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Abstract

In this paper, we present LaSOT, a high-quality bench-

mark for Large-scale Single Object Tracking. LaSOT con-

sists of 1,400 sequences with more than 3.5M frames in to-

tal. Each frame in these sequences is carefully and man-

ually annotated with a bounding box, making LaSOT the

largest, to the best of our knowledge, densely annotated

tracking benchmark. The average video length of LaSOT

is more than 2,500 frames, and each sequence comprises

various challenges deriving from the wild where target ob-

jects may disappear and re-appear again in the view. By re-

leasing LaSOT, we expect to provide the community with a

large-scale dedicated benchmark with high quality for both

the training of deep trackers and the veritable evaluation of

tracking algorithms. Moreover, considering the close con-

nections of visual appearance and natural language, we en-

rich LaSOT by providing additional language specification,

aiming at encouraging the exploration of natural linguistic

feature for tracking. A thorough experimental evaluation of

35 tracking algorithms on LaSOT is presented with detailed

analysis, and the results demonstrate that there is still a big

room for improvements.

1. Introduction

Visual tracking, aiming to locate an arbitrary target in

a video with an initial bounding box in the first frame, has

been one of the most important problems in computer vision

with many applications such as video surveillance, robotics,

human-computer interaction and so forth [32, 47, 54]. With

considerable progresses in the tracking community, numer-

ous algorithms have been proposed. In this process, track-

ing benchmarks have played a vital role in objectively eval-
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Figure 1. Summaries of existing tracking benchmarks with high-

quality dense (per frame) annotations, including OTB-2013 [52],

OTB-2015 [53], TC-128 [35], NUS-PRO [28], UAV123 [39],

UAV20L [39], VOT-2014 [26], VOT-2017 [27] and LaSOT. The

circle diameter is in proportion to the number of frames of a bench-

mark. The proposed LaSOT is larger than all other benchmarks,

and focused on long-term tracking. Best viewed in color.

uating and comparing different trackers. Nevertheless, fur-

ther development and assessment of tracking algorithms are

restricted by existing benchmarks with several issues:

Small-scale. Deep representations have been popularly ap-

plied to modern object tracking algorithms, and demon-

strated state-of-the-art performances. However, it is diffi-

cult to train a deep tracker using tracking-specific videos

due to the scarcity of large-scale tracking datasets. As

shown in Fig. 1, existing datasets seldom have more than

400 sequences. As a result, researchers are restricted to

leverage either the pre-trained models (e.g., [46] and [18])

from image classification for deep feature extraction or the

sequences from video object detection (e.g., [45] and [43])

for deep feature learning, which may result in suboptimal

tracking performance because of the intrinsic differences

among different tasks [55]. Moreover, large scale bench-

marks are desired for more reliable evaluation results.

Lack of high-quality dense annotations. For tracking,
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Table 1. Comparison of LaSOT with the most popular dense benchmarks in the literatures.

