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Abstract

We consider an interesting problem—salient instance

segmentation in this paper. Other than producing bounding

boxes, our network also outputs high-quality instance-level

segments. Taking into account the category-independent

property of each target, we design a single stage salient

instance segmentation framework, with a novel segmenta-

tion branch. Our new branch regards not only local con-

text inside each detection window but also its surround-

ing context, enabling us to distinguish the instances in the

same scope even with obstruction. Our network is end-to-

end trainable and runs at a fast speed (40 fps when pro-

cessing an image with resolution 320 × 320). We eval-

uate our approach on a public available benchmark and

show that it outperforms other alternative solutions. We

also provide a thorough analysis of the design choices to

help readers better understand the functions of each part

of our network. The source code can be found at https:

//github.com/RuochenFan/S4Net.

1. Introduction

Rather than recognizing all the objects in a scene, we

human only care about a small set of interesting ob-

jects/instances [32]. A recent experiment [15] demonstrates

that interesting objects are often visually salient, reflecting

the importance of detecting salient objects. Locating ob-

jects of interest is also essential for a wide range of com-

puter graphics and computer vision applications. Such a ca-

pability allows many modern applications (e.g. image ma-

nipulation/editing [8, 57, 6] and robotic perception [56]) to

provide initial regions that might be of interest to users or

robots so that they can directly proceed to image editing or

scene understanding. Like [33], in this paper, we are also

interested in detecting salient instances given an input im-

age. Similar to salient object detection, salient instance seg-

mentation aims at detecting the most distinctive objects in

a scene, but differently it also identifies each individual in-

stance, i.e. outputting an accurate segment for each instance

and assigning it a unique label (see Fig. 1).

Cognitive psychology [55, 14] and neurobiology [41]

Figure 1: Illustrative examples produced by our approach,

which detects and segments salient instances regardless of

their semantic categories. Each category-agnostic salient

instance is illustrated with a unique color.

research suggested that human cortical cells may be hard

wired to preferentially respond to high contrast stimulus,

i.e. feature separation between foreground and background

regions plays a central role in salient object perception

[30, 29]. Effectively modeling the foreground/background

separation using local and global contrast [7, 31], back-

ground prior [63], and Gaussian mixture color model (as in

GrabCut [46]), etc., has been proven to be useful in a vari-

ety of traditional salient-object/figure-ground segmentation

tasks. Recently, convolutional neural networks (CNNs) are

becoming the dominant methods in nearly all closely re-

lated tasks, e.g. salient object detection [26, 35, 53], se-

mantic instance segmentation [11, 21, 22], and generic ob-

ject detection [20, 45, 12]. While these CNN-based meth-

ods have achieved remarkable success by learning powerful

multi-level feature representations for capturing different

abstracted appearance variations of the target categories,

they often ignore the important feature separation ability

between the target objects and their nearby background.

Existing CNN-based instance segmentation methods use

either RoIPooling [19, 24], or RoIWarp [10], or RoIAlign

[23] to capture the feature information inside the bound-

ing boxes. In contrast, we propose a region feature extrac-

tion layer, namely RoIMasking, to explicitly incorporate

foreground/background separation for improving salient in-

stance segmentation. Similar to the figure-ground segmen-

tation method, GrabCut [46], we explicitly mark the re-

gion surrounding the object proposals as the initial back-

ground, and explore the foreground/background feature

separations for salient instance segmentation in our segmen-

tation branch. More specifically, we flip the signs of the

feature values surrounding the proposals. The RoIMasking
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layer based segmentation branch is then integrated to the

efficient single-stage object detector FPN [37], for detect-

ing the pixel-wise segment of each salient instance. Inter-

estingly, our RoIMasking scheme is quantization-free and

scale-preserving, allowing more detailed information to be

successfully detected. Furthermore, our model is end-to-

end trainable and runs at 40fps on a single GPU when pro-

cessing a 320× 320 image.

