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Abstract

Recent advances in matrix completion enable data impu-

tation in full-rank matrices by exploiting low dimensional

(nonlinear) latent structure. In this paper, we develop a

new model for high rank matrix completion (HRMC), to-

gether with batch and online methods to fit the model and

out-of-sample extension to complete new data. The method

works by (implicitly) mapping the data into a high dimen-

sional polynomial feature space using the kernel trick; im-

portantly, the data occupies a low dimensional subspace in

this feature space, even when the original data matrix is of

full-rank. The online method can handle streaming or se-

quential data and adapt to non-stationary latent structure,

and enjoys much lower space and time complexity than pre-

vious methods for HRMC. For example, the time complexity

is reduced from O(n3) to O(r3), where n is the number of

data points, r is the matrix rank in the feature space, and

r ≪ n. We also provide guidance on sampling rate re-

quired for these methods to succeed. Experimental results

on synthetic data and motion data validate the performance

of the proposed methods.

1. Introduction

In the past ten years, low rank matrix completion

(LRMC) has been widely studied [4, 16, 22, 23, 20, 13, 3,

18, 9]. For instance, Candès and Recht [4] showed that any

n×n incoherent matrices of rank r can be exactly recovered

from Cn1.2r log n uniformly randomly sampled entries

with high probability through solving a convex problem of

nuclear norm minimization (NNM). However, LRMC can-

not recover high rank or full-rank matrices, even when the

the data lies on a low dimensional (nonlinear) manifold. To

address this problem, recently a few researchers have devel-

oped new high rank matrix completion (HRMC) methods

[8, 17, 28] for data drawn from multiple subspaces [7, 6, 11]

or nonlinear models [1, 24, 10]. These HRMC methods can

outperform LRMC methods for many real problems such as

subspace clustering with missing data, motion data recovery

[6, 24], image inpainting, and classification [1, 10].

All the aforementioned LRMC and HRMC methods are

offline methods. However, for many problems, we ob-

tain one sample at a time and would like to update the

model as each new sample arrives using online optimiza-

tion. In addition, compared to offline methods, online meth-

ods [25, 21, 29] often have lower space and time complexi-

ties and can adapt to changes in the latent data structure. For

these reasons, online matrix completion has recently gained

increasing attention [2, 5, 15, 19].

2. Related work and our contribution

Online matrix completion. Sun and Luo [26] and Jin

et al. [14] proposed to use stochastic gradient descent

(SGD) to solve the low rank factorization (LRF) problem

minimize
∑

(i,j)∈Ω

(
Xij −Ui:V

⊤
j:

)2
with variables U ∈

R
m×r, V ∈ R

n×r, where X ∈ R
m×nand Ω denotes the

locations of observed entries of X . Specifically, given an

entry Xij , the i-th row of U and j-th row of V are updated

by gradient descent. Yun et al. [29] studied the streaming or

online matrix completion problem when the columns of the

matrix are presented sequentially. The GROUSE method

proposed in [2] used incremental gradient descent on the

Grassmannian manifold of subspaces to learn a low rank

factorization from incomplete data online. These online

methods have a common limitation: they cannot recover

high rank matrices. Mairal et al. [21] also studied the online

factorization problem with the goal of learning a dictionary

for sparse coding: minimize
D∈C,α

1
2‖x − Dα‖2 + λ‖α‖1. A

sparse factorization based matrix completion algorithm was

proposed in [11]. It is possible to recover a high rank matrix

online by combining ideas from [21] with [11].

High rank matrix completion. Elhamifar [6] proposed

to use group-sparse constraint to complete high rank ma-

trix consisting of data drawn from union of low-dimensional

subspaces. Alameda-Pineda et al. [1] proposed a nonlinear

matrix completion method for classification. The method

performs matrix completion on a matrix consisting of (non-
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linear) feature-label pairs, where the unknown labels are re-

garded as missing entries. The method is inapplicable to

general matrix completion problems in which the locations

of all missing entries are not necessarily in a single block.

Ongie et al. [24] assumed X is given by an algebraic variety

and proposed a method called VMC to recover the missing

entries of X through minimizing the rank of φ(X), where

φ(X) is a feature matrix given by polynomial kernel. Fan

and Chow [10] assumed the data are drawn from a non-

linear latent variable model and proposed a nonlinear ma-

trix completion method (NLMC) that minimizes the rank of

φ(X), where φ(X) is composed of high-dimensional non-

linear features induced by polynomial kernel or RBF kernel.

