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Abstract

The last decade has witnessed a growing interest in

video salient object detection (VSOD). However, the re-

search community long-term lacked a well-established

VSOD dataset representative of real dynamic scenes with

high-quality annotations. To address this issue, we elabo-

rately collected a visual-attention-consistent Densely Anno-

tated VSOD (DAVSOD) dataset, which contains 226 videos

with 23,938 frames that cover diverse realistic-scenes, ob-

jects, instances and motions. With corresponding real hu-

man eye-fixation data, we obtain precise ground-truths.

This is the first work that explicitly emphasizes the chal-

lenge of saliency shift, i.e., the video salient object(s) may

dynamically change. To further contribute the community a

complete benchmark, we systematically assess 17 represen-

tative VSOD algorithms over seven existing VSOD datasets

and our DAVSOD with totally ∼84K frames (largest-scale).

Utilizing three famous metrics, we then present a compre-

hensive and insightful performance analysis. Furthermore,

we propose a baseline model. It is equipped with a saliency-

shift-aware convLSTM, which can efficiently capture video

saliency dynamics through learning human attention-shift

behavior. Extensive experiments1 open up promising future

directions for model development and comparison.

1. Introduction

Salient object detection (SOD) targets at extracting the

most attention-grabbing objects from still images [17] or

dynamic videos. This task originates from the cognitive

studies of human visual attention behavior, i.e., the aston-

ishing ability of the human visual system (HVS) to quick-

ly orient attention to the most informative parts of visual

scenes. Previous studies [6, 45] quantitatively confirmed

that there exists a strong correlation between such explic-

it, object-level saliency judgment (object-saliency) and the

implicit visual attention allocation behavior (visual atten-

tion mechanism).

∗M.M. Cheng (cmm@nankai.edu.cn) is the corresponding author.
1Dataset and code are available at: http://dpfan.net/DAVSOD/
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Figure 1: Annotation examples of our DAVSOD dataset. The

rich annotations, including saliency shift, object-/instance-level

ground-truths (GT), salient object numbers, scene/object cate-

gories, and camera/object motions, provide a solid foundation for

VSOD task and benefit a wide range of potential applications.

Video salient object detection (VSOD) is thus signifi-

cantly essential for understanding the underlying mecha-

nism behind HVS during free-viewing in general and in-

strumental to a wide range of real-world applications, e.g.,

video segmentation [74, 83], video captioning [57], video

compression [27, 29], autonomous driving [91], robotic in-

teraction [82], weakly supervised attention [95]. Besides its

academic value and practical significance, VSOD presents

great difficulties due to the challenges carried by video da-

ta (diverse motion patterns, occlusions, blur, large object-

deformations, etc.) and the inherent complexity of human

visual attention behavior (i.e., selective attention allocation,

attention shift [5, 37, 60]) during dynamic scenes. Thus it

invoked dramatically increasing research interest over the

past few years [7, 25, 31, 36, 38, 39, 61] (Table 2).

However, in striking contrast with the flourishing de-

velopment of VSOD modeling, the effort on a standard

representative VSOD benchmark still lags behind serious-

ly. Although several datasets [35, 40, 43, 52, 56, 59, 75]

are proposed for VSOD, they suffered from the following

shortages. First, during dynamic-viewing, the allocation

of attentional resources is not only selective but also dy-

namically varied among different parts of inputs, with the

changing of video content. Nevertheless, previous datasets

are annotated via static frames, without a dynamic human

eye-fixation guided annotation methodology, and thus do

not reveal real human attention behavior during dynamic-
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Figure 2: Sample video sequences from our DAVSOD dataset, with instance-level GT and fixations overlaid.

viewing. Second, they are typically limited in their scala-

bility, coverage, diversity and difficulty. Thus, these limita-

tions of existing datasets inhibit the further development of

this branch.

This paper presents two contributions. First, we collect

a large-scale DAVSOD (Densely Annotated Video Salient

Object Detection) dataset specifically designed for VSOD.

• It contains 226 video sequences, which were strict-

ly annotated according to real human fixation record-

s (Fig. 2). More importantly, two essential dynam-

ic human attention characteristics, i.e., selective at-

tention and attention shift are both considered. In

DAVSOD, the salient object(s) may change at differ-

ent time (Fig. 1), which is more realistic and requires a

complete video content understanding. Above efforts

result in a visual-attention-consistent VSOD dataset.

• Besides, the videos were carefully selected to cov-

er diverse scene/object categories, motion patterns,

and densely annotated with per-frame pixel-accurate

ground-truths (GT).

• Another discriminative feature of DAVSOD is the

availability of both object- and instance-level annota-

tions, benefiting broader potential research direction-

s, such as instance-level VSOD, video salient object

subitizing, saliency-aware video captioning, etc.