For verification in the context of the killer applica-

tion, we apply our salient instance detector to the popular

weakly-supervised semantic segmentation task. As done in

[54, 27], we use the detected salient instances on the tiny

ImageNet dataset [47, 27] as heuristics to train the famous

semantic segmentation networks. We evaluate the results

on the popular PASCAL VOC 2012 semantic segmentation

benchmark [16] and show that our results outperform state-

of-the-art methods [54, 27] that leverage traditional salient

object cues [31, 26] by a large margin.

To sum up, the contributions of this paper are:

• We propose an end-to-end single-shot salient instance

segmentation framework, which not only achieves the

state-of-the-art performance but also runs in real time.

• We design a new RoIMasking layer which models fea-

ture separation between target objects and its nearby

background for high-quality segmentation.

2. Related Works

Salient instance segmentation is relatively a new task.

Some seminal methods have recently been proposed by

Zheng et al. [60] to find salient objects at bounding box

level. However, this method misses the important segmen-

tation information, which is essential for applications such

as image editing [8, 6] and weakly supervised segmenta-

tion [54]. Li et al. [33] formally define the salient instance

segmentation problem as jointly identifying salient regions

as well as individual object instances. They also proposed

an MSRNet [33] framework for instance-level salient ob-

ject segmentation. However, this method was excessively

reliant on the quality of the pre-computed edge maps (e.g.

MCG [43]) and produced sub-optimal results for compli-

cated real-world scenes (see also Sec. 4). Salient instance

segmentation is closely related to three major computer vi-

sion tasks: salient object detection, object detection, and

semantic instance segmentation.

2.1. Salient Object Detection

Salient object detection aims at jointly detecting the most

distinguished objects and segmenting them out from a given

scene. Early salient object detection methods mostly de-

pended on either global or local contrast cues [44, 7, 5, 31].

They designed various hand-crafted features (e.g., color his-

togram and textures) for each region [2, 17, 49] and fused

these features in either manual-designed [7] or learning-

based manners [52]. Because of their weak ability to pre-

serve the integrity of salient instances and the instabil-

ity of hand-crafted features, these methods were gradu-

ally taken place by later CNN-based data-driven methods

[26, 35, 53, 62, 18, 34, 33]. The key problems of these

salient object detection methods when applied to salient in-

stance segmentation task are two-fold. First, the integrity

of the salient objects is difficult to be preserved because the

distinguished regions might be parts of the interesting in-

stances. Second, salient object detection is a binary problem

and hence cannot be competent to instance-level segmenta-

tion.

2.2. Object Detection

The goal of object detection is to produce all the bound-

ing boxes for semantic categories. Earlier work mostly re-

lied on hand-engineered features (e.g. SIFT [40], SURF [4],

and HOG [13]). They built different types of image pyra-

mids to leverage more information across scales. Recently,

the emergence of CNNs greatly promoted the development

of object detectors. For example, R-CNN [20] and Over-

Feat [48] regarded CNNs as sliding window detectors for

extracting high-level semantic information. Given a stack

of pre-computed proposals [51, 9], these methods computed

its feature vectors for each proposal using CNNs and then

fed the features into a classifier. Later work [24, 19] took

as inputs the entire images and applied region-based detec-

tors to feature maps, substantially accelerating the running

speed. Faster R-CNN [45] broke through the limitation of

using pre-computed proposals by introducing a region pro-

posal network (RPN) into CNNs. In this way, the whole

network could be trained end-to-end, offering a better trade-

off between accuracy and speed compared to its previous

work. However, all the methods discussed above aim at out-

putting reliable object bounding boxes rather than instance

segments.