Benchmark Videos
Min

frames

Mean

frames

Median

frames

Max

frames

Total

frames

Total

duration

frame

rate

Absent

labels

Object

classes

Class

balance

Num. of

attributes

Lingual

feature

OTB-2013 [52] 51 71 578 392 3,872 29K 16.4 min 30 fps ✗ 10 ✗ 11 ✗

OTB-2015 [53] 100 71 590 393 3,872 59K 32.8 min 30 fps ✗ 16 ✗ 11 ✗

TC-128 [35] 128 71 429 365 3,872 55K 30.7 min 30 fps ✗ 27 ✗ 11 ✗

VOT-2014 [26] 25 164 409 307 1,210 10K 5.7 min 30 fps ✗ 11 ✗ n/a ✗

VOT-2017 [27] 60 41 356 293 1,500 21K 11.9 min 30 fps ✗ 24 ✗ n/a ✗

NUS-PRO [28] 365 146 371 300 5,040 135K 75.2 min 30 fps ✗ 8 ✗ n/a ✗

UAV123 [39] 123 109 915 882 3,085 113K 62.5 min 30 fps ✗ 9 ✗ 12 ✗

UAV20L [39] 20 1,717 2,934 2,626 5,527 59K 32.6 min 30 fps ✗ 5 ✗ 12 ✗

NfS [14] 100 169 3,830 2,448 20,665 383K 26.6 min 240 fps ✗ 17 ✗ 9 ✗

GOT-10k [22] 10,000 - - - - 1.5M - 10 fps ✓ 563 ✗ 6 ✗

LaSOT 1,400 1,000 2,506 2,053 11,397 3.52M 32.5 hours 30 fps ✓ 70 ✓ 14 ✓

dense (i.e., per frame) annotations with high precision are

of importance for several reasons. (i) They ensure more ac-

curate and reliable evaluations; (ii) they offer desired train-

ing samples for the training of tracking algorithms; and

(iii) they provide rich temporal contexts among consecu-

tive frames that are important for tracking tasks. It is worth

noting that there are recently proposed benchmarks toward

large-scale and long-term tracking, such as [41] and [51],

their annotations are however either semi-automatic (e.g.,

generated by a tracking algorithm) or sparse (e.g., labeled

every 30 frames), limiting their usabilities.

Short-term tracking. A desired tracker is expected to be

capable of locating the target in a relative long period, in

which the target may disappear and re-enter the view. How-

ever, most existing benchmarks have been focused on short-

term tracking where the average sequence length is less than

600 frames (i.e., 20 seconds for 30 fps, see again Fig. 1) and

the target almost always appears in the video frame. The

evaluations on such short-term benchmarks may not reflect

the real performance of a tracker in real-world applications,

and thus restrain the deployment in practice.

Category bias. A robust tracking system should exhibit

stable performance insensitive to the category the target be-

longs to, which signifies that the category bias (or class im-

balance) should be inhibited in both training and evaluating

tracking algorithms. However, existing benchmarks usually

comprise only a few categories (see Tab. 1) with unbalanced

numbers of videos.

In the literature, many datasets have been proposed to

deal with the issues above: e.g., [39, 51] for long-term

tracking, [41] for large-scale, [52, 35, 25] for precise dense

annotations. Nevertheless, none of them addresses all the

issues, which motivates the proposal of LaSOT.

1.1. Contribution

With the above motivations, we provide the community

a novel benchmark for Large-scale Single Object Tracking

(LaSOT) with multi-fold contributions:
1) LaSOT consists of 1,400 videos with average 2,512

frames per sequence. Each frame is carefully inspected

and manually labeled, and the result visually double-

checked and corrected when needed. This way, we gen-

erate around 3.52 million high-quality bounding box an-

notations. Moreover, LaSOT contains 70 categories with

each consisting of twenty sequences. To our knowledge,

LaSOT is the largest benchmark with high-quality man-

ual dense annotations for object tracking to date. By re-

leasing LaSOT, we aim to offer a dedicated platform for

the development and assessment of tracking algorithms.

2) Different from existing datasets, LaSOT provides both

visual bounding box annotations and rich natural lan-

guage specification, which has recently been proven to

be beneficial for various vision tasks (e.g., [21, 31]) in-

cluding visual tracking [34]. By doing so, we aim to en-

courage and facilitate explorations of integrating visual

and lingual features for robust tracking performance.

3) To assess existing trackers and provide extensive base-

lines for future comparisons on LaSOT, we evaluate 35

representative trackers under different protocols, and an-

alyze their performances using different metrics.

2. Related Work

With considerable progresses in the tracking community,

many trackers and benchmarks have been proposed in re-

cent decades. In this section, we mainly focus on the track-

ing benchmarks that are relevant to our work, and refer the

readers to surveys [32, 47, 54, 30] for tracking algorithms.

For a systematic review, we intentionally classify track-

ing benchmarks into two types: one with dense manual an-

notations (referred to as dense benchmark for short) and the

other one with sparse and/or (semi-)automatic annotations.

In the following, we review each of these two categories.

2.1. Dense Benchmarks

Dense tracking benchmark provides dense bounding box

annotations for each video sequence. To ensure high qual-

ity, the bounding boxes are usually manually labeled with

careful inspection. For the visual tracking task, these highly

precise annotations are desired for both training and assess-

ing trackers. Currently, the popular dense benchmarks con-

tain OTB [52, 53], TC-128 [35], VOT [25], NUS-PRO [28],

UAV [39], NfS [14] and GOT-10k [22].