Second, with the established DAVSOD dataset and previ-

ous 7 VSOD datasets [35,40,43,52,56,59,75], we present a

comprehensive evaluation of 17 state-of-the-art models [8,

11,35,41,44,52,53,62,67,68,70,74–76,81,87,92], making

it the most complete VSOD benchmark. Additionally, we

also propose a baseline model, named SSAV (Saliency-Shift

Aware VSOD). It learns to predict video saliency by using

a saliency-shift-aware convLSTM module, which explicit-

ly models human visual attention-shift behavior in dynamic

scenes. The promising results on above benchmark clearly

demonstrate its effectiveness.

Our two contributions represent a complete benchmark

suite with the necessary tools for a complementary evalua-

tion, bring a more insightful glimpse into the task of VSOD

and boost more research efforts towards this direction.

Dataset Year #Vi. #AF. DL AS FP EF IL

SegV2 [40] 2013 14 1,065 X

FBMS [56] 2014 59 720
MCL [35] 2015 9 463
ViSal [75] 2015 17 193

DAVIS [59] 2016 50 3,455 X

UVSD [52] 2017 18 3,262 X

VOS [43] 2018 200 7,467 X

DAVSOD 2019 226 23,938 X X X X X

Table 1: Statistics of previous VSOD datasets and the pro-

posed DAVSOD dataset, showing DAVSOD provides much richer

annotations. #Vi.: number of videos. #AF.: number of annotated

frames. DL: whether provide densely (per-frame) labeling. AS:

whether consider attention shift. FP: whether annotate salient ob-

jects according to eye fixation records. EF: whether offer the eye

fixation records for annotated salient object(s). IL: whether pro-

vide instance-level annotation.

2. Related Work

VSOD Datasets. Over the past few years, several datasets

(Table 1) have been created or introduced into VSOD.

Specifically, SegV2 [40] and FBMS [56] are two early

adopted datasets. Since they are designed for their spe-

cific purposes, they are not very suitable for VSOD task.

Another dataset MCL [35] only has 9 simple video ex-

amples. ViSal [75] is the first specially designed VSOD

dataset, while only containing 17 video sequences with ob-

vious objects. More recently, Wang et al. [76] introduced

DAVIS [59], a famous video segmentation dataset with 50

challenging scenes, for VSOD. Although above datasets

advanced the field of VSOD to various degrees, they are

severely limited to small scales (only dozens of videos). In

addition, those datasets do not consider real human atten-

tion during dynamic scenes instead arbitrarily and manual-

ly identify the salient objects by only a few annotators. The

annotation is performed over each frame individually, failed

in accounting temporal characteristics in complex dynam-

ic scenes. A recent larger scale VOS [43] dataset partially

remedied above limitations. But its diversity and generality

are quite limited as it contains many simple indoor, stable-

camera scenarios.