2.3. Semantic Instance Segmentation.

Earlier semantic instance segmentation methods [11, 21,

22, 42] were mostly based on segment proposals gener-

ated by segmentation methods [51, 43, 3]. In [10], Dai et

al. predicted segmentation proposals by leveraging a multi-

stage cascade to refine rectangle regions from bounding box

proposals gradually. Li et al. [36] proposed to integrate

the segment proposal network into an object detection net-

work. More recently, He et al. implemented a Mask R-CNN

framework, extending the Faster R-CNN [45] architecture

by introducing a segmentation branch. Albeit more and

more fascinating results, these methods are not suitable for

our task for two reasons. First, not all the categories and ob-

jects are salient. Second, the semantic instances all belong

to a pre-defined category collection, missing the important
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Figure 2: The pipeline of the proposed method. (a) A brief illustration of our framework. For convenience, we do not show

the details of the backbone we adopt. Readers may refer to [37] for more information. (b) The segmentation branch proposed

in Mask R-CNN [23], which is composed of a stack of consecutive convolutional layers. (c) Our proposed segmentation

branch which further enlarges the size of the receptive field but with the same number parameters as in (b).

Figure 3: An example of interactive figure-ground segmen-

tation using GrabCut [46].

ability to deal with unknown categories, i.e. class-agnostic

salient instances.

3. S4Net

The design choices of our method are based on the ap-

plication requirements of high-quality salient instance seg-

mentation in real time. We design an end-to-end single-shot

salient instance segmentation framework —S4Net, which is

built upon the top of the state-of-the-art single-shot object

detector for efficiency consideration.

3.1. Observation

Recent instance-level semantic segmentation methods

[23, 36] have shown the strong ability to segmenting seman-

tic instances, using RoIWarp [10], or RoIAlign [23]. How-

ever, the segmentation branches of these methods only focus

on the features inside the proposals to describe the appear-

ance variations of the target instances themselves, lacking

the ability to distinguish different instances.

Before CNN-based methods became popular, utilizing

feature separation between foreground and background has

been the dominant mechanism in similar tasks such as

salient object detection [7, 31, 63] and figure-ground seg-

mentation [46]. The ability of effectively modeling the

foreground-background feature separation is so powerful

that these methods [7, 46, 63] could achieve remarkable

success by utilizing such feature separation in the target

image alone, without any additional information by train-

ing on many images. An example is shown in Fig. 3. Users

only need to draw a rectangle region (shown in red) around

the target object. The GrabCut method [46] initializes the

foreground/background color models, i.e. Gaussian Mixture

Models (GMM), using image pixels inside/outside the rect-

angle region respectively. Amazing segmentation results

could be achieved, without learning from other training im-

ages. Notice that the color of some target object regions

in this image is very similar to certain background regions

(i.e. the houses). However, the GMM color model effec-

tively captures the slight color difference (indistinguishable

to human eyes) in this specific image. Such slight color dif-

ference only exists in this specific image, and could be im-

possible to learn from training examples of similar scenes.

It means that many training examples for color feature mod-

elling will not only be expensive to collect but also be less

useful for dealing with such a situation.
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Unfortunately, the ability of involving such powerful

foreground-background feature separation has been missing

in existing CNN-based segmentation methods. Motivated

by this, we propose to explicitly leverage more features cor-

responding to the background area to help make the salient

instances more prominent as shown in Fig. 5. This scheme

allows more features representing the background area (rel-

ative to the salient instance) to be viewed by the segmenta-

tion branch, enlarging the receptive field of the segmenta-

tion branch and meanwhile enhancing the contrast between

foreground and background, especially when there are oc-

clusions.

3.2. Framework

The pipeline of S4Net is shown in Fig. 2, which involves

two components: a bounding box detector and a segmenta-

tion branch. Both components share the same base model.

As in most object detection works, we select ResNet-50

[25] as our base model.

Single-Shot Object Detector. Considering the efficiency

of the entire network, we adopt a single-shot object detec-

tor [38] with FPN [37] as the base model in order to lever-

age the multi-level features. To reduce the runtime cost,

we discard the lateral connected to conv2 while keeping the

rest unchanged (i.e. conv3-conv6). Four detection heads are

connected to each lateral layer as shown in Fig. 2(a). The

head structure is the same to the one used in Faster R-CNN

[45], but with different strides to perform detection at mul-

tiple scales.