OTB. OTB-2013 [52] firstly contributes a testing dataset
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by collecting 51 videos with manually annotated bounding

box in each frame. The sequences are labeled with 11 at-

tributes for further analysis of tracking performance. Later,

OTB-2013 is extended to the larger OTB-2015 [53] by in-

troducing extra 50 sequences.

TC-128. TC-128 [35] comprises 128 videos that are specif-

ically designated to evaluate color-enhanced trackers. The

videos are labeled with 11 similar attributes as in OTB [52].

VOT. VOT [25] introduces a series of tracking competitions

with up to 60 sequences in each of them, aiming to evalu-

ate the performance of a tracker in a relative short duration.

Each frame in the VOT datasets is annotated with a rotated

bounding box with several attributes.

NUS-PRO. NUS-PRO [28] contains 365 sequences with a

focus on human and rigid object tracking. Each sequence in

NUS-PRO is annotated with both target location and occlu-

sion level for evaluation.

UAV. UAV123 and UAV20L [39] are utilized for unmanned

aerial vehicle (UAV) tracking, comprising 123 short and 20

long sequences, respectively. Both UAV123 and UAV20L

are labeled with 12 attributes.

NfS. NfS [14] provides 100 sequences with a high framer-

ate of 240 fps, aiming to analyze the effects of appearance

variations on tracking performance.

GOT-10k. GOT-10k [22] consists of 10,000 videos, aim-

ing to provide rich motion trajectories for developing and

evaluating trackers.

LaSOT belongs to the category of dense tracking dataset.

Compared to others, LaSOT is the largest with 3.52 million

frames and an average sequence length of 2,512 frames. In

addition, LaSOT provides extra lingual description for each

video while others do not. Tab. 1 provides a detailed com-

parison of LaSOT with existing dense benchmarks.

2.2. Other Benchmarks

In addition to the dense tracking benchmarks, there ex-

ist other benchmarks which may not provide high-quality

annotations for each frame. Instead, these benchmarks are

either annotated sparsely (e.g., every 30 frames) or labeled

(semi-)automatically by tracking algorithms. Representa-

tives of this type of benchmarks include ALOV [47], Track-

ingNet [41] and OxUvA [51]. ALOV [47] consists of 314

sequences labeled in 14 attributes. Instead of densely an-

notating each frame, ALOV provides annotations every 5

frames. TrackingNet [41] is a subset of the video object

detection benchmark YT-BB [43] by selecting 30K videos,

each of which is annotated by a tracker. Though the tracker

used for annotation is proven to be reliable in a short period

(i.e., 1 second) on OTB 2015 [53], it is difficult to guarantee

the same performance on a harder benchmark. Besides, the

average sequence length of TrackingNet does not exceed

500 frames, which may not demonstrate the performance of

a tracker in long-term scenarios. OxUvA [51] also comes

from YT-BB [43]. Unlike TrackingNet, OxUvA is focused

on long-term tracking. It contains 366 videos with an av-

erage length of around 4,200 frames. However, a problem

with OxUvA is that it does not provide dense annotations

in consecutive frames. Each video in OxUvA is annotated

every 30 frames, ignoring rich temporal context between

consecutive frames when developing a tracking algorithm.

Despite reduction of annotation cost, the evaluations on

these benchmarks may not faithfully reflect the true per-

formances of tracking algorithms. Moreover, it may cause

problems for some trackers that need to learn temporal mod-

els from annotations, since the temporal context in these

benchmarks may be either lost due to sparse annotation or

inaccurate due to potentially unreliable annotation. By con-

trast, LaSOT provides a large set of sequences with high-

quality dense bounding box annotations, which makes it

more suitable for developing deep trackers as well as evalu-

ating long-term tracking in practical application.

3. The Proposed LaSOT Benchmark

3.1. Design Principle

LaSOT aims to offer the community a dedicated dataset

for training and assessing trackers. To such purpose, we fol-

low five principles in constructing LaSOT, including large-

scale, high-quality dense annotations, long-term tracking,

category balance and comprehensive labeling.
1) Large-scale. One of the key motivations of LaSOT is to

provide a dataset for training data-hungry deep trackers,

which require a large set of annotated sequences. Ac-

cordingly, we expect such a dataset to contain at least a

thousand videos with at least a million frames.