Challenges in HRMC. First, existing HRMC methods

lack strong theoretical guarantee on the sample complexity

required for recovery. For example, in VMC, the authors

provide a lower bound of sampling rate (ρ0, equation (6)

of [24]) only for low-order polynomial kernel and ρ0 in-

volved an unknown parameter R owing to the algebraic va-

riety assumption. In NLMC [10], the authors only provided

a coarse lower bound of sampling rate, i.e. ρ > O(d/m),
where d is the dimension of latent variables. Second, exist-

ing HRMC methods are not scalable to large matrices. For

example, VMC and NLMC require singular value decom-

position on an n × n kernel matrix in every iteration. The

method of [6] is also not efficient because of the sparse op-

timization on an n × n coefficients matrix. Third, existing

HRMC methods have no out-of-sample extensions, which

means they cannot efficiently complete new data. Last but

not least, existing HRMC methods are offline methods and

cannot handle online data.

Contributions. In this paper, we aim to address these

challenges. We propose a novel high rank matrix com-

pletion method based on kernelized factorization (KFMC).

KFMC is more efficient and accurate than state-of-the-art

methods. Second, we propose an online version for KFMC,

which can outperform online LRMC significantly. Third,

we propose an out-of-sample extension for KFMC, which

enables us to use the pre-learned high rank model to com-

plete new data directly. Finally, we analyze the sampling

rate required for KFMC to succeed.

3. Methodology

3.1. High rank matrices

We assume the columns of X ∈ R
m×n are given by

x = f(s) = [f1(s), f2(s), · · · , fm(s)]⊤, (1)

where s ∈ R
d (d ≪ m < n) consists of uncorrelated vari-

ables and each fi : Rd → R, i = 1, . . . ,m, is a p-order

polynomial with random coefficients. For example, when

d = 2 and p = 2, for i = 1, . . . ,m, xi = c⊤i s̄, where

ci ∈ R
6 and s̄ = [1, s1, s2, s

2
1, s

2
2, s1s2]

⊤. Lemma 1 shows

that X is of high rank when p is large.

Lemma 1. Suppose the columns of X satisfy (1). Then with

probability 1, rank(X) = min{m,n,
(
d+p
p

)
}.

Proof. Expand the polynomial fi for each i = 1, . . . ,m to

write xi = fi(s) = c⊤i s̄, where s̄ = {sµ1

1 · · · s
µd

d }|µ|≤p and

ci ∈ R
(d+p

p ). Each column of X satisfies x = Cs̄, where

C = [c1 · · · cm] ∈ R
m×(d+p

p ). The matrix X can be writ-

ten as X = CS̄, where S̄ = (s̄⊤1 , . . . , s̄
⊤
n ) ∈ R

(d+p

p )×n.

The variables s are uncorrelated and the coefficients c are

random, so generically both C and S̄ are full rank. Hence

rank(X) = min{m,n,
(
d+p
p

)
}.

In this paper, our goal is to recover X from a few ran-

domly sampled entries we denote by {Mij}(i,j)∈Ω. When p
is large, X is generically high rank and cannot be recovered

by conventional LRMC methods.

Remark. Throughout this paper, we use the terms “low

rank” or “high rank” matrix to mean a matrix whose rank is

low or high relative to its side length.

Let φ : Rm → R
m̄ be a q-order polynomial feature map

φ(x) = {xµ1

1 · · ·x
µm
m }|µ|≤q . Here m̄ =

(
m+q
q

)
. Write

φ(X) = [φ(x1), φ(x2), · · · , φ(xn)] and consider its rank:

Theorem 1. Suppose the columns of X satisfy (1). Then

with probability 1, rank(φ(X)) = min{m̄, n,
(
d+pq
pq

)
}.

Proof. Define the pq-order polynomial map ψ(s) :=
φ(x) = φ(f(s)). Expanding as above, write the vector

φ(x) = Ψs̃ with Ψ ∈ R
m̄×(d+pq

pq ) and s̃ ∈ R
(d+pq

pq ), and

write the matrix φ(X) = ΨS̃ with S̃ = (s̃⊤1 , . . . , s̃
⊤
n ) ∈

R
(d+pq

pq )×n. As above, Ψ and S̃ are generically full rank, so

rank(φ(X)) = min{m̄, n,
(
d+pq
pq

)
} with probability 1.

While rank(φ(X)) ≥ rank(X), Theorem 1 shows that

φ(X) is generically low rank when d is small and n is large.

For example, when d = 2, m = 20, n = 200, p = 4, and

q = 2, generically
rank(X)

min{m,n} = 0.75 while
rank(φ(X))
min{m̄,n} =

0.225: X is high rank but φ(X) is low rank.