Single-Shot Segmentation Branch. Different from ex-

isting instance level semantic segmentation methods, such

as Mask R-CNN [23], our segmentation branch is also

single-shot. The bounding boxes predicted by the detec-

tion branch and the output of the lateral layer with stride

8 in the backbone network are fed into our segmentation

branch. As shown in Fig. 2(a), our segmentation branch

contains a RoIMasking layer for instance feature extraction

and a salient instance discriminator for identifying salient

instances.

3.3. RoIMasking

RoIPool [19] and RoIAlign [23] are two standard oper-

ations for extracting fixed-size features from the regions of

interest. Both RoIPool and RoIAlign sample a region of

interest into a fixed spatial extent of H ×W , and typically

H = W , e.g. 7×7 in [19] and 28×28 in [23]. The RoIPool

first quantizes RoIs by uniformly dividing them into H×W
spatial bins. After max-pooling each spatial bin, the output

feature maps with size H ×W can be generated. Since the

quantization in RoIPool is performed by rounding opera-

tion, it introduces misalignments between the RoI and the

extracted features. As a remedy, RoIAlign avoids quantiza-

tion by using bilinear interpolation.

However, both RoIPool and RoIAlign focus on the re-

gions inside the proposals, neglecting the rest region. As

discussed in Sec. 3.1, the region surrounding the current

object RoI contains valuable information for distinguish-

ing between the target object and its background. Unfortu-

nately, although some layer-fusion techniques such as fea-

ture pyramid network [37] attempt to embed high-level and

comprehensive information in a feature map, both RoIPool

and RoIAlign do not explicitly and effectively explore the

information surrounding the RoI. Moreover, the sampling

process in these two operations makes these operations un-

able to maintain the aspect ratio and resolution of the re-

gions of interest, possibly hurting the quality of the results.

In this subsection, we design a new resolution-preserving

and quantization-free layer, called RoIMasking, to take the

place of RoIPool or RoIAlign. We also attempt to explore

feature separation between foreground and background re-

gions for improving segmentation quality.

Binary RoIMasking. We first introduce a simplified ver-

sion of RoIMasking which we call binary RoIMasking. The

binary RoIMasking receives feature maps and proposals

predicted by the detection branch. A binary mask is gen-

erated according to the position and size of a given rect-

angle proposal. The values inside the rectangle are set to

1 and otherwise 0. Fig. 5a illustrates a binary version of

RoIMasking, in which the bright and dark areas are asso-

ciated with labels 1 and 0, respectively. The output of the

binary RoIMasking layer is the input feature maps multi-

plied by this mask. In Fig. 4, we show a typical example of

the output feature maps. Different from RoIPool [19] and

RoIAlign [23], our binary RoIMasking keeps the original

aspect ratio and resolution of the feature maps. In Sec. 4, we

experimentally verify that the proposed binary RoIMasking

outperforms the RoIPool and RoIAlign baselines.

Expanded Binary RoIMasking. In this paragraph, we

also consider an extensive version of binary RoIMasking

by simply enlarging the proposal region as illustrated in

Fig. 5b. Compared to the standard binary RoIMasking, ex-

panded binary RoIMasking takes into account more back-

ground/context information, which means the segmentation

branch has a larger receptive field. We will show more

quantitative comparisons in our experiment section.

Ternary RoIMasking. To make better use of the back-

ground information around the regions of interest, we fur-

ther advance the expanded binary RoIMasking to a ternary

case. Because of the ReLU activation function, there are

no negative values in the feature maps before RoIMasking.

To explicitly notify the segmentation branch that the region
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(a) Input image (b) Feature map before masking (c) Binary RoIMasking (d) Ternary RoIMasking

Figure 4: The output feature maps of two different types of RoIMasking layers. (b) Before RoIMasking, all of the values in

the feature map are non-negative because of the ReLU layer. (c) After binary RoIMasking, the regions outside the proposal

are set to zeros. (d) Ternary RoIMasking additionally considers a larger area, in which feature values are non-positive.