2) High-quality dense annotations. As mentioned before,

a tracking dataset is desired to have high-quality dense

bounding box annotations, which are crucial for training

robust trackers as well as for faithful evaluation. For this

purpose, each sequence in LaSOT is manually annotated

with additional careful inspection and fine-tuning.

3) Long-term tracking. In comparison with short-term

tracking, long-term tracking can reflect more practical

performance of a tracker in the wild. We ensure that each

sequence comprises at least 1,000 frames, and the aver-

age sequence length in LaSOT is around 2,500 frames.

4) Category balance. A robust tracker is expected to per-

form consistently regardless of the category the target

object belongs to. For this purpose, in LaSOT we in-

clude a diverse set of objects from 70 classes and each

class contains equal number of videos.

5) Comprehensive labeling. As a complex task, tracking

has recently seen improvements from natural language

specification. To stimulate more explorations, a princi-

ple of LaSOT is to provide comprehensive labeling for

videos, including both visual and lingual annotations.
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3.2. Data Collection

Our benchmark covers a wide range of object categories

in diverse contexts. Specifically, LaSOT consists of 70 ob-

ject categories. Most of the categories are selected from the

1,000 classes from ImageNet [12], with a few exceptions

(e.g., drone) that are carefully chosen for popular tracking

applications. Different from existing dense benchmarks that

have less than 30 categories and typically are unevenly dis-

tributed, LaSOT provides the same number of sequences for

each category to alleviate potential category bias. Details of

the dataset can be found in the supplementary material.

After determining the 70 object categories in LaSOT, we

have searched for the videos of each class from YouTube.

Initially, we collect over 5,000 videos. With a joint consid-

eration of the quality of videos for tracking and the design

principles of LaSOT, we pick out 1,400 videos. However,

these 1,400 sequences are not immediately available for the

tracking task because of a large amount of irrelevant con-

tents. For example, for the video of person category (e.g., a

sporter), it often contains some introduction content of each

sporter in the beginning, which is undesirable for tracking.

Therefore, we carefully filter out these unrelated contents in

each video and retain an usable clip for tracking. In addi-

tion, each category in LaSOT consists of 20 targets, reflect-

ing the category balance and varieties of natural scenes.

Eventually, we have compiled a large-scale dataset by

gathering 1,400 sequences with 3.52 million frames from

YouTube under Creative Commons licence. The average

video length of LaSOT is 2,512 frames (i.e., 84 seconds for

30 fps). The shortest video contains 1,000 frames (i.e., 33

seconds), while the longest one consists of 11,397 frames

(i.e., 378 seconds).

3.3. Annotation

In order to provide consistent bounding box annotation,

we define a deterministic annotation strategy. Given a video

with a specific tracking target, for each frame, if the target

object appears in the frame, a labeler manually draws/edits

its bounding box as the tightest up-right one to fit any vis-

ible part of the target; otherwise, the labeler gives an ab-

sent label, either out-of-view or full occlusion, to the frame.

Note that, such strategy can not guarantee to minimize the

background area in the box, as observed in any other bench-

marks. However, the strategy does provide a consistent an-

notation that is relatively stable for learning the dynamics.

While the above strategy works great most of the time,

exceptions exist. Some objects, e.g. a mouse, may have long

and thin and highly deformable part, e.g. a tail, which not

only causes serious noise in object appearance and shape,

but also provides little information for localizing of the tar-

get object. We carefully identify such objects and associ-

ated videos in LaSOT, and design specific rules for their an-

notation (e.g., exclude the tails of mice when drawing their

Bear-12: “white bear walking on grass around the river bank”

Bus-19: “red bus running on the highway”

Horse-1: “brown horse running on the ground”

Person-14: “boy in black suit dancing in front of people”

Mouse-6: “white mouse moving on the ground around another white mouse”

Figure 2. Example sequences and annotations of our LaSOT. We

focus on long-term videos in which target objects may disappear,

and then re-enter the view again. In addition, we provide natural

language specification for each sequence. Best viewed in color.

initial annotation fine-tuned annotation

Figure 3. Examples of fine-tuning initial annotations.

bounding boxes). An example of such cases is shown in the

last row of Fig. 2.

