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Abstract

Several tasks in machine learning are evaluated us-

ing non-differentiable metrics such as mean average pre-

cision or Spearman correlation. However, their non-

differentiability prevents from using them as objective func-

tions in a learning framework. Surrogate and relaxation

methods exist but tend to be specific to a given metric.

In the present work, we introduce a new method to learn

approximations of such non-differentiable objective func-

tions. Our approach is based on a deep architecture that

approximates the sorting of arbitrary sets of scores. It is

trained virtually for free using synthetic data. This sorting

deep (SoDeep) net can then be combined in a plug-and-play

manner with existing deep architectures. We demonstrate

the interest of our approach in three different tasks that

require ranking: Cross-modal text-image retrieval, multi-

label image classification and visual memorability ranking.

Our approach yields very competitive results on these three

tasks, which validates the merit and the flexibility of SoDeep

as a proxy for sorting operation in ranking-based losses.

1. Introduction

Deep learning approaches have gained enormous re-

search interest for many Computer Vision tasks in the recent

years. Deep convolutional networks are now commonly

used to learn state-of-the-art models for visual recognition,

including image classification [26, 18, 35] and visual se-

mantic embedding [25, 22, 37]. One of the strengths of

these deep approaches is the ability to train them in an end-

to-end manner removing the need for handcrafted features

[29]. In such a paradigm, the network starts with the raw

inputs, and handles feature extraction (low level and high-

level features) and prediction internally. The main require-

ment is to define a trainable scheme. For deep architec-

tures, stochastic gradient descent with back-propagation is

usually performed to minimize an objective function. This

loss function depends on the target task but has to be at least

Figure 1: Overview of SoDeep, the proposed end-to-

end trainable deep architecture to approximate non-

differentiable ranking metrics. A pre-trained differen-

tiable sorter (deep neural net [DNN] ΘB) is used to con-

vert into ranks the raw scores given by the model (DNN

ΘA) being trained to a collection of inputs. A loss is then

applied to the predicted rank and the error can be back-

propagated through the differentiable sorter and used to up-

date the weights ΘA.

differentiable.

Machine learning tasks are often evaluated and com-

pared using metrics which differ from the objective func-

tion used during training. The choice of an evaluation met-

ric is intimately related to the definition of the task at hand,

even sometimes to the benchmark itself. For example, ac-

curacy seems to be the natural choice to evaluate classifica-

tion methods, whereas the choice of the objective function

is also influenced by the mathematical properties that allow

a proper optimization of the model. For classification, one

would typically choose the cross entropy loss – a differen-

tiable function – over the non-differentiable accuracy. Ide-

ally, the objective function used during training would be

identical to the evaluation metric. However, standard evalu-

ation metrics are often not suitable as training objectives for

lack of differentiability to start with. This results in the use

of surrogate loss functions that are better behaved (smooth,

possibly convex). Unfortunately, coming up with good sur-

rogate functions is not an easy task.
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In this paper, we focus on the non-differentiability of the

evaluation metrics used in ranking-based tasks such as re-

call, mean average precision and Spearman correlation. De-

parting from prior art on building surrogates losses for such

tasks, we adopt a simple, yet effective, learning approach:

Our main idea is to approximate the non-differentiable part

of such ranking-based metrics by an all-purpose learnable

deep neural network. In effect, this architecture is designed

and trained to mimic sorting operations. We call it SoDeep.

SoDeep can be added in a plug-and-play manner on top of

any deep network trained for tasks whose final evaluation

metric is rank-based, hence not differentiable. The resulting

combined architecture is end-to-end learnable with a loss

that relates closely to the final metric.

Our contributions are as follows:

• We propose a deep neural net that acts as a differentiable

proxy for ranking, allowing one to rewrite different eval-

uation metrics as functions of this sorter, hence making

them differentiable and suitable as training loss.

• We explore two types of architectures for this trainable

sorting function: convolutional and recurrent.

• We combine the proposed differentiable sorting module

with standard deep CNNs, train them end-to-end on three

challenging tasks, and demonstrate the merit of this novel

approach through extensive evaluations of the resulting

models.

