maps can still be significantly improved by

incorporating information from neighbouring views. To the

best of our knowledge, learning-based refinement of depth

maps was only done in a single-view setting [15, 37].

We aim to learn depth map fusion and refinement from a

variable number of input views – the zero-neighbour variant

of our approach serves as the single-image baseline similar

to [15] and [37]. Our combined approach notably improves

the quality of the fused point clouds, quantified in terms of

the Chamfer distance (see Section 5), and at the same time

yields improved depth maps for all input views.
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(a) (b) (c) (d)

Figure 2: Example from our synthetic dataset: an input image (a) with the corresponding ground truth depth map (b). The

depth map estimates from COLMAP (c) and MVSNet (d) show the issues in poorly constrained areas, usually because of

occlusions and homogeneous areas. While MVSNet also returns a confidence estimate for its estimate, we bootstrap our

method with single-view confidence estimation in the case of COLMAP inputs.

Figure 3: Examples from our unrealDTU dataset: similar in set-up to DTU, we observe a series of objects on a table from a set

of cameras scattered across one octant of a sphere.

3. Datasets

For evaluation and training, we consider the DTU MVS

dataset [14]. Unfortunately, DTU lacks perfect ground truth:

a potential hurdle for the learning task. To tackle this, we

have constructed two new synthetic datasets for pre-training;

see the supplementary material for more details.

The first, as seen in Figure 2, is similar to Flying

Chairs [4] and Flying Things 3D [24]. We create ten ob-

servations of a static scene rather than only two views of a

non-rigid scene. Rendered with Blender, each scene consists

of 10-20 ShapeNet objects randomly placed in front of a

slanted background plane with an arbitrary image texture.

Secondly, we also introduce a more realistic dataset to

close the domain gap between the above dataset and real

imagery. This second dataset is a drop-in replacement for the

DTU dataset, rendered within Unreal Engine (see Figure 3),

sporting perfect ground truth and more realistic rendering.

4. Method

We now outline the various aspects of our approach. We

assume a set of depth map estimates as input, in this work

from one of two front-ends: the traditional COLMAP [30]

or the learning-based MVSNet [38]. The photometric depth

map estimates from COLMAP are extremely noisy in poorly

constrained areas (see Figure 2); although this would inter-

fere with our reprojection step (see later), it proves to be

straightforward to filter such areas out. We bootstrap our

method by estimating the confidence for the input estimates

– we discuss this in more detail at the end of this section.

4.1. Network overview

Our network is summarized in Figure 4. We first outline

the entire process before discussing each aspect in detail.

For an exhaustive listing, we refer to the supplementary.

As mentioned before, the depth fusion step happens en-

tirely in the image domain. To encode the information from

neighbouring views, we project their depth maps and image

features (obtained from a image-local network) onto the cen-

ter view. After pooling the information of all neighbours, we

have a two-sided approach: one head to residually refine the

input depth values (with limited spatial support), and another

head that is intended to inpaint large unknown areas (with

much larger spatial support). A third network weights the

two options to yield the output estimate. A final network

predicts the confidence of the refined estimate. We do not

use any normalization layers in the refinement parts of the

network, as absolute depth values need to be preserved.

Neighbour reprojection

Consider the set of N images In(u) with corresponding

camera matrices Pn = Kn [Rn|tn], and estimated depth

values dn(u) for each input pixel u = [u, v, 1]
T

. The 3D

point corresponding with a given pixel is then given by

xn(u) = RT
nK

−1
n (dn(u)u−Kntn) . (1)

Those xn(u) for which the input confidence is larger than 0.5
are then projected onto the center view 0. Call un→m(u) =
Pmxn(u) the projection of xn(u) onto neighbour m, and

zn→m(u) = [0 0 1]un→m(u) its depth.
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Figure 4: Overview of our proposed fusion network. A difference in coloring represents a difference in vantage point, i.e. the

information is represented in different image planes. As outlined in Section 4.1, neighbouring views are first reprojected, and

then passed alongside the center depth estimate and the observed image. The output of the network is an improved version of

the input depth of the reference view as well as a confidence map for this output.