The natural language specification of a sequence is repre-

sented by a sentence that describes the color, behavior and

surroundings of the target. For LaSOT, we provide 1,400

sentences for all videos. Note that the lingual description

aims to provide auxiliary help for tracking. For instance,

if a tracker generates proposals for further processing, the

lingual specification can assist in reducing the ambiguity

among them by serving as a global semantic guidance.

The greatest effort for constructing a high-quality dense

tracking dataset is, apparently, the manual labeling, double-

checking, and error correcting. For this task, we have as-

sembled an annotation team containing several Ph.D. stu-

dents working on related areas and about 10 volunteers. To

guarantee high-quality annotation, each video is processed

by teams: a labeling team and a validation team. A labeling

team is composed of a volunteer and an expert (Ph.D. stu-

dent). The volunteer manually draws/edits the target bound-

ing box in each frame, and the expert inspects the results

and adjusts them if necessary. Then, the annotation results

are reviewed by the validation team containing several (typ-
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Table 2. Descriptions of 14 different attributes in LaSOT.

Attribute Definition Attribute Definition

CM Abrupt motion of the camera VC Viewpoint affects target appearance significantly

ROT The target rotates in the image SV The ratio of bounding box is outside the rage [0.5, 2]

DEF The target is deformable during tracking BC The background has the similar appearance as the target

FOC The target is fully occluded in the sequence MB The target region is blurred due to target or camera motion

IV The illumination in the target region changes ARC The ratio of bounding box aspect ratio is outside the rage [0.5, 2]

OV The target completely leaves the video frame LR The target box is smaller than 1000 pixels in at least one frame

POC The target is partially occluded in the sequence FM The motion of the target is larger than the size of its bounding box

(a) Distribution of sequences in each attribute on LaSOT (b) Distribution comparison in common attributes on different benchmarks

Figure 4. Distribution of sequences in each attribute on LaSOT and comparison with other benchmarks. Best viewed in color.

ically three) experts. If an annotation result is not unani-

mously agreed by the members of validation team, it will

be sent back to the original labeling team to revise.

To improve the annotation quality as much as possible,

our team checks the annotation results very carefully and

revises them frequently. Around 40% of the initial annota-

tions fail in the first round of validation. And many frames

are revised more than three times. Some challenging exam-

ples of frames that are initially labeled incorrectly or inac-

curately are given in Fig. 3. With all these efforts, we finally

reach a benchmark with high-quality dense annotation, with

some examples shown in Fig. 2.

3.4. Attributes

To enable further performance analysis of trackers, we

label each sequence with 14 attributes, including illumi-

nation variation (IV), full occlusion (FOC), partial occlu-

sion (POC), deformation (DEF), motion blur (MB), fast mo-

tion (FM), scale variation (SV), camera motion (CM), rota-

tion (ROT), background clutter (BC), low resolution (LR),

viewpoint change (VC), out-of-view (OV) and aspect ratio

change (ARC). The attributions are defined in Tab. 2, and

Fig. 4 (a) shows the distribution of videos in each attribute.

From Fig. 4 (a), we observe that the most common chal-

lenge factors in LaSOT are scale changes (SV and ARC),

occlusion (POC and FOC), deformation (DEF) and rota-

tion (ROT), which are well-known challenges for tracking

in real-world applications. Besides, Fig. 4 (b) demonstrates

the distribution of attributes of LaSOT compared to OTB-

2015 [53] and TC-128 [35] on overlapping attributes. From

the figure we observe that more than 1,300 videos in La-

SOT are involved with scale variations. Compared with

OTB-2015 and TC-128 with less than 70 videos with scale

changes, LaSOT is more challenging for scale changes. In

addition, on the out-of-view attribute, LaSOT comprises

477 sequences, much larger than existing benchmarks.

3.5. Evaluation Protocols

Though there is no restriction to use LaSOT, we suggest

two evaluation protocols for evaluating tracking algorithms,

and conduct evaluations accordingly.

