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Abstract

This paper focuses on the topic of vision based hand pose

estimation from single depth map using convolutional neu-

ral network (CNN). Our main contributions lie in designing

a new pose regression network architecture named CrossIn-

foNet. The proposed CrossInfoNet decomposes hand pose

estimation task into palm pose estimation sub-task and fin-

ger pose estimation sub-task, and adopts two-branch cross-

connection structure to share the beneficial complementary

information between the sub-tasks. Our work is inspired

by multi-task information sharing mechanism, which has

been few discussed in hand pose estimation using depth

data in previous publications. In addition, we propose a

heat-map guided feature extraction structure to get better

feature maps, and train the complete network end-to-end.

The effectiveness of the proposed CrossInfoNet is evaluated

with extensively self-comparative experiments and in com-

parison with state-of-the-art methods on four public hand

pose datasets. The code is available in1.

1. Introduction

The research of vision based 3D hand pose estimation

is a hotspot in the field of computer vision, virtual real-

ity and robotics. It has been studied for decades and has

made significant progress in recent years [3, 6, 19]. Nev-

ertheless, it is still far from a solved problem due to the

challenges of high joint flexibility, local self-similarity and

severe occlusions. Different efforts have been made in vi-

sion based hand pose estimation. The input data changed

from single RGB [2, 7], stereo RGB [24, 27], to depth maps

which have made many achievements [26, 30, 39]. Re-

cently, there seems to be a renewed interest to RGB im-

ages [24, 48, 18, 25]. The published hand pose estima-

tion methods can be categorized into two main categories

as either generative model-based [29, 35] or discriminative

learning-based methods [11, 32, 36, 38]. Benefit from the

increase of data amounts and computational ability, deep

1https://github.com/dumyy/handpose

CNN has showed strong abilities and has become the lead-

ing method at present.

In 2017, Hands in the Million Challenge (HIM2017) [44]

on depth maps based hand pose estimation attracted the at-

tentions of many research teams. The issues discussed in

the competition summary paper [43] are also our concerns.

Firstly, treating depth maps as 2D images and regressing

3D joint coordinates directly is a commonly used hand pose

estimation pipeline. Although converting the 2.5D depth

maps into 3D voxelized forms will reserve more informa-

tion [12, 17], it suffers from heavy parameter loads and still

exists information defect. In our work, we tend to be in

line with the argument of [39] to leverage the advances of

2D CNNs, and try to excavate more information from 2D

inputs.

Secondly, designing effective networks receives the most

attentions. In machine learning, by sharing information,

multi-task learning has the advantages of reserving more

intrinsic information than single task learning. Learning

multiple tasks simultaneously will be helpful to enforce a

model with better generalizing ability [28]. However, multi-

task learning has not been paid enough attention in CNN

based hand pose estimation yet. As [39] claimed, they

did the first attempt to fuse the hand pose estimation re-

sults of the holistic regression and the heat-map detection

in a multi-task setup. Inspired by their achievements, we

design a new CNN structure for hand pose estimation in a

multi-task setup. Hierarchical model is one of hand pose es-

timation networks and has shown excellent performance in

competition. It usually divides the pose estimation problem

into sub-tasks by separately dealing with different fingers

or different type of joints [4, 16, 47]. Intuitively, it would

be easily understood that palm joints have closer tie-ups

than those more flexible finger joints. The global hand pose

will be mostly determined by the status of the palm joints,

while the local hand pose will be reflected by the actions

of the finger joints. Based on these knowledge, we design

a new hierarchical model in a multi-task setup. The pro-

posed architecture has two branches corresponding to the

palm joint regression sub-task and the finger joint regres-

sion sub-task, respectively. By cross-connections between
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the two branches, the noise in one branch becomes supple-

mental enhancement information in the other branch. This

will help each branch to focus on its specific sub-task as is

done in multi-task information sharing.

Thirdly, the output representations can be classified into

the probability density map (heat-maps) or the 3D coordi-

nates for each joint. Since the mapping between the 2D

depth maps and the 3D joint coordinates is highly nonlinear,

it will hamper the learning procedure and prevent the net-

work from accurately estimating the joint coordinates. In

contrast, the output representation with the heat-maps can

provide more joint related information than a single joint

location, which will help the network to get better feature

maps. The analysis in [43] has concluded that the heat-

map based method outperforms direct coordinate regres-

sion method. However, in heat-map based method, the final

joint coordinates have usually to be inferred by maximum

operation on the heat-maps. Maximum operation is non-

differentiable, and it has to be tailored as a post-processing

step, but not an end-to-end training. Taking into account

of the advantages of the two representations, we propose a

heat-map guided feature extraction network structure. In

fact, our idea skillfully applies the multi-task parameter

sharing.