(a) Binary mask (b) Ex-Binary mask (c) Ternary mask

Figure 5: Three different types of masks used in our

RoIMasking layer. (a) Binary mask only considers the

regions inside the orange rectangle; (b) Expanded binary

mask considers a larger rectangle area than binary mask-

ing; (b) The ternary mask takes into account both the re-

gion inside the orange rectangle and its surrounding regions

marked in yellow.

outside the proposals should be considered as background,

we flip the signs (i.e. set the corresponding mask values to -

1) of the feature values around the region of interest, which

is illustrated in yellow color in Fig. 5c. In this way, the

features around regions of interest are distinct from those

inside the bounding boxes of the salient instances. This al-

lows the segmentation branch to be able to not only make

use of features inside the region of interest as well as the

surrounding context (as in extended binary RoIMasking),

but also explicitly emphasis on foreground/background fea-

ture separation. The feature map after ternary RoIMasking

is illustrated in Fig. 4d. It is worth mentioning that this op-

eration introduces no additional computation cost into our

model. Ternary RoIMasking leads to a large improvement

as we show in the experiment part (Sec. 4). In the follow-

ing, we abbreviate ternary RoIMasking as RoIMasking for

notational convenience unless otherwise noted.

3.4. Analysis of RoIMasking

This subsection demonstrates the importance of the

background information around the regions of interest in

the feature maps and the effectiveness of ternary RoIMask-

ing. To do so, we explore the impact of each activation in

the feature maps before RoIMasking on the performance.

Inspired by [58], we visualize the function of a specific neu-

(a) Binary masking (b) Ternary masking

Figure 6: Gradient maps using binary masking and ternary

masking. As can be seen, ternary masking considers more

perimeter information of the region around the proposal.

The input image in this experiment is shown in Fig. 4(a).

ron in this model by drawing a gradients map. After loading

the fully trained model weights, we do a forward pass us-

ing a specific image. In this process, the activation value

of the feature maps before RoIMasking, Hi,j,c, is extracted

and stored. Next, we do a backward pass. Note that in

the general training stage, back-propagation is performed

to calculate the gradients of the total loss with respect to the

weights in the neural network. But in this experiment, we

load the stored Hi,j,c as a variable, and regard the convo-

lution kernels as constant. Back-propagation is performed

to calculate the gradients of the instance segmentation loss

with respect to each feature map input to RoIMasking, i.e.

Gi,j,c = ∂Lsal/∂Hi,j,c. The absolute value of Gi,j,c re-

flects the importance of the feature map pixel Hi,j,c to the

saliency task. After summing up |Gi,j,c| along the channel

dimension, the gradient map Gi,j can be obtained.

Fig. 6 shows the gradient maps for binary RoIMasking

and ternary RoIMasking, respectively. The orange rectan-

gle is the ground truth bounding box of a salient instance.

By definition, the pixels inside the orange rectangle in the

ternary mask are set to 0 and the pixels between the orange

and blue boxes are set to -1. It is obvious that there are

evident responses in the background (marked as ‘-1’ in the

ternary mask) area in Fig. 6b. In Fig. 6a, there are only few

responses between the orange and blue boxes. This phe-

nomenon indirectly indicates the importance of the context
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information around the regions of interest. More experi-

mental results can be found in the experiment section.

3.5. Segmentation Branch

Taking into account the structure of our backbone, we

take the feature maps from the lateral layer associated with

conv3 with a stride of 8 as the input to our segmentation

branch on the trade-off between global context and details.

Before connecting our RoIMasking layer, we first add a

simple convolutional layer with 256 channels and kernel

size 1× 1 for compressing the number of channels. Despite

the RoIMasking layer, it is still difficult to distinguish the

salient instances from the other instances inside the same

RoI. To this end, we add a segmentation branch similar to

Mask-RCNN [23] to help better distinguish the instances.