The rest of the paper is organized as follows. We discuss in

Section 2 the related works on direct and indirect optimiza-

tion of ranking-based metrics, and position our work ac-

cordingly. Section 3 is dedicated to the presentation of our

approach. We show in particular how a “universal” sorting

proxy suffices to tackle standard rank-based metrics, and

present different architectures to this end. More details on

the system and its training are reported in Section 4, along

with various experiments. We first establish new state-of-

the-art performance on cross-modal retrieval, then we show

the benefits of our learned loss function compared to stan-

dard methods on memorability prediction and multi-label

image classification.

2. Related works

Many data processing systems rely on sorting opera-

tions at some stage of their pipeline. It is the case also in

machine learning, where handling such non-differentiable,

non-local operations can be a real challenge [32]. For ex-

ample, retrieval systems require to rank a set of database

items according to their relevance to a query. For sake of

training, simple loss functions that are decomposable over

each training sample have been proposed as for instance

in [19] for the area under the ROC curve. Recently, some

more complex non-decomposable losses (such as the Aver-

age Precision (AP), Spearman coefficient, and normalized

discounted cumulative gain (nDCG) [3]) that present hard

computational challenges have been proposed [31].

Mean average precision optimization Our work shares

the high level goal of using ranking metrics as training ob-

jective function with many works before us. Several works

studied the problem of optimizing average precision with

support vector machines [21, 40] and other works extended

these approaches to neural networks [1, 31, 8]. To learn

rank, the seminal work [21] relies on a structured hinge up-

per bound to the loss. Further works reduce the computa-

tional complexity [31] or rely on asymptotic methods [36].

The focus of these works is mainly on the relaxation of the

mean average precision, while our focus is on learning a

surrogate for the ranking operation itself such that it can

be combined with multiple ranking metrics. In contrast to

most ranking-based techniques, which have to face the high

computational complexity of the loss augmented inference

[21, 36, 31], we propose a fast, generic, deep sorting ar-

chitecture that can be used in gradient-based training for

rank-based tasks.

Application of ranking based metrics Ranking is com-

monly used in evaluation metrics. On retrieval tasks such

as cross-modal retrieval [25, 22, 15, 12, 30], recall is the

standard evaluation. Image classification [11, 9] and ob-

ject recognition are evaluated with mean average precision

in the multi-label case. Ordinal regression [5] is evaluated

using Spearman correlation.

Existing surrogate functions Multiple surrogates for

ranking exist. Using metric learning to do retrieval is one

of them. This popular approach avoids the use of the rank-

ing function altogether. Instead, pairwise [39], triplet-wise

[38, 4] and list-wise [13, 2] losses are used to optimize dis-

tances in a latent space. The cross-entropy loss is typically

used for multi-label and multi-class classification tasks.

3. SoDeep approach

Rank-based metrics such as recall, Spearman correlation

and mean average precision can be expressed as a function

of the rank of the output scores. The computation of the

rank being the only non-differentiable part of these metrics,

we propose to learn a surrogate network that approximates

directly this sorting operation.

3.1. Learning a sorting proxy

Let y ∈ R
d be a vector of d real values and rk the rank-

ing function so that rk(y) ∈ {1 · · · d}d is the vector con-

taining the rank for each variable in y, i.e. rk(y)i is the

rank of yi among the yj’s. We want to design a deep archi-

tecture fΘB
that is able to mimic this sorting operator. The

training procedure of this DNN is summarized in Fig. 2.

The aim is to learn its parameters, ΘB , so that the output of
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the network is as close as possible to the output of the exact

sorting.

Before discussing possible architectures, let’s consider

the training of this network, independent of its future use.

We first generate a training set by randomly sampling N

input vectors y(n) and we compute through exact sorting

the associated ground-truth rank vectors r(n) = rk(y(n)).
We then classically learn the DNN fΘB

by minimizing a L1

loss between the predicted ranking vector r̂ = fΘB
(y) and

the ground-truth rank r over the training set:

min
ΘB

N
∑

n=1

∥

∥

∥
rk(y(n))− fΘB

(y(n))
∥

∥

∥

1
. (1)

We explore in the following different network architectures

and we explain how the training data is generated.

Figure 2: Training a differentiable sorter. Given a score

vector y we learn the parameters ΘB of a DNN such that

its output r̂ approximates the true rank vector rk(y). The

model is trained using gradient descent and an L1 loss.

Once trained, fΘB
can be used as a differentiable surrogate

of the ranking function.