Protocol I. In protocol I, we use all 1,400 sequences to eval-

uate tracking performance. Researchers are allowed to em-

ploy any sequences except for those in LaSOT to develop

tracking algorithms. Protocol I aims to provide large-scale

evaluation of trackers.

Protocol II. In protocol II, we split LaSOT into training and

testing subsets. According to the 80/20 principle (i.e., the

Pareto principle), we select 16 out of 20 videos in each cate-

gory for training, and the rest is for testing1. In specific, the

training subset contains 1,120 videos with 2.83M frames,

and the testing subset consists of 280 sequences with 690K

frames. The evaluation of trackers is performed on the test-

ing subset. Protocol II aims to provide a large set of videos

for training and assessing trackers in the mean time.

4. Evaluation

4.1. Evaluation Metric
Following popular protocols (e.g. OTB-2015 [53]), we

perform an One-Pass Evaluation (OPE) and measure the

precision, normalized precision and success of different

tracking algorithms under two protocols.

1The training/testing split is shown in the supplementary material.
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The precision is computed by comparing the distance

between tracking result and groundtruth bounding box in

pixels. Different trackers are ranked with this metric on

a threshold (e.g., 20 pixels). Since the precision metric is

sensitive to target size and image resolution, we normalize

the precision as in [41]. With the normalized precision met-

ric, we rank tracking algorithms using the Area Under the

Curve (AUC) between 0 to 0.5. Please refer to [41] about

the normalized precision metric. The success is computed

as the Intersection over Union (IoU) between tracking result

and groundtruth bounding box. The tracking algorithms are

ranked using the AUC between 0 to 1.

4.2. Evaluated Trackers

We evaluate 35 algorithms on LaSOT to provide exten-

sive baselines, comprising deep trackers (e.g., MDNet [42],

TRACA [5], CFNet [50], SiamFC [4], StructSiam [59],

DSiam [16], SINT [49] and VITAL [48]), correlation fil-

ter trackers with hand-crafted features (e.g., ECO HC [7],

DSST [8], CN [11], CSK [19], KCF [20], fDSST [9],

SAMF [33], SCT4 [6], STC [57] and Staple [3]) or deep

features (e.g., HCFT [37] and ECO [7]) and regularization

techniques (e.g., BACF [15], SRDCF [10], CSRDCF [36],

Staple CA [40] and STRCF [29]), ensemble trackers (e.g.,

PTAV [13], LCT [38], MEEM [56] and TLD [24]), sparse

trackers (e.g., L1APG [2] and ASLA [23]), other represen-

tatives (e.g., CT [58], IVT [44], MIL [1] and Struck [17]).

Tab. 3 summarizes these trackers with their representation

schemes and search strategies in a chronological order.

4.3. Evaluation Results with Protocol I

Overall performance. Protocol I aims at providing large-

scale evaluations on all 1,400 videos in LaSOT. Each tracker

is used as it is for evaluation, without any modification. We

report the evaluation results in OPE using precision, nor-

malized precision and success, as shown in Fig. 5. MD-

Net achieves the best precision score of 0.374 and success

score of 0.413, and VITAL obtains the best normalized pre-

cision score of 0.484. Both MDNet and VITAL are trained

in an online fashion, resulting in expensive computation and

slow running speeds. SimaFC tracker, which learns off-line

a matching function from a large set of videos using deep

network, achieves competitive results with 0.341 precision

score, 0.449 normalized precision score and 0.358 success

score, respectively. Without time-consuming online model

adaption, SiamFC runs efficiently in real-time. The best

correlation filter tracker is ECO with 0.298 precision score,

0.358 normalized precision score and 0.34 success score.