As pointed out in [61], enlarging receptive field is help-

ful for segmentation related tasks. Inspired by [61, 23],

we design a new segmentation branch by introducing skip

connections and dilated convolutional layers (See Fig. 2c).

Other than two residual blocks, we also add two 3× 3 max

pooling with stride 1 and dilated convolutional layers with

dilation rate 2 for enlarging the receptive field. All the con-

volutional layers have a kernel size 3 × 3 and stride 1. For

the channel numbers, we set the first three to 128 and the

rest 64, which we found are enough for salient instance seg-

mentation.

3.6. Loss function

As described above, there are two sibling branches in our

framework for detection and saliency segmentation, respec-

tively. The detection branch undertakes objectness classifi-

cation task and coordinates regression task, and the segmen-

tation branch is for saliency segmentation task. Therefore,

we use a multi-task loss L on each training sample to jointly

train the model:

L = Lobj + Lcoord + Lseg. (1)

Regarding the fact that positive proposals are far less than

negative samples in the detection branch, we adopt the fol-

lowing strategy. Let P and N be the collections of positive

and negative proposals, NP and NN be the numbers of pos-

itive and negative proposals (NP ≪ NN ), then we calculate

the positive and negative objectness loss separately to avoid

the domination of negative gradients during training. Thus

we have:

Lobj = −(
1

NP

∑

i∈P

log pi +
1

NN

∑

j∈N

log(1− pj)), (2)

in which pi is the probability of the ith proposal being pos-

itive.

We use SmoothL1 loss as Fast-RCNN [19] for coor-

dinate regression and cross-entropy loss similar to Mask-

RCNN [23] for the segmentation branch.

4. Experiments

In this section, we carry out detailed analysis to elabo-

rate the functions of each component in our method by ab-

lation studies. We also perform thorough comparisons with

the state-of-the-art methods to exhibit the effectiveness of

our approach. We use the dataset proposed in [33] for all

experiments. This dataset contains 1,000 images with well-

annotated instance-level annotations. For fair comparisons,

as done in [33], we randomly select 500 images for training,

200 for validation, and 300 for testing.

Methods mAP0.5 mAP0.7 mAP0.5

O mAP0.7

O

RoIAlign [23] 85.2% 61.5% 79.2% 47.7%

RoIPool [19] 85.2% 61.1% 80.3% 50.9%

Binary RoIMasking 85.5% 62.4% 80.1% 49.4%

Ternary RoIMasking 86.7% 63.6% 81.2% 51.5%

Table 1: Ablation experiments for analyzing our RoIMask-

ing layer. We also list the results using the RoIAlign and

RoIPool proposed in Mask R-CNN [23] and Fast R-CNN

[19], respectively. Obviously, our proposed RoIMasking

outperforms RoIAlign and RoIPool even for the images

with occlusion.

4.1. Implementation Details

Training and Testing. In the training phase, the IoU is

used to determine whether a bounding box proposal is a

positive or negative sample in the detection branch. A

bounding box proposal is positive if it’s IoU > 0.5, and

negative if IoU < 0.5.

In the testing phase, the bounding boxes fed into the

RoIMasking layer are from the detection branch. But in the

training phase, we directly feed the ground truth bounding

boxes into the RoIMasking layer. This provides the segmen-

tation branch with more stable and valid training data and

meanwhile accelerates the training process, as been verified

by empirical experiments.

Hyper-parameters. Our proposed network is based on

the TensorFlow library [1]. The input images are aug-

mented by horizontal flipping. The hyper-parameters are

set as follows: weight decay (0.0001) and momentum (0.9).

We train our network on 2 GPUs for 20k iterations, with an

initial learning rate of 0.004 which is divided by a factor of

10 after 10k iterations.