3.1.1 Sorter architectures

We investigate two types of architectures for our differen-

tiable sorter fΘB
. One is a recurrent network and the other

one a convolutional network, each capturing interesting as-

pects of standard sorting algorithms:

• The recurrent architecture in Fig. 3a consists of a bi-

directional LSTM [34] followed by a linear projection.

The bi-directional recurrent network creates a connection

between the output of the network and every input, which

is critical for ranking computation. Knowledge about the

whole sequence is needed to compute the true rank of any

element.

• The convolutional architecture in Fig. 3b consists of 8

convolutional blocks, each of these blocks being a one-

dimensional convolution followed by a batch normaliza-

tion layer [20] and a ReLU activation function. The sizes

of the convolutional filters are chosen such that the output

of the network contains as many channels as the length of

the input sequence. Convolutions are used for their local

property: indeed, sorting algorithms such as bubble sort

[14] only rely on a sequence of local operations. The in-

tuition is that a deep enough convolutional network, with

its cascaded local operations, should be able to mimic re-

cursive sorting algorithms and thus to provide an efficient

approximation of ranks.

We will further discuss the interest of both types of SoDeep

block architectures in the experiments.

3.1.2 Training data

SoDeep module can be easily (pre)trained with supervision

on synthetic data. Indeed, while being non-differentiable,

the ranking function rk can be computed with classic sort-

ing algorithms. The training data consists of vectors of ran-

domly generated scalars, associated with their ground-truth

rank vectors. In our experiments, the numbers are sampled

from different types of distributions:

• Uniform distribution over [−1, 1];

• Normal distribution with µ = 0 and σ = 1;

• Sequence of evenly spaced numbers in a uniformly drawn

random sub-range of [−1, 1];

• Random mixtures of the previous distributions.

While the differentiable sorter can be trained ahead of

time on a variety of input distributions, as explained above,

there might be a shift with the actual score distribution that

the main network fΘA
will output for the task at hand. This

shift can reduce naturally during training, or an alignment

can be explicitly enforced. For example, fΘA
can be de-

signed to output data in the interval used to learn the sorter,

with the help of bounded functions such as cosine similarity.

3.2. Using SoDeep for training with rank­based loss

Rank-based metrics are used for evaluating and compar-

ing learned models in a number of tasks. Recall is a stan-

dard metric for image and information retrieval, mean Av-

erage Prediction (mAP) for classification and recognition,

and Spearman correlation for ordinal prediction. This type

of rank-based metrics are non-differentiable because they

require to transition from the continuous domain (score) to-

ward the discrete domain (rank).

As presented in Fig 1, we propose to insert a pre-trained

SoDeep proxy block fΘB
between the deep scoring func-

tion fΘA
and the chosen rank-based loss. We show in the

following how mAP, Spearman correlation and recall can

be expressed as functions of the rank and combined with

SoDeep accordingly.

In the following we assume a training set of annotated

pairs {(xi, y
∗
i )}

M
i=1 for the task at hand. A group B of
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(a) Architecture of LSTM sorter. (b) Architecture of CNN sorter.

Figure 3: SoDeep architecture. The sorter takes a vector of raw score y ∈ R
d as input and outputs a vector r̂ ∈ R

d. Two

architectures are explored, one recurrent (a), the other one, convolutional (b). Both architectures present a last affine layer to

get a final projection to a vector r̂ in R
d. Note that even if it is not explicitly enforced, r̂ will try to mimic as close as possible

the vector of the ranks of the y variables.

d training examples among them yields a prediction vec-

tor y(ΘA) = [fΘA
(xi)]i∈B and an associated ground-truth

score vector y∗ = [y∗i ]i∈B (Fig. 1).

3.2.1 Spearman correlation

For two vectors y and y′ of size d, corresponding to two sets

of d observations, the Spearman correlation [7] is defined

as:

rs = 1−
6‖rk(y)− rk(y′)‖22

d(d2 − 1)
. (2)

Maximizing w.r.t. parameters ΘA the sum of Spearman

correlations (2) between ground truth and predicted score

vectors over N subsets of training examples amounts to

solving the minimization problem:

min
ΘA

N
∑

n=1

∥

∥

∥
rk(y(n))− rk(y∗(n))

∥

∥

∥

2

2
, (3)

with the loss not being differentiable.