3.2. Kernelized factorization

To recover the missing entries of X , we propose to solve

minimizeX,A,Z
1
2‖φ(X)−AZ‖2F

subject to Xij = Mij , (i, j) ∈ Ω,
(2)

where A ∈ R
m̄×r, Z ∈ R

r×n, and r =
(
d+pq
pq

)
. The

solution to (2) completes the entries of X using the natural
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low rank structure of φ(X). Problem (2) implicitly defines

an estimate for f , f̂(S) := X ≈ φ−1(AZ).
For numerical stability, we regularize A and Z and solve

minimize
X,A,Z

1
2‖φ(X)−AZ‖2F + α

2 ‖A‖
2
F + β

2 ‖Z‖
2
F ,

subject to Xij = Mij , (i, j) ∈ Ω,
(3)

where α and β are regularization parameters, instead of (2).

It is possible to solve (3) directly but the computational

cost is quite high ifm and q are large. The following lemma

shows that there is no need to model A explicitly.

Lemma 2. For any X generated by (1), there exist D ∈
R

m×r and Z ∈ R
r×n such that φ(X) = φ(D)Z.

Proof. Suppose D ∈ R
m×r are also generated by (1)

(e.g. any r columns of X), so φ(D) and φ(X) share

their column space and (with probability 1) φ(D) is full

rank. More precisely, φ(D) = BCD and φ(X) = BCX ,

where B ∈ R
m̄×r is a basis for the column space, and

both CX ∈ R
r×n and CD ∈ R

r×r are full rank. Define

Z = C−1
D CX and the result follows.

Hence any solution of the following also solves (3):

minimize
X,D,Z

1
2‖φ(X)− φ(D)Z‖2F + α

2 ‖φ(D)‖2F + β
2 ‖Z‖

2
F

subject to Xij = Mij , (i, j) ∈ Ω, (4)

where D ∈ R
m×r is much smaller than A ∈ R

m̄×r of (3).

Use the trace function Tr to rewrite the objective in (4) as

1
2Tr

(
φ(X)⊤φ(X)− 2φ(X)⊤φ(D)Z +Z⊤φ(D)⊤φ(D)Z

)

+ α
2 Tr

(
φ(D)⊤φ(D)

)
+ β

2 ‖Z‖
2
F .

Now we use the kernel trick to avoid explicitly comput-

ing the feature map φ. Define k(x,y) := φ(x)⊤φ(y) =
〈φ(x), φ(y)〉, so φ(X)⊤φ(X) = KXX , φ(X)⊤φ(D) =
KXD, and φ(D)⊤φ(D) = KDD, where KXX , KXD,

and KDD are the corresponding kernel matrices. The most

widely-used kernels are the polynomial kernel (Poly) and

the radial basis function kernel (RBF)

Poly : k(x,y) = (x⊤y + c)q

RBF : k(x,y) = exp
(
− 1

σ2 ‖x− y‖2
)
,

(5)

with hyperparameters c, q, and σ. The (implicit) feature

maps φ(x) of Poly and RBF are the q-order and infinite-

order polynomial maps respectively. Rewrite (4) to define

kernelized factorizatiom matrix completion (KFMC)

minimize
X,D,Z

ℓ(Z,D,X)

subject to Xij = Mij , (i, j) ∈ Ω
(KFMC)

where ℓ(Z,D,X) = 1
2Tr

(
KXX − 2KXDZ +Z⊤KDDZ

)
+

α
2 Tr(KDD) +

β
2 ‖Z‖

2
F . For the RBF kernel, Tr(KDD) ≡ r

is a constant and can be dropped from the objective.

3.3. Optimization for KFMC

The optimization problem (KFMC) is nonconvex and

has three blocks of variables. We propose using coordinate

descent over these three blocks to find a stationary point.

Update Z. To begin, complete entries of X arbitrarily

and randomly initialize D. Define the r× r identity Ir. Fix

X and D and update Z as

Z ← arg min
Z

ℓ(Z,D,X)

= arg min
Z

−Tr(KXDZ) + 1
2Tr(Z⊤KDDZ) + β

2 ‖Z‖
2
F

= (KDD + βIr)
−1K⊤

XD, (6)

Update D. There is no closed form solution for the min-

imization of ℓ(Z,D,X) with respect to D due to the

kernel matrices. Instead, we propose the additive update

D ← D −∆D. We compute ∆D using a relaxed Newton

method, described below for the Poly and RBF kernels.

For the polynomial kernel, rewrite the terms in the ob-

jective in which D appears as

ℓ(Z,D,X) :=− Tr((W1 ⊙ (XTD + c))Z)

+ 1
2Tr(ZT (W2 ⊙ (DTD + c))Z)

+ α
2 Tr(W2 ⊙ (DTD + c)).