(a) (b) (c) (d) (e)

Figure 5: Example of the depth reprojection, bound calculation, and culling results. A neighbour image (a) is reprojected onto

the center view (b), resulting in unfiltered reprojection (c). Calculating the lower bound as in Section 4.1 yields (d). Finally,

we filter (c) with (d) as outlined in Section 4.1 to result in the culled depth map (e). Note in the crop-outs how the bound

calculation completes depth edges, while the culling step removes bleed-through.

The z-buffer in view 0 based on neighbour n is then

zn(u) = min
un∈Ωn(u)

zn→0(un), (2)

where Ωn(u) = {u ∈ Ω|P0xn(un) ∼ u} is the collection

of pixels in view n that reproject onto u in view 0.

We call un(u) the pixel in view n for which zn(u) =
zn→m(un(u)), i.e. the pixel responsible for the entry in the

z-buffer. We now construct the reprojected image as

Ĩn(u) = In(un(u)). (3)

Note the apparent similarity with Spatial Transformer

Networks [13], at least as far as the projection of the image

features goes; the geometry involved in the reprojection of

the depth maps is not captured by a Spatial Transformer.

The reprojected depth and features have two major issues

(as a result of the aliasing inherent in the reprojection, which

is essentially a form of resampling). First of all, sharp depth

edges in the neighbour view are often smeared over a large

area in the center view, due to the difference in vantage

points. While they do not constitute a evidence-supported

surface, they do imply evidence-supported free space which

contains information valuable to the network; we encode this

into a lower bound image. Secondly, because of the aliasing

in the reprojection step, background surfaces bleed through

foreground surfaces. We now detail how to address both

issues, as visualized in Figure 5.

Minimum depth bound To encode the free space im-

plied by a neighbour’s depth estimate, we calculate a lower

bound depth map bn(u) for the center view with respect

to neighbour n as the lowest depth hypotheses along each

pixel’s ray that is no longer observed as free space by the

neighbour image (see Figure 6). As far as the reference view

is concerned, this is the lower bound on the depth of that

pixel as implied by that neighbour’s depth map estimate. In

terms of the previous notations, we can express the lower

bound gn(u) from neighbour n as

gn(u) = min {d > 0 | dm(u0→n(u)) > z0→n(u)} . (4)

Culling invisible surfaces We now cull invisible surfaces

in the reprojected depth zn(u): any pixel significantly be-

yond the lower bound bn(u) is considered to be invisible to

the center view and is discarded in the culled version z̃n(u).
The threshold we use here is 1/1000th of the maximum depth

in the scene (determined experimentally).
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Figure 6: Visualization of the lower bound calculation. For

each pixel in the center view, we find the lowest depth value

for which the unprojected point is no longer viewed as empty

space by the neighbouring camera.

Value of initial confidence estimation MVSNet yields a

confidence for its estimates, but for COLMAP, we bootstrap

our method with a confidence estimation for the input depth.

Figure 7 illustrates the necessity of this confidence filtering:

the bounds image and culled reprojection become noticeably

cleaner. This confidence estimation is described below.

Neighbour pooling

We perform three types of per-pixel pooling over the repro-

jected neighbour information. First of all, we calculate the

mean and maximum depth bound and culled reprojected

depth, as well as the average reprojected feature and the

feature corresponding to the maximum culled reprojected

depth. We also extract the culled reprojected depth that is

closest to the center view estimate, and its feature. These are

passed to the refinement and classification heads, along with

the input depth estimate and image features.

Depth refinement

The depth refinement step consists of two steps. In a first

step, the center view depth estimate and features, as well

as the pooled reprojected neighbour information (we will

refer to these as the “shared features”), are processed by

two networks: a local residual depth refinement module (a

UNet block with depth 1 whose output is added to the input

depth estimate) and a depth inpainting module (a UNet block

with depth 5). Finally, a scoring network takes the output

of the two other heads as input in addition to the shared

features and outputs scores for both the residual refinement

and inpainting alternatives. These are softmaxed and used to

weight both outputs.