Using now our differentiable proxy instead of the rank

function, we can define the new Spearman loss for a group

B:

LSPR(ΘA,B) =

N
∑

n=1

∥

∥

∥
fΘB

(y(ΘA)
(n))− rk(y∗(n))

∥

∥

∥

2

2
.

(4)

Training will typically minimize it over a large set of

groups. Note that here the optimization is done over ΘA,

knowing that SoDepp block fΘB
has been trained indepen-

dently on specific synthetic training data. Optionally, the

block can be fine-tuned along the way, hence minimizing

w.r.t. ΘB as well.

3.2.2 Mean Average Precision (mAP)

Multilabel image classification is often evaluated using

mAP, a metric from information retrieval. To define it, each

of the C classes is considered as a query over the d elements

of the datasets. For class c, denoting y∗
c the d-dimensional

ground-truth binary vector and yc the vector of scores for

this class, the average precision (AP) for the class is defined

as [40] :

AP (yc,y
∗
c ) =

1

rel

∑

j:y∗

c
(j)=1

Prec(j), (5)

where rel = |j : y∗
c (j) = 1| is the number of positive items

for class c and precision for element j is defined as:

Prec(j) =
|{s ∈ S : y∗

c (s) = 1}|

rk(yc)j
, (6)

with S the set of indices of the elements of yc larger than

yc(j).
Minimizing rk(y)j for all j from class c (i.e., those ver-

ifying y∗
c (j) = 1) will be used as a surrogate of the maxi-

mization of the AP over predictor’s parameters ΘA.

The mAP is obtained by averaging AP over the C

classes. Replacing the rank function by its differentiable

proxy, the proposed mAP-based loss reads:

LmAP (ΘA,B) =

C
∑

c=1

〈fΘB
(yc),y

∗
c 〉. (7)

3.2.3 Recall at K

Recall at rank k is often used to evaluate retrieval tasks. In

the following we assume a training set {xi}
M
i=1 for the task

at hand. A group B of d training examples among them

yields a d × d prediction matrix Y(ΘA) = [fΘA
(xi)]i∈B

representing the scores of all pairwise combinations of

training examples in B. In other words, the i-th column

of this matrix, Y[i] = fΘA
(xi), provides the relevance of

other vectors in the group w.r.t. to query xi.

This matrix being given, recall at K is defined as:

R@K(Y) =
1

d

d
∑

i=1

{

1, if rk(Y[i])p < K

0, otherwise,
(8)
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with p the index of the unique positive entry in Y[i], a single

relevant item being assumed for query xi.

Once again, our sorter enables a differentiable imple-

mentation of this measure. However, we could not obtain

conclusive results yet, possibly due to the batch size lim-

iting the range of the summation. We found, however, an

alternative way to leverage our sorting network. It is based

on the use of the “triplet loss”, a popular surrogate for re-

call. We propose to apply this loss on ranks instead of sim-

ilarity scores, making it only dependent on the ordering of

the retrieved elements. The triplet loss on the rank can be

expressed as follows:

loss(Y[i], p, c) = max
{

0, α+fΘB
(Y[i])p−fΘB

(Y[i])c
}

,

(9)

where p is defined as above (the positive example in the

triplet, given anchor query xi) and c is the index of a nega-

tive (irrelevant) example for this query. The goal is to mini-

mize the rank of the positive pair with score Y[i]p such that

its rank is lower than the rank of the negative pair with score

Y[i]c by a margin of α.

The complete loss is then expressed over all the elements

of B in its hard negative version as:

LREC(ΘA,B) =
1

d

∑

i∈B

max
c 6=p,c 6=i

loss(Y[i], p, c). (10)

In equations (2), (5) and (8), the metrics are expressed in

function of the non-differentiable rank function rk. Lever-

aging our differentiable surrogate allows us to design a dif-

ferentiable loss function for each of these metrics, respec-

tively (4), (7) and (10).

4. Experiments

We present in this section several experiments to evaluate

our approach. We first detail the way we train our differen-

tiable sorter deep block using only synthetic data. We also

present a comparison between the different models based

on CNNs and on LSTM recurrent nets and with our baseline

inspired from pairwise comparisons. We then evaluate the

SoDeep combined with deep scoring functions fΘB
. The

loss functions expressed in (4), (7) and (10) are applied to

three different tasks: memorability prediction, cross-modal

retrieval, and object recognition.