In summary, for deep CNN based hand pose estimation

from single depth map, our work has the following contri-

butions:

• A new hand pose regression network in multi-task

setup is proposed. It takes advantage of information shar-

ing mechanism in multi-task learning. We use hierarchical

model to decompose the final task into palm joint regression

sub-task and finger joint regression sub-task. By branch

cross-connection, the generated ‘attention mask’ guides one

branch to focus on palm joint regression, and the other

branch to focus on finger joint regression. Since the ‘atten-

tion mask’ enhances the sub-task features, the estimation

accuracy is improved effectively.

• A heat-map guided feature extraction structure is pro-

posed. It transfers more effective features from the heat-

map detection task to the joint regressing task, without los-

ing the end-to-end training advantage.

• We implement several baselines to investigate informa-

tion sharing in a multi-task setup, which will provide valu-

able insights to this problem. We also carry out substantial

experiments on commonly used datasets, and compare the

performance with the state-of-the-art methods.

2. Related works

The achievements in vision based hand pose estima-

tion are very rich. Since our work focuses on deep CNN

based hand pose estimation from single depth map, we will

limit the discussions to those works related closely with our

work. Please refer to [8, 33, 43] for more comprehensive

reviews.

Pose parameterization: The object of hand pose es-

timation is to find the joint coordinates. Directly regress-

ing these coordinates is the natural choice in the models for

output pose representation [4, 10, 12, 22, 23, 46]. How-

ever, since only one 3D coordinate for each joint has to be

regressed from the input, the highly non-linear mapping be-

tween the input and the 3D coordinates output hampers the

learning procedure. To cope with this problem, Tompson et

al. [38] firstly utilized 2D heat-maps for each hand joint as

the pose parameters and then translated them into 3D coor-

dinates by post-processing. They found that the interme-

diate heat-maps representation not only reduced required

learning capacity but also improved generalization perfor-

mance. Ge et al. [11] extended this method by exploiting

multi-view CNN to estimate 2D heat-maps for each view.

Moon et al. [17] adopted 3D heat-maps as the hand pose

parameters. Wan et al. [39] decomposed the pose parame-

ters into 2D heat-maps, 3D heat-maps, and unit 3D direc-

tional vector fields. Then these different outputs were trans-

lated into 3D joint coordinates by a vote casting scheme

with a variant of mean shift post-processing. Different from

their schemes, our work uses 3D coordinate regression un-

der heat-map constraints. Such strategy can help the model

to learn a better feature map, and get accurate joint coordi-

nates without the need of post-processing.

Model design: Designing a network according to hu-

man hand kinematics or morphology has received compet-

itive results in recent years [44]. Structured methods em-

bed physical hand motion constraints into the model or in

the loss function [16, 31, 46]. Hierarchical models divide

the pose estimation problem into sub-tasks according to the

hand structure. Chen et al. [40] applied constraints per fin-

ger and joint-type (across fingers) in their multiple regions

extraction step, each region containing a subset of joints.

The extracted feature regions were then integrated hierar-

chically and the hand pose were regressed by utilizing an

iterative cascaded method. Madadi et al. [16] designed a hi-

erarchically structured CNN, using five branches to model

each finger and an additional branch to model the palm ori-

entation. The final layers of all branches were concatenated

into one layer to predict all joints. Zhou et al. [47] designed

a three-branch network according to different finger func-

tions in daily manipulation, where one branch correlated

with the thumb finger, one branch modeled the index fin-

ger, and the last branch represented the other three fingers.

These hierarchical models have their distinctive character-

istics. Here we explore a new two-branch model with one

branch for palm joint regression and the other branch for

finger joint regression. It is a common sense that the finger

joints are more flexible than the palm joints. If we use two

different parameter sets to represent relatively stable palm

pose and flexible finger pose separately, the regression task
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Figure 1. Overall network architecture with multi-task information sharing setup. We use the heat maps to highlight the regions with salient

features in the first two modules. In the output part, the red dot represents the estimated joint positions.

will be implemented easier. In addition, we design cross-

connections between the two branches, which helps each

branch focus on its own task.

Multi-task information sharing: By sharing informa-

tion between related tasks, multi-task learning will enable

the model to generalize better on the tasks [28]. Multi-

task learning in deep neural networks has led to success in

many applications, such as in human pose estimation. Xia

et al. [41] proposed to jointly solve the two tasks of hu-

man parsing and pose estimation. They trained two fully

convolutional neural networks (FCNs), in which the esti-

mated pose provided object-level shape prior to regularize

part segments while the part-level segments constrained the

variation of pose locations. Finally the two tasks were fused

with a fully-connected conditional random field (FCRF).