4.2. Ablation Studies

To evaluate the effectiveness of each component in our

proposed framework, we train our model on the salient
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Figure 7: Selected examples of instance-level saliency segmentation results on the dataset proposed by [33] (the line above)

and COCO [39] (the line below). Even obstructed instances can be well distinguished and segmented by our S4Net.

instance segmentation dataset [33]. Following the stan-

dard COCO metrics [39], we report results on mAP (av-

eraged precision over IoU thresholds), including mAP0.5

and mAP0.7. Furthermore, to analyze the ability to dis-

tinguish different instances, we also consider another set

which only contains instances with occlusion, which is de-

noted by mAPO.

Effect of RoIMasking. To evaluate the performance of

the proposed RoIMasking layer, we also consider using

RoIPool [19] and RoIAlign [23]. We replace our RoIMask-

ing with RoIPool and RoIAlign to perform two comparison

experiments while keep all other network structures and ex-

perimental settings unchanged. Quantitative evaluation re-

sults are listed in Tab. 1. As can be seen, our proposed bi-

nary RoIMasking and ternary RoIMasking both outperform

RoIPool and RoIAlign in mAP0.7. Specifically, our ternary

RoIMasking result improves the result using RoIAlign by

around 2.1 points. This reflects that considering more con-

text information outside the proposals does help for salient

instance segmentation.

To further verify the effectiveness of our RoIMasking

layer, we also consider a binary masking case in which the

values in the yellow area of Fig. 5d are all set to 1. The

penultimate line in Table 1 shows the corresponding results.

As can be seen, the results are even worse when the binary

masking is used. This fact reflects that simply enlarging the

regions of interest is not helpful for discriminating salient

instances. However, when the signs of the extended regions

in the mask are flipped (ternary RoIMasking), the best re-

sults can be obtained (the bottom line of Table 1). This

demonstrates that changing the signs of the extended re-

gions in the mask can explicitly increase the contrast be-

tween the salient instances and background. More impor-

tantly, the non-salient regions inside the proposals will tend

to be predicted to the same class as the extended regions.

Therefore, the feature separation ability between the target

objects and their nearby background plays an important role

in our approach.

Size of Context Regions. To better understand our

RoIMasking layer, we analyze how large the context re-

gions should be here. Suppose the bounding box size of a

α 0 1/6 1/3 1/2 2/3 1

mAP0.5
85.9% 86.4% 86.7% 86.5% 86.2% 85.9%

mAP0.7
62.5% 63.4% 63.6% 63.3% 62.4% 62.0%

Table 2: Performance of S4Net with different expanded ar-

eas. All the results shown here are based on ResNet-50 [25].

As can be observed, when α = 1/3 we obtain the best re-

sult.

salient instance is (w, h), where w and h are the width and

height, respectively. We define an expansion coefficient α
to denote the width of the ‘-1’ region in the RoI mask. So,

the size of the valid region is (w + 2αw, h + 2αh). By

default, we set α to 1/3. We also try different values of α
to explore its influence on the final results as shown in Ta-

ble 2 but found both larger and smaller values of α slightly

harms the performance. This indicates that a region size of

(w + 2w/3, h+ 2h/3) is enough for discriminating differ-

ent instances as larger ‘-1’ region may make more salient

instances be viewed, weakening the performance of identi-

fying the ‘real’ salient instances.

Number of Proposals. The number of proposals sent to

the segmentation branch also effects the performance. Ac-

cording to our experiments, more proposals lead to better

performance but more computational costs. Notice that the

performance gain is not obvious when the number of pro-

posals exceeds 20. Specifically, when we set the number

of proposals to 100, only around 1.5% improvement can be

achieved but the runtime cost increases dramatically. Tak-

ing this into account, we take 20 proposals as a trade-off

during the inference phase. Users may decide the number

of proposals by their tailored tasks.

Base Models. Besides the base model of ResNet-50 [25],

we also try another three popular base models, including

Resnet-101 [25], VGG16 [50], and MobileNet [28]. Tab.

3 lists the results when different base models are utilized.