Compared to the typical tracking performances on ex-

isting dense benchmarks (e.g., OTB-2015 [53]), the perfor-

mances on LaSOT are severely degraded because of a large

mount of non-rigid target objects and challenging factors in-

volved in LaSOT. An interesting observation from Fig. 5 is

that all the top seven trackers leverage deep feature, demon-

Table 3. Summary of evaluated trackers. Representation: Sparse -

Sparse Representation, Color - Color Names or Histograms, Pixel

- Pixel Intensity, HoG - Histogram of Oriented Gradients, H or B -

Haar or Binary, Deep - Deep Feature. Search: PF - Particle Filter,

RS - Random Sampling, DS - Dense Sampling.
Representation Search

P
C

A

S
p
ar

se

C
o
lo

r

P
ix

el

H
o
G

H
o
r

B

D
ee

p

P
F

R
S

D
S

IVT [44] IJCV08 ✓ ✓

MIL [1] CVPR09 H ✓

Struck [17] ICCV11 H ✓

L1APG [2] CVPR12 ✓ ✓

ASLA [23] CVPR12 ✓ ✓

CSK [19] ECCV12 ✓ ✓

CT [58] ECCV12 H ✓

TLD [24] PAMI12 B ✓

CN [11] CVPR14 ✓ ✓ ✓

DSST [8] BMVC14 ✓ ✓ ✓

MEEM [56] ECCV14 ✓ ✓

STC [57] ECCV14 ✓ ✓

SAMF [33] ECCVW14 ✓ ✓ ✓ ✓

LCT [38] CVPR15 ✓ ✓ ✓

SRDCF [10] ICCV15 ✓ ✓

HCFT [37] ICCV15 ✓ ✓

KCF [20] PAMI15 ✓ ✓

Staple [3] CVPR16 ✓ ✓ ✓

SINT [49] CVPR16 ✓ ✓

SCT4 [6] CVPR16 ✓ ✓

MDNet [42] CVPR16 ✓ ✓

SiamFC [4] ECCVW16 ✓ ✓

Staple CA[40] CVPR17 ✓ ✓ ✓

ECO HC [7] CVPR17 ✓ ✓

ECO [7] CVPR17 ✓ ✓

CFNet [50] CVPR17 ✓ ✓

CSRDCF [36] CVPR17 ✓ ✓ ✓ ✓

PTAV [13] ICCV17 ✓ ✓ ✓ ✓

DSiam [16] ICCV17 ✓ ✓

BACF [15] ICCV17 ✓ ✓

fDSST [9] PAMI17 ✓ ✓ ✓

VITAL [48] CVPR18 ✓ ✓

TRACA [5] CVPR18 ✓ ✓

STRCF [29] CVPR18 ✓ ✓

StructSiam [59] ECCV18 ✓ ✓

strating its advantages in handling appearance changes.

Attribute-based performance. To analyze different chal-

lenges faced by existing trackers, we evaluate all tracking

algorithms on 14 attributes. We show the results on three

most challenging attributes, i.e., fast motion, out-of-view

and full occlusion, in Fig. 6 and refer the readers to supple-

mentary material for detailed attribute-based evaluation.

Qualitative evaluation. To qualitatively analyze different

trackers and provide guidance for future research, we show

the qualitative evaluation results of six representative track-

ers, including MDNet, SiamFC, ECO, PTAV, Staple and

MEEM, in six typical hard challenges containing fast mo-

tion, full occlusion, low resolution, out-of-view, aspect ra-

tio change and background clutter in Fig. 7. From Fig. 7,

we observe that, for videos with fast motion, full occlusion

and out-of-view (e.g., Yoyo-3, Goldfish-4 and Basketball-

15), the trackers are prone to lose the target because existing

trackers usually perform localization from a small local re-

gion. To handle these challenges, a potential solution is to

leverage an instance-specific detector to locate the target for

subsequent tracking. Trackers easily drift in video with low
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Figure 5. Evaluation results on LaSOT under protocol I using precision, normalized precision and success. Best viewed in color.
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Figure 6. Performances of trackers on three most challenging attributes under protocol I using success. Best viewed in color.

MEEM Staple PTAV ECO SiamFC MDNet GT

Figure 7. Qualitative evaluation in six typical hard challenges: Yoyo-3 with fast motion, Goldfish-4 with full occlusion, Pool-4 with low-

resolution, Basketball-15 with out-of-view, Train-1 with aspect ration change and Person-2 with background clutter. Best viewed in color.

resolution (e.g., Pool-4) due to the ineffective representation

for small target. A solution for deep feature based trackers

is to combine features from multiple scales to incorporate

details into representation. Video with aspect ratio change

is difficult as most existing trackers either ignore this issue

or adopt a simple method (e.g., random search or pyramid

strategy) to deal with it. Inspired from the success of deep

learning based object detection, a generic regressor can be

leveraged to reduce the effect of aspect ratio change (and

scale change) on tracking. For sequence with background

clutter, trackers drift due to less discriminative representa-

tion for target and background. A possible solution to alle-

viate this problem is to utilize the contextual information to

enhance the discriminability.