Nie et al. [20] proposed mutual learning to adapt model

for joint human parsing and pose estimation. It effec-

tively exploited mutual benefits by incorporating informa-

tion from their counterparts, providing more powerful rep-

resentations. Though effectively used in many applications,

multi-task learning has not been paid enough attention in

CNN based hand pose estimation yet. To our knowledge,

[39] was the first one to give clear claim that they did hand

pose estimation in a multi-task setup. In their work, they

decomposed the hand pose parameters into 2D heat maps,

3D heat maps and unit 3D directional vector fields. The

three representations were treated as three tasks, and were

estimated via multi-task network cascades. Finally they

fused these estimations by mean shift algorithm based post-

processing. Our work is also built in multi-task learning

framework, but it is quite different from [39]. We divide

hand joints into two subsets, one set consisting of the palm

joints, the other set consisting of the finger joints. The joint

regression task is decomposed into palm joint regression

sub-task and finger joint regression sub-task. By a cross-

connection between the two sub-task regression branches,

the information is shared.

3. Method

A hand is an articulated object and has high degree of

freedom, and it is not easy to estimate hand pose accurately.

In order to deal with the highly non-linear mapping from

input depth data to output hand joint coordinates, the hand

pose estimation problem can be simplified into sub-tasks,

each of which is responsible of a sub-part or subset joint es-

timation. This is why designing hierarchical models to im-

plement the task. Here we propose a new hierarchical model

with an information sharing architecture named CrossIn-

foNet, as illustrated in Fig.1. The first part is the initial

feature extraction module, where we integrate heat-maps

as constraints to learn better feature maps and get all ini-

tial joint features. The second part is the feature refinement

module, where the task is decomposed into two sub-tasks,

one sub-task estimating the palm joints, the other sub-task

estimating the finger joints. The information sharing strat-

egy in this module guides the network to exploit useful clues

from counterpart towards effectively improving the perfor-

mance of hand pose estimation. The final part is the joint

coordinate regression module.

We describe the details in the following sections. Section

3.1 describes the heat-map guided initial feature extraction

module. Section 3.2 presents the baseline network with two

independent sub-tasks without information sharing. Section

3.3 details how to provide complementary information by

cross information sharing between the two sub-tasks. Loss

function is introduced in Section 3.4 and implementation

details are given in Section 3.5.
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Figure 2. The initial feature extraction module. This network takes

2D depth map as input with the size of 96 × 96 and outputs the

feature maps T with the size of 12×12. We use 2D heat maps with

the size of 24× 24 as supervision to guide the feature extractions.

3.1. Heat­map guided feature extraction

When a shallow CNN is used for feature extraction, the

estimated results are usually not satisfactory. Given the

problem, we design a novel feature extraction network with

two stages, named as initial feature extraction module and

feature refinement module. As for the initial feature ex-

traction module, we choose the ResNet-50 [15] backbone

network with four residual modules because it is highly ef-

ficient, as shown in Fig.2. In order to obtain more infor-

mation, we apply the feature pyramid structure to merge

different feature layers. We denote the feature maps for re-

gressing initial joint locations as T . Different from previous

heat-map based detection method, here the heat maps are

only used as the constraints to guide the feature extraction

and will not be passed to the subsequent module. The ob-

tained feature map T with 256 channels will be input to the

feature refinement module. The kernel size of the residual

blocks is 3× 3, and that of max-pooling layers is 2× 2 with

stride 2. We use a convolution layer with 3 × 3 filters to

obtain the heat-map outputs for all joints.

3.2. Baseline feature refinement architecture

Some existing methods for hand pose estimation design

tree-like branches, each of which is responsible for one in-

dependent sub-task, or extracts hand features from the out-

put of one task to assist the other task at post-processing.

They can neither extract powerful features nor strengthen

the models. To fully utilize the extracted information, we

proposed a novel feature refinement module based on multi-

task information sharing. Before introducing our new multi-

task feature refinement module, we first give the baseline

multi-task architecture, which is illustrated in Fig.3.

Among all the joints, the palm joints have a smaller ac-

tivity space compared to the finger joints, so the regressing

complexity of the two parts is also different. If we use two

different parameter sets to represent palm pose and finger

pose, the hand pose would be regressed easier. Therefore,

we separate the palm joint regression and finger joint re-

gression into two independent branches. The feature maps

Residual block with 

max-pooling Output layer

T

concat

Full-connected

with dropout

Baseline feature refinement module Regression module

Figure 3. The baseline feature refinement module connected with

the joint coordinate regression module. The kernel size of residual

block is set to 3 × 3 and the dimension of full-connected layer is

set to 2048.