4.1. SoDeep Training and Analysis

4.1.1 Training

The proposed SoDeep models based on BI-LSTM and

CNNs are trained on synthetic pairs of scores and ranks

generated on the fly according to the distributions defined

in Section 3.1.2.

For convenience we call an epoch as going through 100

000 pairs. The training is done using the Adam optimizer

Sorter model L1 loss

Handcrafted sorter 0.0350

CNN sorter 0.0120

LSTM sorter loss 0.0033

Table 1: Performance of the sorters on synthetic data.

Ranking performance of the sorter on the synthetic dataset.

Among the learned sorters the LSTM one is the most effi-

cient.

[24] with a learning rate of 0.001 which is halved every 100

epochs. Mini-batches of size 512 are used. The model is

trained until the loss values stop decreasing and are stable.

4.1.2 A handcrafted sorting baseline

We add to our trainable SoDeep blocks a baseline that does

not require any training.

Inspired by the representation of the ranking problem as

a matrix of pairwise ordering in [40], we build a handcrafted

differentiable sorter fh using pairwise comparisons.

A sigmoid function parametrized with λ scalar is used as

a binary comparison function between two scalars a and b

as:

σcomp(a, b) =
1

1 + e−λ(b−a)
. (11)

Indeed, if a and b are separated by a sufficient margin,

σcomp(a, b) will be either 0 or 1. The parameter λ is used

to control the precision of the comparator.

This function may be used to approximate the rela-

tive rank of two components yi and yj in a vector y:

σcomp(yi,yj) will be close to 1 if yi is (significantly)

smaller than yj , 0 otherwise. By summing up the result of

the comparison between yi and all the other elements of the

vector y, we form our ranking function fh. More precisely,

the rank fh(y, i) for the i-est element of y is expressed as

follow:

fh(y, i) =
∑

j:j 6=i

σcomp(yi,yj). (12)

The overall precision of the handcrafted sorter can be

controlled by the hyper parameter λ. The value of lambda

is a trade off between the precision of the predicted rank and

the efficiency when back-propagating through the sorter.

Further experiments will use λ = 10.

4.1.3 Results

Table 1 contains the loss values of the two different trained

sorters and the handcrafted one on a generated test set of 10

000 samples. The LSTM based sorter is the most efficient,

outperforming the CNN and the handcrafted sorters.
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The performance of the CNN sorter slightly below the

LSTM-based one can be explained by local behaviour of

the CNNs, requiring a more complex structure to be able to

rank elements.

In Figure 4 we compare CNN sorters with respect to their

number of layers. From these results, we choose to use 8

layers in our CNN sorter since the performance seems to

saturate once this depth has been reached. A possible ex-

planation of this saturation is that the relation between the

depth of the network and the input dimension (d = 100
here) is logarithmic.

Figure 4: Performance of the CNN sorter with respect

to the depth of the CNN. Value of the cost function during

the training of multiple CNN sorters with a number of layers

varying from 2 to 10. The model performances saturate for

models with 8 layers or more.

4.1.4 Further analysis

The ranking function being non-continuous is non-

differentiable, the rank value is jumping from one discrete

value to another. We design an experiment to visualize how

the different types of sorter behave at these discontinuities.

Starting from a uniformly sampled vector y′ ∈ R
100 of raw

scores in the range [−1, 1], we compute the ground truth

rank rk(y′)1 and the predicted rank fΘB
(y′)1 of the first

element y′1 while varying this element y′1 from -1 to 1 in

increments of 0.001. The plot of the predicted ranks can be

found in Fig. 5. The blue curve corresponds to the ground-

truth rank where non-continuous steps are visible, whereas

the curves for the learned sorters (orange and green) are a

smooth approximation of the ground-truth curve.

In Fig. 6 we compare our SoDeep against previous ap-

proaches optimizing structured hinge upper bound to the

mAP loss. We followed the protocol described in [36] for

their synthetic data experiments. Our sorters using the loss

Figure 5: Sorter behaviour analysis. Given a synthetic

vector y′ of raw scores in the range [−1, 1] of size 100 we

plot the rank of its first element y′
1 when the said value is

linearly interpolated between -1 and 1. The x-axis represent

the value y′
1, and the y-axis is it corresponding rank.