(7)

defining W1 = 〈X⊤D+c〉q−1 and W2 = 〈D⊤D+c〉q−1,

where ⊙ is elementwise multiplication and 〈·〉u denotes the

element-wise u-power. Inspired by iteratively reweighted

optimization, fix W1 and W2 to approximate the gradient

and Hessian of ℓ(Z,D,X) with respect to D as

gD := −X(W1 ⊙Z⊤) +D((ZZ⊤ + αIr ⊙W2))

HD := ZZ⊤ ⊙W2 + αW2 ⊙ Ir.

HD is positive definite by the Schur product theorem. Now

choose τ > 1 for numerical stability and define the update

∆D := 1
τ gDH

−1
D . (8)

The effectiveness of our update for D is guaranteed by the

following lemma. (The proof of the lemma and discussion

about the role of τ are in the supplementary material.)

Lemma 3. The update (8) is a relaxed Newton’s method

and ensures sufficient decrease in the objective:

ℓ(Z,D −∆D,X)− ℓ(Z,D,X) ≤ − 1
2τ Tr(gDH

−1
D g⊤

D ).

For the RBF kernel, the gradient is

∇Dℓ =
1
σ2 (XQ1 −DΓ1) +

2
σ2 (DQ2 −DΓ2). (9)
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(Throughout, we abuse notation to write ℓ for ℓ(Z,D,X).)
Here Q1 = −Z⊤ ⊙KXD, Q2 = (0.5ZZ⊤ + 0.5αIr) ⊙
KDD, Γ1 = diag(1⊤

nQ1), and Γ2 = diag(1⊤
r Q2), where

1n ∈ R
n and 1r ∈ R

r are composed of 1s. The following

lemma (proved in the supplementary material) indicates that

XQ1 in (9) is nearly a constant compared to DΓ1, DQ2,

and DΓ2, provided that σ and n are large enough:

Lemma 4. ‖X(Z⊤ ⊙ KXD1
) − X(Z⊤ ⊙ KXD2

)‖F ≤
c

σ
√
n
‖X‖2‖D1 −D2‖F , where c is a small constant.

Therefore, we can compute an approximate Hessian ne-

glecting XQ1. As in (8), we define

∆D := 1
τ∇Dℓ(

1
σ2 (2Q2 − Γ1 − 2Γ2))

−1. (10)

Update X . Finally, fixing Z and D, we wish to mini-

mize (KFMC) over X , which again has no closed-form so-

lution. Again, we suggest updating X using a relaxed New-

ton method X ←X −∆X . For the polynomial kernel,

gX = X(W3 ⊙ In)−D(W⊤
4 ⊙Z)

= qX ⊙ (1mw⊤)− qD(W⊤
4 ⊙Z),

(11)

where W3 = 〈X⊤X + c〉q−1, W4 = 〈X⊤D + c〉q−1,

1m ∈ R
m consists of 1s, and w ∈ R

m consists of the

diagonal entries of W3. As above, we define

∆X := 1
τ gX ⊙ (1mw−T ). (12)

When RBF kernel is used, we get

∇Xℓ =
1
σ2 (DQ3 −XΓ3) +

2
σ2 (XQ4 −XΓ4). (13)

Here Q3 = −Z ⊙ K⊤
XD, Q4 = 0.5In ⊙ KXX , Γ3 =

diag(1⊤
r Q3), and Γ4 = diag(1⊤

nQ4). As in (10), define

∆X := 1
τ∇Xℓ(

1
σ2 (2Q4 − Γ3 − 2Γ4))

−1. (14)

Here the computational cost is not high in practice because

the matrix to be inverted is diagonal.

We can also use a momentum update to accelerate the

convergence of D and X:

{
∆̂D ← η∆̂D +∆D, D ←D − ∆̂D

∆̂X ← η∆̂X +∆X , X ←X − ∆̂X

(15)

where 0 < η < 1 is a constant. The optimization method

is summarized as Algorithm 1. The following lemma (with

proof in the supplement) shows the method converges.

Lemma 5. For sufficiently small η, Algorithm 1 converges

to a stationary point.

Algorithm 1 Offline KFMC

Input: M , Ω, r, k(·, ·), α, β, tmax, η

1: Initialize: t = 0, X , D ∼ N (0, 1), ∆̂D = 0, ∆̂X = 0

2: repeat

3: t← t+ 1
4: Z = (KDD + βIr)

−1K⊤
XD

5: Compute ∆D using (8) or (10)

6: ∆̂D = η∆̂D +∆D

7: D ←D − ∆̂D

8: Compute ∆X using (12) or (14)