(a) ICVL (b) NYU (c) MSRA

Figure 4. The palm joints subset (blue boxes) and the finger joints

subset (red boxes) on different datasets.

T from the initial feature extraction module are input to

the residual block to extract more intrinsic local features

of palm or fingers in different branch. Then the output of

the full-connected layer fp in the palm branch and ff in the

finger branch are concatenated to estimate all joint coordi-

nates. We denote this architecture as the baseline network.

Since ICVL, NYU and MSRA datasets have different la-

bel protocol, the joints subsets have some differences, as

shown in Fig.4. The partition of HAND 2017 frame-based

challenge dataset is the same as that of MSRA.

3.3. New feature refinement architecture

The baseline network only considers regressing palm

and finger poses independently from each branch, which

has no essential difference with the universal branch based

network. There is little shared information between them,

except the input features T . However, in the palm regres-

sion branch, there are residual finger features. These finger

features may be noise for palm pose regression, but they

are beneficial for finger pose regression. The same is in the

finger branch. To make full use of the useful ‘noise’ in-

formation between the two branches, we try to design the

network in a multi-task information sharing setup. Two-

task Cross-stitch Network [28] is a universal multi-task net-

work, as shown in Fig.5(a). It uses multiple cross-stitch

units to leverage the knowledge of the other task by lazy

fusion. Nevertheless, lazy cross-stitch may cause interfer-

ence between sub-tasks, and lazy cross-stitch has no clear

understanding of the sub-tasks – their similarity and rela-
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Figure 5. Network comparisons with Cross-stitch Network

tionships.

We hope to actively guide how the sub-tasks should in-

teract with each other. By guided information sharing, the

features related to the same targets should be merged and

enhanced. Fig.5(b) illustrates the proposed multi-task in-

formation sharing mechanism. It uses “skip line” to sepa-

rate palm and fingers (Finger) by subtracting the palm fea-

tures from the global hand features, then uses cross line to

concatenate the finger features from the two branches. It

reduces the interference from the palm and enhances the

finger features once more, and vice versa.

The detailed network structure is shown in Fig.6. Initial

features T have palm related features and finger related fea-

tures. By subtraction operation between T and palm pose

dominated features P0 via skip-connection, we get resid-

ual finger features F , regarded as finger ‘attention mask’.

This mask may be ‘noise’ for palm pose regression, but it

will be beneficial for finger pose regression, which helps

guide the branch to extract finer features. In the same way,

we get the palm ‘attention mask’ P . By cross-connection,

P0 are concatenated with P and form the enhanced palm

features P1. The enhanced finger features F1 are also ob-

tained using the similar process. In this way, our new net-

work architecture establishes associations between the dif-

ferent sub-tasks. The output features F2 and P2 are got from

the followed residual block. In the end, the 3D hand joint

coordinates are estimated through the final regression mod-

ule. The network parameters are presented in Fig.6, and the

main pose regression procedure is described in Algorithm

1.

3.4. Loss functions

We adopt the mean square error between the ground-

truth and the estimated joint coordinates as the loss func-

tion. In the initial feature extraction module, we use a heat

map as the constraint to guide the network for a better global

Algorithm 1 joint regression with multi-task information

sharing.

Input:

Symbols:

∗ : spatial convolution operator

⊗ : feature concatenation operator

p0, p1 : convolutional layers for palm feature extraction

in different stages

f0, f1 : convolutional layers for fingers feature extrac-

tion in different stages

fc : Full-connected layers for regressing joint locations.

T ∈ Tw×h×c: regression feature

1: P0 = T ∗ p0; F0 = T ∗ f0 Preliminary features

2: F = T − P0; P = T − F0 Residual features

3: P1 = P0 ⊗ P ; F1 = F0 ⊗ F Enhanced features

4: P2 = P1 ∗ p1; F2 = F1 ∗ f1 The final features

5: Jp = fc(P2); Jf = fc(F2) The joint coordinates

6: J = Jp ⊗ Jf The final joint coordinates

Output: J

feature extraction, so the detection loss of heat-map is de-

fined as:

Lht =
∑A

n=1

∑

u,v
‖Ha∗

n (u, v)−Ha
n(u, v)‖

2

(1)

where A denotes the joint number of the whole hand. Ha∗
n

and Ha
n represent the ground-truth heat-map and estimated

heat-map of joint n, respectively.