Confidence classification

Finally, the last part of the network takes both the shared

features and the final depth estimate as input to yield a confi-

dence classification of the output depth. This network is a

UNet with depth 4, outputting a single channel on which a

sigmoid is applied to acquire the final confidence prediction.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: The necessity of the initial confidence estimate for

the depth map inputs. While the noisy input depth map (a)

yields noticeable artifacts in the bounds image (b) and culled

reprojected image (c), the confidence-filtered estimate (d)

yields cleaner bounds (e) and culled reprojection (f). The

final row shows the same steps after one iteration of refine-

ment: the refined neighbour estimate (g), and its implied

bounds (h) and reprojection (i).

Training

As the feature reprojection is differentiable in terms of the

features themselves (but not in terms of the depth values), we

train the entire architecture end-to-end. However, training

the different refinement/inpainting/head scoring networks is

challenging and training the confidence network from the

get-go causes it to degenerate into estimating zero confidence

everywhere (which is correct in the initial epochs).

To mitigate this, we apply curriculum learning. In an

initial phase, only the inpainting head is used. After a while,

we enable the weighting network between the two heads, but

keep the residual refinement disabled. Once the classification

network makes valid choices between inpainted and input

depth, we enable the residual refinement and the confidence

classification: utilizing the entirety of our architecture.

The refined depth output is supervised with an L1 loss

on both the depth values and their gradients. The confidence

is supervised with a binary cross-entropy loss, where pixels

are assumed to be trusted if they are within a given threshold

of the ground truth value. The confidence loss is only back-

propagated through the confidence classification block to

prevent it from degenerating the depth estimate to make its

own optimization easier; as a result we require no weighting

between both losses as they affect distinct sets of weights.
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(a) (b) (c) (d)

Figure 8: The depth maps used for supervision on the DTU dataset. For a given input image (a), the dataset contains a

reference point cloud (b) obtained with a structured light scanner. After creating a watertight mesh (c) from this point cloud

and projecting that, we reject any point in the point cloud which gets projected behind this surface from the supervision depth

map (d). Additionally, we reject the points of the white table.

To unify the world scales of the different datasets, we

scale all scenes such that the used depth range is roughly

between 1 and 5. To reduce the sensitivity to this scale

factor, as well as augment the training set, we scale each

minibatch element by a random value between 0.5 and 2.0.

After inference, we undo this scaling.

Supervision

Our approach requires ground truth depth maps for super-

vision. In the synthetic case, flawless ground truth depth is

provided by the rendering engine. For the DTU dataset, how-

ever, ground truth consists of point clouds reconstructed by

a structured light scanner [14]. Creating depth maps out of

these point clouds, as before, faces the issue of bleedthrough

as in Figure 5c. To address this issue, we perform Poisson

surface reconstruction of the point cloud to yield a water-

tight mesh [18]; any point in the point cloud which projects

behind this surface is rejected from the ground truth depth

maps. While this method works well, it was not viable for

use inside the network because of its relatively low speed.

Finally, we also reject points on the surface of the white

table – this cannot be reconstructed by photometric methods

and our network should not be penalized for incorrect depth

estimates here: instead, we supervise those areas with zero

confidence. These issues are illustrated in Figure 8.

5. Experimental Evaluation

In what follows we empirically show the benefit of our

approach. To quantify performance, we recall the accuracy

and completeness metrics from the DTU dataset [14]:

accuracy(u, n) = min
g

‖xg − xn(u)‖2 , and (5)

completeness(g) = min
u∈Ω,n

‖xg − xn(u)‖2 . (6)

Accuracy indicates how close a reconstructed point lies to

the ground truth, while completeness expresses how close

a reference point lies to our reconstruction (for both met-

rics, lower is better); the Chamfer distance is defined as the

algebraic mean of accuracy and completeness.

We are mostly interested in the percentage of points

whose accuracy or completeness is lower than τ = 2.0mm,

which we consider more indicative than the average accu-

racy or completeness metrics: it matters little whether an

erroneous surface is 10 or 20 cm offset – yet this strongly

affects the global averages. We report on both per-view, to

quantify individual depth map quality, and for the final point

cloud. More results, including results on the new synthetic

datasets for pre-training and the absolute distances for DTU,

are provided in the supplementary.