LmAP defined in (7) are compared to a re-implementation

of the Hinge-AP loss proposed in [21]. The results in Fig. 6

show that our approach with the LSTM sorter (blue curve)

gets mAP scores similar to [21] (purple curve) while being

generic and less complex.

Figure 6: Synthetic experiment on mAP optimization.

Comparison against the proposed sorter and the previous

approaches.

From the learned sorters, the LSTM architecture is the one

performing best on synthetic data (Tab. 1). In addition, its

simple design and small number of hyper-parameters make

it straightforward to train. The CNN architecture while not

being as efficient, uses a smaller number of weights and

is 1.7 time faster. Further experiments will use the LSTM

sorter unless specified otherwise.
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4.2. Differentiable Sorter based loss functions

Our method is benchmarked on three tasks. Each one of

these tasks focuses on a different rank based loss function.

Cross-modal retrieval will be used to test recall evaluation

metrics, memorability prediction will be used for Spearman

correlation and image classification will be used for mean

average precision.

As explained in Section 3.1.2, a shift in distribution

might appear when using sorter-based loss. To prevent this,

a parallel loss can be used to help domain alignment. This

loss can be used only to stabilize the initialization or kept

for the whole training.

4.2.1 Spearman Correlation: Predicting Media Mem-

orability

The media memorability prediction task [5] is used to test

the differentiable sorter with respect to the Spearman cor-

relation metrics. Examples of elements of the dataset can

be found in Fig. 7. Given a 7 seconds video the task con-

sists in predicting the short term memorability score. The

memorability score reflects the probability of a video being

remembered.

Figure 7: Media memorability dataset. Frames with

low and high memorability scores coming from 4 different

videos of the memorability dataset [5]. The memorability

scores are overlayed on top of the images.

The task is originally on video memorability. However

the model used here are pretrained on images, therefore 7

frames are extracted from each video and are associated

with the memorability score of the source video. The train-

ing is done on pairs of frame and memorability score. Dur-

ing testing the predicted score of the 7 frames of a video are

averaged to obtain the score per video. The dataset contains

8000 videos (56000 frames) for training and 2000 videos

for testing. This training set is completed using LaMem

dataset [23] adding 60 000 (image, memorability) pairs to

the training data.

Single model Spear. cor. test

Baseline [6] 46.0

Image only [17] 48.8

R34 + MSE loss 44.2

R34 + SoDeep loss 46.6

Sem-Emb + MSE loss 48.6

Sem-Emb + SoDeep loss 49.4

Table 2: Media Memorability prediction results. Our

proposed loss function and architecture outperform the

state-of-the-art system [17] by 0.6 pt.

Architectures and training The regression model con-

sists of a feature extractor combined with a two layers MLP

[33] regressing features to a single memorability score. We

use two pretrained nets to extract features: the Resnet-34

[18] and the semantic embedding model of [10] (as in the

next section).

We use the loss LSPR defined in (4) to learn the memo-

rability model. The training is done in two steps. First, for

15 epochs only the MLP layers are trained while the weights

of the feature extractor are kept frozen. Second, the whole

model is finetuned. The Adam optimizer [24] is used with

a learning rate of 0.001 which is halved every 3 epochs. To

help with domain adaptation, our loss is combined with an

L1 loss for the first epoch.

Results In Tab. 2, we compare the impact of the learned

loss over two architectures. For both models we defined a

baseline using a L2 loss. On both architectures the proposed

loss function achieves higher Spearman correlation by 2.4

points on the Resnet model and 0.8 points on the semantic

embedding model. These are state of the arts result on the

task with an absolute gain of 0.6 pt. The model is almost

on par (-0.3 pt) with an ensemble method proposed by [17]

that is using additional textual data.

Sorter comparison The memorability prediction is also

used to compare the different types of sorters presented so

far. Fixing the model and the hyper parameters, 4 models

are trained with 4 different types of loss. The losses based

on the LSTM sorter, the CNN sorter and the handcrafted

sorter obtained respectively a Spearman correlation of 49.4,

46.6, 45.7, and the L1 loss gives a correlation of 46.2. These

results are consistent with the result on synthetic data, with

the LSTM sorter performing the best, followed by the CNN

and handcrafted ones.