9: ∆̂X = η∆̂X +∆X

10: X ←X − ∆̂X and Xij = Mij ∀(i, j) ∈ Ω
11: until converged or t = tmax

Output: X , D

3.4. Online KFMC

Suppose we get an incomplete sample x at time t and

need to update the model of matrix completion timely or

solve the optimization online. In (4), we can put the con-

straint into the objective function directly and get the fol-

lowing equivalent problem

minimize
[X]Ω̄,D,Z

n∑

j=1

1
2‖φ(xj)−φ(D)zj‖

2+ α
2n‖φ(D)‖2F+

β
2 ‖zj‖

2,

(16)

where [X]Ω̄ denotes the unknown entries of X . Denote

ℓ([xj ]ωj
,D) := min

zj ,[xj ]ω̄j

1
2‖φ(xj)− φ(D)zj‖

2

+ α
2n‖φ(D)‖2F + β

2 ‖zj‖
2,
(17)

where [xj ]ωj
([xj ]ω̄j

) denotes the observed (unknown) en-

tries of xj and ωj (ω̄j) denotes the corresponding locations.

Then (16) minimizes the empirical cost function

gn(D) :=
1

n

n∑

j=1

ℓ([xj ]ωj
,D). (18)

The expected cost is

g(D) := E[x]ω [ℓ([x]ω,D)] = lim
n→∞

gn(D). (19)

To approximately minimize (19) online, we propose the fol-

lowing optimization for a given incomplete sample x

minimize
[x]ω̄,D,z

ℓ̂(z, [x]ω̄,D) := 1
2‖φ(x)− φ(D)z‖2

+ α
2 ‖φ(D)‖2F + β

2 ‖z‖
2.

(20)

With randomly initialized D, we first compute z and [x]ω̄
via alternately minimizing ℓ̂(z, [x]ω̄,D), which is equiva-

lent to

minimize
[x]ω̄,z

1
2kxx − kxDz + 1

2z
⊤KDDz + β

2 ‖z‖
2. (21)
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Specifically, in each iteration, z is updated as

z = (KDD + βIr)
−1k⊤

xD. (22)

We propose to update [x]ω̄ by Newton’s method, i.e.,

[x]ω̄ ← [x]ω̄ − [∆x]ω̄ . When polynomial kernel is used,

we obtain

∇xℓ̂ = w1x−D(w⊤
2 ⊙ z) (23)

where w1 = 〈x⊤x+ c〉q−1, w2 = 〈x⊤D + c〉q−1. Then

∆x = 1
τw1
∇xℓ̂. (24)

When RBF kernel is used, we have

∇xℓ̂ =
1
σ2 (Dq − γx), (25)

where q = −z ⊙ k⊤
xD and γ = 1

⊤
r q. Then

∆x = σ2

τγ∇xℓ̂. (26)

The derivations of (24) and (26) are similar to those of (8)

and (10). Then we repeat (22)−(26) until converged.

After z and [x]ω̄ are computed, we compute D via min-

imizing ℓ̂(z, [x]ω̄,D), which is equivalent to

minimize
D

−kxDz + 1
2z

⊤KDDz + α
2 Tr(KDD). (27)

We propose to use SGD to update D, i.e., D ← D −∆D.

When polynomial kernel is used, we have

∇D ℓ̂ = −x(w1⊙z⊤)+D(zz⊤⊙W2)+αD(W2⊙Ir)),
(28)

where w1 = 〈x⊤D + c〉q−1 and W2 = 〈D⊤D + c〉q−1.

Then we have

∆D = 1
τ∇D ℓ̂/‖zz

⊤ ⊙W2 + αW2 ⊙ Ir‖2. (29)

Here we cannot use the method of (8) because zz⊤ is not as

stable as ZZ⊤. In addition, the following lemma (proved

in the supplementary material) ensures the effectiveness of

updating D:

Lemma 6. Updating D as D −∆D does not diverge and

ℓ̂(z, [x]ω̄,D−∆D)− ℓ̂(z, [x]ω̄,D) ≤ − 1
2ττ0
‖∇D ℓ̂‖

2
F pro-

vided that τ > 1, where τ0 = ‖zz⊤ ⊙W2 + αW2 ⊙ Ir‖2.

When RBF kernel is used, the derivative is

∇D ℓ̂ =
1
σ2 (xQ1 −DΓ1) +

2
σ2 (DQ2 −DΓ2), (30)

where Q1 = −z⊤ ⊙ kXD, Q2 = (0.5zz⊤ + 0.5αIr) ⊙
KDD, Γ1 = diag(Q1), and Γ2 = diag(1⊤

r Q2). Similar to

(29) and Lemma 6, we obtain

∆D = 1
τ∇D ℓ̂/‖

1
σ2 (2Q2 − Γ1 − 2Γ2)‖2. (31)

Similar to offline KFMC, we also use momentum to ac-

celerate the optimization of online KFMC. The optimiza-

tion steps are summarized in Algorithm 2. The error of on-

line matrix completion can be reduced with multi-pass opti-

mization or increasing the number of samples. In Algorithm

2, the sequence ℓ([xt]ωt
,D) defined in (17) may not de-

crease continuously because the incomplete sample xt can

introduce high uncertainty. However, the sequence gt(D),
the empirical cost function defined in (18), is convergent be-

cause for j = 1, · · · , t, ℓ([xj ]ωj
,D) is minimized through

optimizing [xj ]ω̄j
, zj , and D.