To create the fused point cloud for our network, we simul-

taneously thin the point clouds and remove outliers (similar

to Fusibile). The initial point cloud from the output of our

network is given by all pixels for which the predicted confi-

dence is larger than a given threshold – the choice for this

threshold is empirically decided below. For each point, we

count the reconstructed points within a given threshold τ :

cτ (u, n) =
∑

u2∈Ω,n2

I(‖xn(u)− xn2
(u2)‖2 < τ), (7)

where I(·) is the indicator function. xn(u) is accepted in

the final cloud with probability I(cτ (u, n) > 1)/cτ/5(u, n).
Obvious outliers, with no points closer than τ , are rejected.

For the other points, rejection probability is inversely pro-

portional to the number of points closer than τ/5, mitigating

the effect of non-uniform density of the reconstruction.

All evaluations are at a resolution of 480 × 270, for

feasability and because MVSNet is also restricted to this.

5.1. Selecting the confidence thresholds

The confidence classification of our approach is binary;

whether or not a depth estimate lies within a given threshold

τd of the ground truth. Only depth estimates for which

this predicted probability is above τprob are considered for

the final point cloud. Figure 9 illustrates that training the

confidence classification for various τd yield the same trade-

off between accuracy and completeness percentages. Based

on these curves, we select τd = 2 and τprob = 0.5 for the

evaluation to maximize the sums of both percentages.

7639



45

50

55

60

65

70

75

60 65 70 75 80 85 90

C
o

m
p

le
te

n
es

s
(%

)

Accuracy (%)

Full cloud

τd = 2
τd = 5
τd = 10

10
15
20
25
30
35
40
45
50

60 65 70 75 80 85 90 95100
C

o
m

p
le

te
n

es
s

(%
)

Accuracy (%)

Per view

τd = 2
τd = 5
τd = 10

Figure 9: The percentage of points with accuracy respec-

tively completeness below 2.0, over the DTU validation set,

for varying values of τd. The curves result from varying τprob;

note that the evaluated options essentially lead to a continua-

tion of the same curve. We select τd = 2 and τprob = 0.5 as

the values that optimize the sum of both percentages.

5.2. Selecting and leveraging neighbours

We consider three strategies for neighbour selection: se-

lecting the closest views, selecting the most far-away views,

and selecting a mix of both. We evaluate three separate

networks with these strategies to perform refinement of

COLMAP depth estimates with twelve neighbouring views.

Table 1 shows the performance of these strategies, after

three iterations of refinement, compared to the result of

COLMAP’s fusion. The mixed strategy proved to be the

most efficient: while far-away views clearly contain valuable

information, close-by neighbours should not be neglected.

In following experiments, we have always used the mixed

strategy. While there is a practical limit (we have limited our-

selves to twelve neighbours in this work), Table 2 shows that,

as expected, using more neighbours leads to better results.

5.3. Refining MVSNet estimates

Finally, we evaluate the use of our network architecture

for refining the MVSNet depth estimates. As shown in

Table 3, our approach is not able to refine the MVSNet

estimates much; while the per-view accuracy increases no-

ticeably, the other metrics remain roughly the same.

The raw MVSNet estimates perform better than the

COLMAP depth estimates. Refining the COLMAP esti-

mates with our approach, however, significantly improves

over the MVSNet results (refined or otherwise). We observe

(e.g. Figure 10) that the COLMAP estimates are much more

view-point dependent: surface patches observed by many

neighbours are reconstructed more accurately than others.

MVSNet, as a learned technique, was trained to optimize

the L1 error and appears to smooth these errors out over

the surface. Intuitively, the former case indeed allows for

more improvements by our approach, by propagating these

accurate areas to neighbouring views.

Table 1: Quantitative evaluation of the neighbour selection.

Using twelve neighbours for three iterations of refinement,

leveraging information from both close-by and far-away

neighbours yields the best results, mostly improving com-

pleteness compared to the COLMAP fusion result.