In the feature refinement module, we introduce two con-

straints, Lbp and Lbf , to extract the preliminary palm fea-

tures P0 and finger features F0. They are defined as:

Lbp =
∑P

n=1

∑

u,v
‖Hp∗

n (u, v)−Hp
n(u, v)‖

2

(2)

Lbf =
∑F

n=1

∑

u,v

∥

∥Hf∗
n (u, v)−Hf

n(u, v)
∥

∥

2

(3)

where Hp∗
n and Hf∗

n represent the ground-truth heat map of

the nth palm joint and finger joint, respectively. Hp
n and Hf

n

are the corresponding network outputs.

In the regression module, three losses are used to su-

pervise the final outputs of each subtask and the total hand

joints. They are palm joint regression loss Lep, finger joint

regression loss Lef , and total hand joint regression loss La.

Lep =
∑P

n=1

∥

∥

∥
Jp∗

n − Jp
n

∥

∥

∥

2

2

(4)

Lef =
∑F

n=1

∥

∥

∥
Jf∗

n − Jf
n

∥

∥

∥

2

2

(5)

La =
∑A

n=1

∥

∥

∥
Ja∗

n − Ja
n

∥

∥

∥

2

2

(6)

where Jp∗
n and Jp

n denote the ground-truth and estimated

3D coordinates of the nth palm joint, Jf∗
n and Jf

n are the
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Figure 6. The new feature refinement module connected with the joint regression module. It is designed based on multi-task information

sharing mechanism. The kernel size of the residual block is set to 3× 3 and the dimension of full-connected layer is set to 2048.

ground-truth and estimated 3D coordinates of the nth finger

joint, Ja∗
n and Ja

n denote the ground-truth and estimated 3D

coordinates of the nth hand joint.

The total loss function is:

L = α× (Lht +Lbp +Lbf ) + β× (Lep +Lef +La) (7)

where α, β are the factors to balance detection loss and re-

gression loss. In our experiments, α and β are set to be 0.01

and 1, respectively.

3.5. Implementation details

A hand area is firstly cropped from the original image

and resized to a fixed size of 96 × 96. The depth values

within the cropped region are normalized to [-1, 1] and the

labels are also normalized to keep the correspondence with

the cropped depth map. We apply online data augmenta-

tion during training, including random rotation ([-180, 180]

degree), translation ([-10, 10] pixel) and scaling ([0.9, 1.1]).

The proposed network is trained in an end-to-end man-

ner. All weights are initialized from the zero-mean normal

distribution with σ = 0.01. We choose Adam algorithm to

train the model with an initial learning rate 1e-3, batch size

128 and weight decay 1e-5. The learning rate is reduced by

a factor of 0.96 every epoch, and the dropout rate is set to

be 0.6 to prevent over-fitting.

Our network is implemented by Tensorflow [1] and the

RTX 2080 TI GPU is used for training and testing. We

trained the model for 110 epochs. The training time of our

model is 15 hours for ICVL dataset, 6.5 hours for NYU

and MSRA datasets, and 3 days for HANDS 2017 chal-

lenge dataset, respectively. While testing, our model runs at

124.5 fps on a single GPU.

4. Experiments and results

4.1. Datasets and evaluation metrics

ICVL Dataset. The ICVL dataset [34] has 330K frames

for training and 1.5k for testing. The training set consists of

the genuine 22k frames and an additional 300K augmented

frames with in-plane rotations. This dataset has 16 anno-

tated joints. We use complete frames for training, while in

the self-comparisons we only use the genuine 22k.

NYU Dataset. The NYU dataset [38] contains 72k train-

ing frames and 8k testing frames from three different views.

The training set is collected from subject A, while the test-

ing set is collected from subject A and B. Most previous

works only used view 1 and 14 annotated joints for train-

ing and testing, we also use the same setup for comparison

purposes.

MSRA Dataset. The MSRA dataset [32] consists of

76.5k depth images with 21 annotated joints. It has 9 sub-

jects and 17 different gestures for each one. Following the

common evaluation protocol [32], we also use the leave-

one-subject-out method to evaluate the result.

HANDS 2017 Challenge Frame-based Dataset. This

dataset [44] contains 957k training and 295k testing depth

frames, which are sampled from BigHand2.2M [45] and

FHAD [9] datasets. The training set has 5 subjects, while

the testing set has 10 subjects, including 5 unseen subjects.

This dataset has 21 annotated joints.

Evaluation Metrics. We use two metrics to evaluate the

performance of different 3D hand pose estimation methods.