Algorithm 2 Online KFMC

Input: Incomplete samples {[x1]ω1
, [x2]ω2

, · · · , [xt]ωt
},

r, k(·, ·), α, β, niter, η, npass

1: Initialize: D ∼ N (0, 1), ∆̂D = 0

2: for u = 1 to npass do

3: for j = 1 to t do

4: l = 0, ∆̂X = 0, C = (KDD + βIr)
−1

5: repeat

6: l← l + 1 and zj = Ck⊤
XD

7: Compute ∆x using (24) or (26)

8: ∆̂x ← η∆̂x +∆x

9: [xj ]ω̄j
← [xj ]ω̄j

− [∆̂x]ω̄j

10: until converged or l = niter

11: Compute ∆D using (29) or (31)

12: ∆̂D ← η∆̂D +∆D and D ←D − ∆̂D

13: end for

14: end for

Output: Xt = [x1,x2, · · · ,xt], D

3.5. Out-of-sample extension of KFMC

The matrix D obtained from offline matrix completion

(1) or online matrix completion (2) can be used to recover

the missing entries of new data without updating the model.

We can also compute D from complete training data: the

corresponding algorithm is similar to Algorithms 1 and 2,

but does not require the X update. We can complete a new

(incomplete) sample xnew by solving

minimize
[xnew]ω̄new ,znew

1
2‖φ(xnew)−φ(D)znew‖

2+ β
2 ‖znew‖

2, (32)

where [xnew]ω̄new
denotes unknown entries of xnew. This out-

of-sample extension of KFMC is displayed as Algorithm 3.

3.6. Complexity analysis

Consider a high (even, full) rank matrix X ∈ R
m×n

(m ≪ n) given by (1). In the methods VMC and NLMC,

and our KFMC, the largest object stored is the kernel matrix

K ∈ R
n×n. Hence their space complexities are all O(n2).

In VMC and NLMC, the major computational step is to
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Algorithm 3 Out-of-sample extension for KFMC

Input: D (computed from training data), k(·, ·), β, niter, η,

new incomplete samples {[x1]ω1
, [x2]ω2

, · · · , [xt]ωt
}

1: C = (KDD + βIr)
−1

2: for j = 1 to t do

3: l = 0, ∆̂x = 0

4: repeat

5: l← l + 1 and zj = Ck⊤
xD

6: Compute ∆x using (24) or (26)

7: ∆̂x ← η∆̂x +∆x

8: [xj ]ω̄j
← [xj ]ω̄j

− [∆̂x]ω̄j

9: until converged or l = niter

10: end for

Output: Xnew = [x1,x2, · · · ,xt]

Space complexity Time complexity

VMC O(n2) O(n3 +mn2)
NLMC O(n2) O(n3 +mn2)
KFMC O(n2) O(mn2 + rmn)
OL-KFMC O(mr + r2) O(r3)
OSE-KFMC O(mr + r2) O(mr)

Table 1: Time and space complexities (X ∈ R
m×n, m ≪ n)

compute K and its singular value decomposition at every

iteration. Hence their time complexities are O(mn2 + n3).
In our KFMC, the major computational steps are to form K,

to invert the r × r matrix in (6), and to multiply an m × n
and n×r matrix to compute the derivatives. Hence the time

complexity isO(mn2+r3+rmn) = O(mn2+rmn), since

n≫ r.

Online KFMC does not store the kernel matrix K. In-

stead, the largest objects stored are D and KDD. Hence the

space complexity is O(mr+ r2). The major computational

step is to invert an r× r matrix (see Algorithm 2). Thus the

time complexity is O(r3). In the out-of-sample extension,

the largest objects stored are D and C (see Algorithm 3), so

the space complexity is O(mr + r2). For each online sam-

ple, we only need to multiply m× r matrices with vectors.

Hence the time complexity is just O(mr).

This analysis are summarized in Table 1. We see that

the space and time complexities of the proposed three ap-

proaches are much lower than those of VMC and NLMC.