COLMAP nearest mixed furthest

per-view

acc. (%) 66 91 89 86

comp. (%) 40 38 45 37

mean (%) 52 64 67 62

full

acc. (%) 73 83 80 74

comp. (%) 72 72 84 76

mean (%) 72 78 82 75

Table 2: Quantitative evaluation of the number of neighbours.

Using zero, four, or twelve neighbours for three iterations of

refinement. As expected, more neighbours results in better

performance, and too few neighbours performs worse than

COLMAP’s fusion approach (which essentially uses all 48).

neighbours

COLMAP 0 4 12

per-view

acc. (%) 66 91 92 89

comp. (%) 40 28 31 45

mean (%) 52 59 62 67

full

acc. (%) 73 81 84 80

comp. (%) 72 66 64 84

mean (%) 72 74 74 82

Table 3: Refining the MVSNet output depth estimates using

three iterations of our approach. The per-view accuracy

noticeably increases, while other metrics see a slight drop.

MVSNet Refined (it. 3)

per-view

acc. (%) 76 92

comp. (%) 35 34

mean (%) 55 63

full

acc. (%) 88 86

comp. (%) 66 65

mean (%) 77 76

5.4. Qualitative results

Figure 10 illustrates that performing more than one itera-

tion is paramount to a good result but as the gains level out

quickly, we have settled on three refinement steps.

Neighbouring views are crucial to filling in missing ar-

eas of individual views, as Figure 11 illustrates: here, the

entire right side of the box is missing in the input estimate.

Single-view refinement is not able to fill in this missing

area and does not benefit from multiple refinement iterations.

Refinement based on 12 neighbours, however, propagates

information from other views and further improves the esti-

mate over the next iteration, leveraging the now-improved

information in those neighbours.

Having focused on structure throughout this work, rather

than appearance, our reconstructed point clouds look more

noisy due to lighting changes (see Figure 12), while

COLMAP fusion averages colour over the input views.
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Figure 10: Visualization of the depth map error over multiple iterations, for two elements of the DTU test set (darker blue is

better). The first two iterations are the most significant, after that the improvements level out. Object elements not available in

any view (the middle part of the buildings on the bottom right) cannot be recovered.

Color image Ground truth depth Input depth error

0 neighbours,

iteration 1

0 neighbours,

iteration 2

12 neighbours,

iteration 1

12 neighbours,

iteration 2

Figure 11: Output depth errors (middle) and confidence

(bottom) for our approach (darker blue is better). Without

leveraging neighbouring views, additional iterations yield

little benefit. Neighbour information leads to better depth

estimates and confidence, further improving over iterations.

Finally, we also provided a qualitative comparison on

a small handheld capture. Without retraining the network,

we process the COLMAP depth estimates resulting from 12

images taken with a smartphone, both for a DTU-style object

on a table and a less familiar setting of a large couch. While

the confidence network trained on DTU has issues around

depth discontinuities, Figure 13 shows that the surfaces are

well reconstructed.

6. Conclusion and Future Work

We have introduced a novel learning-based approach to

depth fusion, DeFuSR: by iteratively propagating informa-

tion from neighbouring views, we refine the input depth

maps. We have shown the importance of both neighbour-

hood information and successive refinement for this problem,

resulting in significantly more accurate and complete per-

view and overall reconstructions.

GT COLMAP Ours

Figure 12: Example reconstructed cloud for an element of

the test set. Note the significant imperfections in the refer-

ence point cloud (left). A visual drawback of our approach

is that we focus solely on structure; the fusion step used by

COLMAP innately also averages out the difference in color

appearance between various views.

C
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Figure 13: Two scenes captured with a smartphone (12 im-

ages). Note that the surfaces are well estimated (the green

pillow and the gnome’s nose) and holes are completed cor-

rectly (the black pillow, the gnome’s hat).

We mention two directions for future work. First of all,

our training loss is the L1 loss, which is known to have a

tendency towards smooth outputs; alternative loss functions,

such as the PatchGAN [12] can help mitigate this. Secondly,

we have selected neighbours on the image level. Ideally,

the selection of neighbours would happen more finegrained,

and integrated into the learning pipeline, e.g. in the form of

attention networks.
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