One is the average 3D distance error between the ground

truth and the predicted 3D joint location for each joint, the

other is the percentage of success frames below a threshold,

which is the same as [37].
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Strategy
Average 3D distance error (mm)

ICVL NYU

Base 9.28 11.17

Base+HM 9.08 10.84

Cross 8.79 10.57

Cross+HM 8.48 10.08

Table 1. Self-comparison results on average 3D distance er-

ror (mm). Base: baseline network without the heat-map con-

straints; Base + HM: baseline network with the heat-map con-

straints; Cross: cross-connection network without the heat-map

constraints; Cross + HM: cross-connection network with the heat-

map constraints.

4.2. Self­comparisons

We conduct ablation experiments on both ICVL[34] and

NYU[38] datasets. To evaluate the advantages of the heat-

map constraints, we compared the results of baseline net-

work with or without heat-map constraints. To demonstrate

the performance of the multi-task information sharing net-

work, we compared it with baseline network.

As shown in Tab.1, the baseline network with heat-map

constraints reduces the mean 3D distance error by 0.2mm

(from 9.28 to 9.08) on the ICVL dataset and by 0.33mm

(from 11.17 to 10.84) on the NYU dataset, compared to the

one without heat-map constraints. It proves that the heat-

map constraints enforce the model to get better features and

the estimated errors decrease. Then based on the initial fea-

ture extraction network with heat-map constraints, we com-

pared the effect of two different feature refinement modules

on the average 3D distance error. The proposed model with

cross-connection significantly lowers the errors by 0.60mm

(from 9.08 to 8.48) on the ICVL dataset and by 0.76mm

(from 10.84 to 10.08) on the NYU dataset, compared to the

one in the baseline model with two separated branches. Ob-

viously, the result of this comparative experiment supports

our viewpoint that multi-task information sharing can get

more accurate hand pose estimation.

Based on the comprehensive self-comparisons, it can be

concluded that the proposed model with multi-task infor-

mation sharing via cross-connected two-branch architecture

and heat-map guided initial feature extraction, has the best

performance in hand pose estimation.

4.3. Comparisons with state­of­the­art methods

We compared the performance of the proposed Cross-

InfoNet on three public 3D hand pose datasets with most

of state-of-the-art methods, including methods using depth

maps (2D) as inputs: latent random forest (LRF)[34],

model-based method (DeepModel)[46], feedback loop

training (Feedback) [23], Lie-X [42], DeepPrior with re-

finement (DeepPrior) [22], improved DeepPrior (Deep-

Prior++) [21], region ensemble network (Ren-4x6x6 [14],

Methods
Mean error (mm)

Input
ICVL NYU MSRA

Feedback [23] - - 15.97 2D

Lie-X [42] - - 14.51 2D

LRF [34] 12.58 - - 2D

DeepModel [46] 11.56 17.04 - 2D

DeepPrior [22] 10.4 19.73 - 2D

Ren-4x6x6 [14] 7.63 13.39 - 2D

Ren-9x6x6 [40] 7.31 12.69 9.7 2D

DeepPrior++ [21] 8.1 12.24 9.5 2D

Pose-Ren [4] 6.79 11.81 8.65 2D

DenseReg [39] 7.3 10.2 7.2 2D

CrossInfoNet(Ours) 6.73 10.08 7.86 2D

3DCNN [12] - 14.1 9.6 3D

SHPR-Net [5] 7.22 10.78 7.76 3D

HandPointNet [10] 6.94 10.54 8.5 3D

Point-to-Point [13] 6.3 9.1 7.7 3D

V2V [17] 6.28 8.42 7.59 3D

Table 2. Comparisons with state-of-the-art methods on three

datasets. Mean error indicates the average 3D distance error.

Methods Testing on single GPU (fps)

V2V [17] 3.5

DenseReg [39] 27.8

Point-to-Point [13] 41.8

CrossInfoNet (Ours) 124.5

Table 3. Comparison of inference time while testing.

Ren-9x6x6 [40]), Pose-guided REN (Pose-Ren) [4], dense

regression network (DenseReg) [39], and methods using

point cloud or voxel (3D) as input: 3DCNN [12], SHPR-

Net [5], HandPointNet [10], Point-to-Point [13], V2V [17].

The results of some methods used for comparisons are ob-

tained from the online available prediction labels, others are

extracted from their papers.

As shown in Tab.2 and Fig.7, our results outperform the

results of the state-of-the-art methods whose input is a depth

map on ICVL and NYU datasets. Compared to those meth-

ods using 3D inputs, our results are worse than V2V [17]

and Point-to-Point [13], but have larger improvement than

3DCNN [12] and SHPR-Net [5]. For the MSRA dataset,

our method gets comparable results with the best 3D CNN

method. DenseReg [39] is better than our method on this

dataset. Nevertheless, when the thresthod is below 10mm,

our method is better on percentage of success frames met-

ric. The qualitative results of our method on three datasets

are shown in Fig.8.