4.4. Evaluation Results with Protocol II

Under protocol II, we split LaSOT into training and test-

ing sets. Researchers are allowed to leverage the sequences

in the training set to develop their trackers and assess their

performances on the test set. In order to provide baselines
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Figure 8. Evaluation results on LaSOT under protocol II using precision, normalized precision and success. Best viewed in color.

and comparisons on the testing set, we evaluate the 35 track-

ing algorithms. Each tracker is used as it is for evalua-

tion without any modification or re-training. The evalua-

tion results are shown in Fig. 8 using precision, normal-

ized precision and success. We observe consistent results as

in protocol I. MDNet and VITAL show top performances

with precision scores of 0.373 and 0.36, normalized preci-

sion scores of 0.46 and 0.453 and success scores of 0.397

and 0.39. Next, SiamFC achieves the third-ranked perfor-

mance with a 0.339 precision score, a 0.42 normalized pre-

cision score and a 0.336 success score, respectively. Despite

slightly lower scores in accuracy than MDNet and VITAL,

SiamFC runs much faster and achieves real-time running

speed, showing good balance between accuracy and effi-

ciency. For attribute-based evaluation of trackers on LaSOT

testing set, we refer the readers to supplementary material

because of limited space.

In addition to evaluating each tracking algorithm as it is,

we conduct experiments by re-training two representative

deep trackers, MDNet [42] and SiamFC [4], on the training

set of LaSOT and assessing them. The evaluation results

show similar performances for these trackers as without re-

training. A potential reason is that our re-training may not

follow the same configurations used by the original authors.

Besides, since LaSOT are in general more challenging than

previous datasets (e.g., all sequences are long-term), dedi-

cated configuration may be needed for training these track-

ers. We leave this part as a future work since it is beyond

the scope of this benchmark.

4.5. Retraining Experiment on LaSOT

We conduct the experiment by retraining SiamFC [4] on

the training set of LaSOT to demonstrate how deep learning

based tracker is improved using more data. Tab. 4 reports

the results on OTB-2013 [52] and OTB-2015 [53] and com-

parisons with the performance of original SiamFC trained

on ImageNet Video [45]. Note that, we utilize color images

for training, and apply a pyramid with 3 scales for track-

ing, i.e., SiamFC-3s (color). All parameters for training and

Table 4. Retraining of SiamFC [4] on LaSOT.

SiamFC-3s (color)

Training data
ImageNet

Video [45]

LaSOT

training set

OTB-2013 [52]
Precision 0.803 0.816 (↑1.3%)

Success 0.588 0.608 (↑2.0%)

OTB-2015 [53]
Precision 0.756 0.777 (↑2.1%)

Success 0.565 0.582 (↑1.7%)

tracking are kept the same in these two experiments. From

Tab. 4, we observe consistent performance gains on the two

benchmarks, showing the importance of specific large-scale

training set for deep trackers.

5. Conclusion

We present LaSOT with high-quality dense bounding

box annotations for visual object tracking. To the best of

our knowledge, LaSOT is the largest tracking benchmark

with high quality annotations to date. By releasing LaSOT,

we expect to provide the tracking community a dedicated

platform for training deep trackers and assessing long-term

tracking performance. Besides, LaSOT provides lingual an-

notations for each sequence, aiming to encourage the explo-

ration on integrating visual and lingual features for robust

tracking. By releasing LaSOT, we hope to narrow the gap

between the increasing number of deep trackers and the lack

of large dedicated datasets for training, and meanwhile pro-

vide more veritable evaluations for different trackers in the

wild. Extensive evaluations on LaSOT under two protocols

imply a large room to improvement for visual tracking.
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Roman Pflugfelder, Gustavo Fernandez, Georg Nebehay,
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