As one can see, base models with better performance on

classification also works better in our experiments. For

speed, real-time processing can be achieved by our pro-

6109



Base models mAP@0.5 mAP@0.7 Speed (FPS)

ResNet-101 [25] 88.1% 66.8% 33.3

ResNet-50 [25] 86.7% 63.6% 40.0

VGG16 [50] 82.2% 53.0% 43.5

MobileNet [28] 62.9% 33.5% 90.9

Table 3: Performance of S4Net when using different base

models. When we change the default ResNet-50 to ResNet-

101, another 3.2% improvement can be obtained in spite of

a little sacrifice on time cost. We also attempt to use the

recent MobileNet [28] as our base model and yield a frame

rate of more than 90 fps on a GTX 1080 Ti GPU.

Methods mAP0.5 mAP0.7 mAP0.5

O mAP0.7

O

MSRNet [33] 65.3% 52.3% - -

S4Net 86.7% 63.6% 81.2% 51.5%

Table 4: Quantitative comparisons with existing methods

on the ‘test’ set. As the instance segmentation maps of [33]

and related code are not available, thus we use ‘-’ to fill the

blank cells.

posed S4Net. When the size of input images is 320 × 320,

S4Net has a frame rate of 40.0 fps on a GTX 1080 Ti GPU.

Furthermore, using MobileNet [28] as our base model,

S4Net runs very fast at a speed of 90.9 fps.

4.3. Comparisons with the State­of­the­Arts

Unlike salient object detection which has been studied

for years, salient instance detection is a relatively new prob-

lem such that there is only one related work MSRNet [33]

that can be used for direct comparison. In this experiment,

we compare our S4Net based on ResNet-50 [25] with the

MSRNet method. We report the results on the ‘test’ set us-

ing mAP0.5 and mAP0.7 metric.

Quantitative Analysis. Two datasets are used in our com-

parison experiments. The results of comparative experi-

ments on dataset proposed by [33] are listed in Tab. 4. Our

proposed S4Net achieves better results in both mAP0.5 and

mAP0.7 compared to MSRNet [33]. Specifically, our ap-

proach improves the baseline results presented in MSRNet

[33] by about 21 points in mAP0.5. Regarding mAP0.7, we

also have a great improvement on the same dataset.

5. Applications

In this section, we apply our proposed S4Net to a popu-

lar vision task—weakly-supervised semantic segmentation.

For training samples with multiple keywords, such as the

Model Heuristic cues val set

DeepLab-VGG16 Sal maps [31] 49.8%

DeepLab-VGG16 Sal maps [26] 52.6%

DeepLab-VGG16 Att [59] + Sal [26] 53.8%

DeepLab-VGG16 Salient Instances 57.4%

DeepLab-ResNet101 Salient Instances 61.8%

Table 5: Semantic segmentation results with different initial

heuristic cues on the PASCAL VOC validation set. The best

result is highlighted in bold. Due to the space limitation, we

use abbreviations for convenience. As can be seen, training

with our instance-level saliency cues greatly outperforms

settings with regular saliency cues.

images in PASCAL VOC [16], discriminating different in-

stances is even essential for keyword assignment. The de-

tailed methodology can be seen in our supplementary ma-

terial. The results is shown in Table 5. It is obvious that

training with our instance segmentation on the same dataset

works much better than the settings in which other heuris-

tic cues are used. Our approach obtains a 4.8% performance

gain compared to using the DSS salient object detector [26].

6. Conclusions

In this paper, we present a single stage salient-

instance segmentation framework, which is able to seg-

ment instance-level salient objects in real time. The key

novelties include (i) the ROIMasking layer, which takes

into account both the information inside the proposals and

the context information outside the proposals and preserves

the original resolution and aspect ratio of the regions of

interest, and (2) an advanced salient instance discrimina-

tor which enlarges the receptive field of our segmentation

branch and thus boosts the performance. Thorough exper-

iments show that the proposed RoIMasking greatly outper-

forms RoIAlign and RoIPool, especially for distinguishing

instances in the same scope. Our S4Net achieves the state-

of-the-art performance on a publicly available benchmark.
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