Although on ICVL and NYU datasets, V2V and Point-

to-Point methods with 3D input are better, and on MSRA

dataset, DenseReg method with 2D input is better, they have

a higher inference time on test data than our method. The
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Figure 7. Comparisons with state-of-the-art methods. Top row: the percentage of good frames over different error thresholds. Bottom row:

3D distance errors per hand joints. Left: NYU [38] dataset. Middle: ICVL [34] dataset. Right: MSRA [32] dataset.

Figure 8. The qualitative results of our method on three datasets. Left: ICVL [34] dataset. Middle: NYU [38] dataset. Right: MSRA [32]

dataset. Ground truth is shown in blue, and the estimated pose is shown in red.

comparisons about inference time are listed in Tab.3.

We also tested the performance of our method on the

HANDS 2017 frame-based challenge dataset [44] on Feb.2,

2019. Our method won the first place, and had the best

performance on the Unseen data.

5. Conclusion

Our work aims at exploring an effective CNN network

to get the hand joint coordinates from depth data input. Our

designed two-branch cross-connection network hierarchi-

cally regresses the palm pose and the finger pose by infor-

mation sharing in a multi-task setup. It also uses heat-map

guidance to get better feature maps. The experimental re-

sults prove that the proposed strategies are beneficial to get

more accurate results, and the results of our method on three

3D hand pose datasets outperform most of previous works.

Moreover, the proposed method also achieves the best re-

sult in the hand pose estimation challenge, compared to all

previous participants. We hope this work can provide a new

idea of network design for hand pose estimation.
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Jordi Gonzalez. End-to-end global to local cnn learn-

ing for hand pose recovery in depth data. arXiv preprint

arXiv:1705.09606, 2017.

[17] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee.

V2v-posenet: Voxel-to-voxel prediction network for accu-

rate 3d hand and human pose estimation from a single depth

map. In CVPR, June 2018.

[18] Franziska Mueller, Florian Bernard, Oleksandr Sotny-

chenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, and

Christian Theobalt. Ganerated hands for real-time 3d hand

tracking from monocular rgb. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2018.

[19] Franziska Mueller, Dushyant Mehta, Oleksandr Sotny-

chenko, Srinath Sridhar, Dan Casas, and Christian Theobalt.

Real-time hand tracking under occlusion from an egocentric

rgb-d sensor. In Proceedings of International Conference on

Computer Vision (ICCV), volume 10, 2017.

[20] Xuecheng Nie, Jiashi Feng, and Shuicheng Yan. Mutual

learning to adapt for joint human parsing and pose estima-

tion. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 502–517, 2018.

[21] Markus Oberweger and Vincent Lepetit. Deepprior++: Im-

proving fast and accurate 3d hand pose estimation. In ICCV

Workshops, Oct 2017.

[22] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit.

Hands deep in deep learning for hand pose estimation. In

Computer Vision Winter Workshop, 2015.

[23] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit.

Training a feedback loop for hand pose estimation. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 3316–3324, 2015.

[24] Paschalis Panteleris and Antonis Argyros. Back to rgb:

3d tracking of hands and hand-object interactions based on

short-baseline stereo. Hand, 2(63):39, 2017.

[25] Paschalis Panteleris, Iasonas Oikonomidis, and Antonis A.

Argyros. Using a single rgb frame for real time 3d hand pose

estimation in the wild. 2018 IEEE Winter Conference on

Applications of Computer Vision (WACV), pages 436–445,

2018.

[26] Chen Qian, Xiao Sun, Yichen Wei, Xiaoou Tang, and Jian

Sun. Realtime and robust hand tracking from depth. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 1106–1113, 2014.

[27] Romer Rosales, Vassilis Athitsos, Leonid Sigal, and Stan

Sclaroff. 3d hand pose reconstruction using specialized map-

pings. In Computer Vision, 2001. ICCV 2001. Proceedings.

Eighth IEEE International Conference on, volume 1, pages

378–385. IEEE, 2001.

[28] Sebastian Ruder. An overview of multi-task learning in deep

neural networks. arXiv preprint arXiv:1706.05098, 2017.

[29] Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Tay-

lor, Jamie Shotton, David Kim, Christoph Rhemann, Ido Le-

ichter, Alon Vinnikov, Yichen Wei, et al. Accurate, robust,

9904



and flexible real-time hand tracking. In Proceedings of the

33rd Annual ACM Conference on Human Factors in Com-

puting Systems, pages 3633–3642. ACM, 2015.