3.7. Generalization for union of subspaces

KFMC can also handle data drawn from a union of sub-

spaces. Suppose the columns of X ∈ R
m×n are given by

{x{k} = f{k}(s{k})}uk=1, (33)

where s{k} ∈ R
d (d ≪ m < n) are random variables and

f{k} : Rd → R
m are p-order polynomial functions for each

k = 1, . . . , u. For convenience, we write

X = [X{1},X{2}, · · · ,X{u}], (34)

where the columns of each X{k}are in the range of f{k},

though we do not know which subspace each column of X

is drawn from. An argument similar to Lemma 1 shows

rank(X) = min{m,n, u
(
d+p
p

)
} (35)

with probability 1, so X is very likely to be of high rank or

full rank when u or p is large.

We can generalize Theorem 1 to show rank(φ(X)) =
min{m̄, n, r} with probability 1, where m̄ =

(
m+q
q

)
and

r = u
(
d+pq
pq

)
. Hence when d is small and n is large, φ(X)

is low rank, so missing entries of X can still be recovered

by the offline and online methods proposed in this paper. In

particular, for data drawn from a union of linear subspaces

(p = 1 and u > 1), generically rank(X) = min(m,n, ud)
while rank(φ(X)) = u

(
d+q
q

)
.

3.8. On the sampling rate

Suppose X is generated by (33), and a proportion ρKFMC

of its entries are observed. We provide some heuristics to

help decide how many entries should be observed for com-

pletion with the polynomial and RBF kernels. Detailed cal-

culations for (36) and (37) are deferred to the supplement.

To complete φ(X) uniquely using a q-order polynomial

kernel, one rule of thumb is that the number of entries ob-

served should be at least as large as the number of degrees of

freedom in the matrix φ(X) [24]. Here, φ(X) is a m̄ × n
matrix with rank r = u

(
d+pq
pq

)
, where m̄ =

(
m+q
q

)
. We

count the degrees of freedom of matrices with this rank to

argue sampling rate should satisfy

ρKFMC ≥
(
r/n+ r/m̄− r2/n/m̄

)1/q
. (36)

Equation (36) bounds the number of degrees of freedom

of φ(X) by considering its rank and size. But of course

φ(X) is a deterministic function of X , which has many

fewer degrees of freedom. Hence while (36) provides a

good rule of thumb, we can still hope that lower sampling

rates might produce sensible results.

For the RBF kernel, q =∞, so the condition (36) is vac-

uous. However, the RBF kernel can be well approximated

by a polynomial kernel and we have

φi(x) = φ̂i(x) +O(
√

cq+1

(q+1)! ), (37)

where φ̂i(x) denotes the i-th feature of q-order polynomial

kernel and φi(x) denotes the i-th feature of the RBF ker-

nel. Hence exact recovery of φ̂i(x) implies approximate

recovery of φi(x) with error O(
√

cq+1

(q+1)! ). This argument
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provides the intuition that the RBF kernel should recover

the low-order (≤ q) features of φ(x) with errorO(
√

cq+1

(q+1)! )

provided that (36) holds. Of course, we can identify missing

entries of X by considering the first block of the completed

matrix φ(X).
In experiments, we observe that the RBF kernel often

works better than polynomial kernel. We hypothesize two

reasons for the effectiveness of the RBF kernel: 1) It cap-

tures the higher-order features in φ(x), which could be use-

ful when n is very large 2) It is easier to analyze and to

optimize, speeding convergence.

Low rank matrix completion methods can only uniquely

complete a matrix given a sampling rate that satisfies

ρLRMC >
(
(m+ n)rX − r

2
X

)
/(mn), (38)

where rX = min{m,n, u
(
d+p
p

)
}. This bound can be vacu-

ous (larger than 1) if u or p are large. In contrast, ρKFMC given

by (36) can still be smaller than 1 in the same regime, pro-

vided that n is large enough. For example, when m = 20,

d = 2, p = 2, and u = 3, we have ρLRMC > 0.91. Let

q = 2 and n = 300, we have ρKFMC > 0.56. If p = 1 and

u = 10, we have ρLRMC > 1 and ρKFMC > 0.64. This cal-

culation provides further intuition for how our methods can

recover high rank matrices while classical low rank matrix

completion methods fail.

3.9. Analytic functions and smooth functions

Hitherto, we have assumed that f is a finite order poly-

nomial function. However, our methos also work when f

is an analytic or smooth function. Analytic functions are

well approximated by polynomials. Furthermore, smooth

functions can be well approximated by polynomial func-

tions at least on intervals. Hence for a smooth function

h : Rd → R
m, we consider the generative model

x = h(s) = f(s) + e (39)

where f is a p-order Taylor expansion of h and e ∈ R
m

denotes the residual, which scales as e ∼ O( c
(p+1)! ) where

c is the p+ 1th derivative of h.

We see that the error e from our polynomial model de-

creases as p increases. To fit a model with larger p, the

bound (36) suggests we need more samples n. We con-

jecture that for any smooth h, it is possible to recover the

missing entries with arbitrarily low error provided n is suf-

ficiently large.