4.2.2 Mean Average precision: Image classification

The VOC 2007 [11] object recognition challenge is used to

evaluate our sorter on a task using the mean average preci-

sion metric. We use an off-the-shelf model [9]. This model
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caption retrieval image retrieval

model R@1 R@5 R@10 Med. r R@1 R@5 R@10 Med. r

Emb. network [37] 54.9 84.0 92.2 - 43.3 76.4 87.5 -

DSVE-Loc [10] 69.8 91.9 96.6 1 55.9 86.9 94.0 1

GXN (i2t+t2i) [16] 68.5 - 97.9 1 56.6 - 94.5 1

DSVE-Loc + SoDeep loss 71.5 92.8 97.1 1 56.2 87.0 94.3 1

Table 3: Cross-modal retrieval results on MS-COCO. Using the proposed rank based loss function outperforms the hard

negative triplet margin loss, achieving state-of-the-art results on the caption retrieval task.

Loss mAP

VGG 16 [35] 89.3

WILDCAT [9] 95.0

WILDCAT* 93.2

WILDCAT* + SoDeep loss 94.0

Table 4: Object recognition results. Model marked by

(*) are obtained with code available online: https://

github.com/durandtibo/wildcat.pytorch

is a fully convolutional network, combining a Resnet-101

[18] with advanced spatial aggregation mechanisms.

To evaluate the loss LmAP defined in (7) two versions

of the model are trained: A baseline using only multi-label

soft margin loss, and another model trained using the multi-

label soft margin loss combined with LmAP .

Rows 3 and 4 of Tab. 4 show the results obtained by the

two previously described models. Both models are below

the state-of-the-art, however the use of the rank loss is ben-

eficial and improves the mAP by 0.8 pt compared to the

model using only the soft margin loss.

4.2.3 Recall@K: Cross-modal Retrieval

The last benchmark used to evaluate the differentiable sorter

is the cross-modal retrieval. Starting from images annotated

with text, we train a model producing rich features for both

image and text that live in the same embedding space. Sim-

ilarity in the embedding space is then used to evaluate the

quality of the model on the cross-modal retrieval task.

Our approach is evaluated on the MS-COCO dataset [28]

using the rVal split proposed in [22]. The dataset contains

110k images for training, 5k for validation and 5k for test-

ing. Each image is annotated with 5 captions.

Given a query image (resp. a caption), the aim is to

retrieve the corresponding captions (resp. image). Since

MS-COCO contains 5 captions per image, recall at r

(“R@r”) for caption retrieval is computed based on whether

at least one of the correct captions is among the first r re-

trieved ones. The task is performed 5 times on 1000-image

subsets of the test set and the results are averaged.

We use an off-the-shelf model [10]. It is a two-paths

multimodal embedding approach that leverages the latest

neural network architecture. The visual pipeline is based

on a Resnet-152 and is fully convolutional. The textual

pipeline is trained from scratch and uses a Simple Recur-

rent Unit (SRU) [27] to encode sentences. The model is

trained using the loss LREC defined in (10) instead of the

triplet based loss.

Cross-modal retrieval results can be found in Tab. 3. The

model trained using the proposed loss function (DSVE-

Loc + SoDeep loss) outperforms the similar architecture

DSVE-Loc trained with the triplet margin based loss by

(1.7%,0.9%,0.5%) on (R@1,R@5,R@10) in absolute for

caption retrieval, and by (0.3%,0.1%,0.3%) for image re-

trieval. It obtains state-of-the-art performance on caption

retrieval and is very competitive on image retrieval being

almost on par with the GXN [16] model, which has a much

more complex architecture. It is important to note that the

loss function proposed could be beneficial for any type of

architecture.

5. Conclusion

We have presented SoDeep, a novel method that lever-

ages the expressivity of recent architectures to learn differ-

entiable surrogate functions. Based on a direct deep net-

work modeling of the sorting operation, such a surrogate

allows us to train, in an end-to-end manner, models on a

diversity of tasks that are traditionally evaluated with rank-

based metrics. Remarkably, this deep proxy to estimate the

rank comes at virtually no cost since it is easily trained on

purely synthetic data.

Our experiments show that the proposed approach

achieves very good performance on cross-modal retrieval

tasks as well as on media memorability prediction and

multi-label image classification. These experiments demon-

strate the potential and the versatility of SoDeep. This ap-

proach allows the design of training losses that are closer

than before to metrics of interest, which opens up a wide

range of other applications in the future.
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