[30] Jamie Shotton, Ross Girshick, Andrew Fitzgibbon, Toby

Sharp, Mat Cook, Mark Finocchio, Richard Moore, Push-

meet Kohli, Antonio Criminisi, Alex Kipman, et al. Effi-

cient human pose estimation from single depth images. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

35(12):2821–2840, 2013.

[31] Xiao Sun, Jiaxiang Shang, Shuang Liang, and Yichen Wei.

Compositional human pose regression. In The IEEE Inter-

national Conference on Computer Vision (ICCV), volume 2,

page 7, 2017.

[32] Xiao Sun, Yichen Wei, Shuang Liang, Xiaoou Tang, and Jian

Sun. Cascaded hand pose regression. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2015.

[33] James S Supancic, Gregory Rogez, Yi Yang, Jamie Shot-

ton, and Deva Ramanan. Depth-based hand pose estimation:

data, methods, and challenges. In Proceedings of the IEEE

international conference on computer vision, pages 1868–

1876, 2015.

[34] Danhang Tang, Hyung Jin Chang, Alykhan Tejani, and Tae-

Kyun Kim. Latent regression forest: Structured estimation of

3d articulated hand posture. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

3786–3793, 2014.

[35] Danhang Tang, Jonathan Taylor, Pushmeet Kohli, Cem Ke-

skin, Tae-Kyun Kim, and Jamie Shotton. Opening the black

box: Hierarchical sampling optimization for estimating hu-

man hand pose. In Proceedings of the IEEE international

conference on computer vision, pages 3325–3333, 2015.

[36] Danhang Tang, Tsz-Ho Yu, and Tae-Kyun Kim. Real-

time articulated hand pose estimation using semi-supervised

transductive regression forests. In Proceedings of the IEEE

international conference on computer vision, pages 3224–

3231, 2013.

[37] Jonathan Taylor, Jamie Shotton, Toby Sharp, and Andrew

Fitzgibbon. The vitruvian manifold: Inferring dense corre-

spondences for one-shot human pose estimation. In Com-

puter Vision and Pattern Recognition (CVPR), 2012 IEEE

Conference on, pages 103–110. IEEE, 2012.

[38] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken

Perlin. Real-time continuous pose recovery of human hands

using convolutional networks. ACM Transactions on Graph-

ics (ToG), 33(5):169, 2014.

[39] Chengde Wan, Thomas Probst, Luc Van Gool, and Angela

Yao. Dense 3d regression for hand pose estimation. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018.

[40] Guijin Wang, Xinghao Chen, Hengkai Guo, and Cairong

Zhang. Region ensemble network: towards good practices

for deep 3d hand pose estimation. Journal of Visual Commu-

nication and Image Representation, 2018.

[41] Fangting Xia, Peng Wang, Xianjie Chen, and Alan L Yuille.

Joint multi-person pose estimation and semantic part seg-

mentation. In CVPR, volume 2, page 7, 2017.

[42] Chi Xu, Lakshmi Narasimhan Govindarajan, Yu Zhang, and

Li Cheng. Lie-x: Depth image based articulated object pose

estimation, tracking, and action recognition on lie groups. In-

ternational Journal of Computer Vision, 123:454–478, 2017.

[43] Shanxin Yuan, Guillermo Garcia-Hernando, Björn Stenger,

Gyeongsik Moon, Ju Yong Chang, Kyoung Mu Lee, Pavlo

Molchanov, Jan Kautz, Sina Honari, Liuhao Ge, et al. Depth-

based 3d hand pose estimation: From current achievements

to future goals. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018.

[44] Shanxin Yuan, Qi Ye, Guillermo Garcia-Hernando, and Tae-

Kyun Kim. The 2017 hands in the million challenge on

3d hand pose estimation. arXiv preprint arXiv:1707.02237,

2017.

[45] Shanxin Yuan, Qi Ye, Bjorn Stenger, Siddhant Jain, and Tae-

Kyun Kim. Bighand2.2m benchmark: Hand pose dataset and

state of the art analysis. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), July 2017.

[46] Xingyi Zhou, Qingfu Wan, Wei Zhang, Xiangyang Xue,

and Yichen Wei. Model-based deep hand pose estimation.

In Proceedings of the Twenty-Fifth International Joint Con-

ference on Artificial Intelligence, pages 2421–2427. AAAI

Press, 2016.

[47] Yidan Zhou, Jian Lu, Kuo Du, Xiangbo Lin, Yi Sun, and Xi-

aohong Ma. Hbe: Hand branch ensemble network for real-

time 3d hand pose estimation. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 501–

516, 2018.

[48] Christian Zimmermann and Thomas Brox. Learning to es-

timate 3d hand pose from single rgb images. In The IEEE

International Conference on Computer Vision (ICCV), Oct

2017.

9905