4. Experiments

4.1. Synthetic data

We generate the columns of X by x = f(s) where

s ∼ U(0, 1) and f : R
3 → R

30 is a p-order polynomial

mapping. The model can be reformulated as x = Pz,

where P ∈ R
30×((3+p

p )−1), P ∼ N (0, 1), and z consists of

the polynomial features of s. Consider the following cases:

• Single nonlinear subspace Let p = 3, generate one P

and 100 s. Then the rank of X ∈ R
30×100 is 19.

• Union of nonlinear subspaces Let p = 3, generate

three P and for each P generate 100 s. Then the rank

of X ∈ R
30×300 is 30.

• Union of linear subspaces Let p = 1, generate ten P

and for each P generate 100 s. Then the rank of X ∈
R

30×1000 is 30.

We randomly remove some portions of the entries of the

matrices and use matrix completion to recover the missing

entries. The performances are evaluated by the relative error

defined asRE = ‖X̂−X‖F /‖X‖F [6], where X̂ denotes

the recovered matrix. As shown in Figure 1, the recovery

errors of LRMC methods, i.e. LRF [26] and NNM [4], are

considerably high. In contrast, HRMC methods especially

our KFMC have significantly lower recovery errors. In ad-

dition, our KFMC(Poly) and KFMC(RBF) are much more

efficient than VMC [24] and NLMC [10], in which random-

ized SVD [12] has been performed.

Figure 2 shows the results of online matrix completion,

in which OL-DLSR (dictionary learning and sparse repre-

sentation) is an online matrix completion method we mod-

ified from [21] and [11] and detailed in our supplemen-

tary material. We see that our method OL-KFMC outper-

formed other methods significantly. Figures 3 shows the re-

sults of out-of-sample extension (OSE) of HRMC, in which

our OSE-KFMC outperformed other methods. More details

about the experiment/parameter settings and analysis are in

the supplementary material.

Figure 1: Offline matrix completion on synthetic data
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Figure 2: Online matrix completion on synthetic data

Figure 3: Out-of-sample extension of matrix completion on

synthetic data

4.2. Hopkins155 data

Similar to [24], we consider the problem of subspace

clustering on incomplete data, in which the missing data of

Hopkins155 [27] were recovered by matrix completion and

then SSC (sparse subspace clustering [7]) was performed.

We consider two downsampled video sequences, 1R2RC

and 1R2TCR, each of which consists of 6 frames. The av-

erage clustering errors [7] of 10 repeated trials are reported

in Figure 4. Our method KFMC with RBF kernel is more

accurate and efficient than VMC and NLMC.

Figure 4: Subspace clustering on incomplete data

4.3. CMU motion capture data

We use matrix completion to recover the missing data of

time-series trajectories of human motions (e.g. running and

jumping). Similar to [6, 24], we use the trial #6 of subject

#56 of the CMU motion capture dataset, which forms a

high rank matrix [6]. We consider two cases of incomplete

data, randomly missing and continuously missing. More

details about the experimental settings are in the supple-

mentary material. The average results of 10 repeated trials

are reported in Figure 5. We see that HRMC methods out-

performed LRMC methods while online methods outper-

formed offline methods. One reason is that the structure of

the data changes with time (corresponding to different mo-

tions) and online methods can adapt to the changes. Com-

paring Figure 5 with the Figure 4 of [6], we find that VMC,

NLMC, and our KFMC outperformed the method proposed

in [6]. In addition, our OL-KFMC especially with RBF

kernel is the most accurate one. Regarding the computa-

tional cost, there is no doubt that the linear methods includ-

ing LRF, NNM, GROUSE, and DLSR are faster than other

methods. Hence we only show the computational cost of

the nonlinear methods in Table 2 for comparison (random-

ized SVD [12] has been performed in VMC and NLMC).

Our KFMC is faster than VMC and NLMC while our OL-

KFMC is at least 10 times faster than all methods.

Figure 5: CMU motion capture data recovery

VMC 370 NLMC 610 KFMC(Poly) 170

KFMC(RBF) 190 OL-KFMC(Poly) 16 OL-KFMC(RBF) 19

Table 2: Time cost (second) on CMU motion capture data

5. Conclusion

In this paper, we proposed kernelized factorization ma-

trix completion (KFMC), a new method for high rank ma-

trix completion, together with an online version and an

out-of-sample extension, which outperform state-of-the-art

methods. Our numerics demonstrate the success of the

method for motion data recovery. We believe our meth-

ods will also be useful for transductive learning (classifica-

tion), vehicle/robot/chemistry sensor signal denoising, rec-

ommender systems, and biomedical data recovery.
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