Overall, our DAVSOD significantly discriminate from

above datasets: i) Through in-depth analyzing real human

dynamic attention behavior, we observe visual attention-

shift phenomenon, and thus, for the first time, emphasize

the shift of salient objects in dynamic scenes and provide

8555



No. Model Year Pub. #Training Training Set Basic Type OF SP S-measure PCT Code

1 SIVM [62] 2010 ECCV CRF, statistic T 0.481∼0.606 72.4* M&C++

2 DCSM [36] 2011 TCSVT SORM distance T 0.023* C++

3 RDCM [47] 2013 TCSVT gabor, region contrast T X 9.8* N/A

4 SPVM [53] 2014 TCSVT SP, histogram T X 0.470∼0.724 56.1* M&C++

5 CDVM [20] 2014 TCSVT compressed domain T 1.73* M

6 TIMP [92] 2014 CVPR time-mapping T X 0.539∼0.667 69.2* M&C++

7 STUW [21] 2014 TIP uncertainty weighting T X 50.7* M

8 EBSG [55] 2015 CVPR gestalt principle T X N/A

9 SAGM [74] 2015 CVPR geodesic distance T X X 0.615∼0.749 45.4* M&C++

10 ETPM [64] 2015 CVPR eye tracking prior T X N/A

11 RWRV [35] 2015 TIP random walk T 0.330∼0.595 18.3* M

12 GFVM [75] 2015 TIP gradient flow T X X 0.613∼0.757 53.7* M&C++

13 MB+M [87] 2015 ICCV minimum barrier distance T 0.552∼0.726 0.02* M&C++

14 MSTM [70] 2016 CVPR minimum spanning tree T 0.540∼ 0.657 0.02* M&C++

15 SGSP [52] 2017 TCSVT histogram, graph T X X 0.557∼0.706 51.7* M&C++

16 SFLR [8] 2017 TIP low-rank coherency T X X 0.470∼0.724 119.4* M&C++

17 STBP [81] 2017 TIP background priors T X 0.533∼0.752 49.49* M&C++

18 VSOP [28] 2017 TYCB object proposals T X X M&C++

19 DSR3 [38] 2017 BMVC 44 (6+8+30) clips 10C+S2+DV RCL [48] D Py&Ca

20 VQCU [3] 2018 TMM spectral, graph structure T X 0.78* M

21 CSGM [77] 2018 TCSVT joint video co-saliency T X X 3.86* M&C++

22 STUM [2] 2018 TIP local spatiotemporal neighborhood cues T N.A.

23 SAVM [78] 2018 TPAMI geodesic distance T X X 0.615∼0.749 45.4* M&C++

24 bMRF [7] 2018 TMM MRF T X X 2.63* N/A

25 LESR [93] 2018 TMM localized estimation, spatiotemporal T X X 5.93* N/A

26 TVPI [61] 2018 TIP geodesic distance, CRF T X 2.78* M&C

27 SDVM [4] 2018 TIP spatiotemporal decomposition T N/A

28 SCOM [11] 2018 TIP ∼10K frame pairs MK DCL [42] D X X 0.555∼0.832 38.8 N/A

29 STCR [39] 2018 TIP 44 (6+8+30) clips 10C+S2+DV CRF D X N/A

30 DLVS [76] 2018 TIP ∼18K frame pairs MK+DO+S2+FS FCN [54] D X X 0.682∼0.881 0.47 Py&Ca

31 SCNN [68] 2018 TCSVT ∼11K frame pairs MK+S2+FS VGGNet [66] D X X 0.674∼0.794 38.5 N/A

32 FGRN [41] 2018 CVPR ∼10K frame pairs S2+FS+DV LSTM D X 0.693∼0.861 0.09 Py&Ca

33 SCOV [33] 2018 ECCV BOW [22], proposal, FCIS [46] T X X 3.44 N/A

34 MBNM [44] 2018 ECCV ∼13K frame pairs Voc12 + Coco [49] + DV motion based, DeepLab [9] D X 0.637∼0.898 2.63 N/A

35 PDBM [67] 2018 ECCV ∼18K frame pairs MK+DO+DV DC [85] D 0.698∼0.907 0.05 Py&Ca

36 UVOS [31] 2018 ECCV standard edge detector D X X N/A

37 SSAV (Ours) 2019 CVPR ∼13K frame pairs DAVSOD val + DO +DV SSLSTM, PDC [67] D 0.724∼0.941 0.05 Py&Ca

Table 2: Summarizing of 36 previous representative VSOD methods and the proposed SSAV model. Training Set: 10C = 10-

Clips [24]. S2 = SegV2 [40]. DV = DAVIS [59]. DO = DUT-OMRON [84]. MK = MSRA10K [12]. MB = MSRA-B [51]. FS = FBMS [56].

Voc12= PASCAL VOC2012 [16]. Basic: CRF = Conditional Random Field. SP = superpixel. SORM = self-ordinal resemblance measure.

MRF = Markov Random Field. Type: T = Traditional. D = Deep learning. OF: Whether use optical flow. SP: Whether use superpixel

over-segmentation. S-measure [18]: The range of scores over the 8 datasets in Table 4. PCT: Per-frames Computation Time (second).

Since [3, 7, 11, 33, 44, 47, 68, 93] did not release implementations, corresponding PCTs are borrowed from their papers or provided by

authors. Code: M = Matlab. Py = Python. Ca= Caffe. N/A = Not Available in the literature. “*” indicates CPU time.

the unique annotations of visual-attention-consistent prop-

erty. ii) Its diversity, large-scale dense annotation, as well

as comprehensive object-/instance-level salient object an-

notations, rich attribute annotations (e.g., object numbers,

motion patterns, scene/object categories), altogether make

a solid and unique foundation for VSOD.

VSOD Models. Early VSOD models [8, 26, 28, 35, 52, 53,

62, 63, 74, 75] are built upon hand-crafted features (color,

motion, etc.), and largely rely on classic heuristics in im-

age salient object detection area (e.g., center-surround con-

trast [12], background prior [79]) and cognitive theories of

visual attention (e.g., feature integration theory [69], guid-

ed search [80]). They also explored the way of integrat-

ing spatial and temporal saliency features through different

computational mechanisms, such as gradient flow field [75],

geodesic distance [74], restarted random walk [35], and

spectral graph structure [3]. Traditional VSOD models are

bound to significant feature engineering and limited expres-

sion ability of hand-features. See Table 2 for more details.

More recently, deep learning based VSOD models [31,

38, 39, 41, 67, 68, 76] have gained more attention inspired

by the success of applying deep neural networks on im-

age saliency detection [13–15, 32, 50, 71, 72, 86, 88–90, 94].

More specifically, the work of Wang et al. [76] represents

an early attempt that trains a fully convolutional neural net-

work for VSOD. Another concurrent work [38] uses a 3D

filter to incorporate both spatial and temporal information

in a spatiotemporal CRF framework. Later, spatiotemporal

deep feature [39], RNN [41], pyramid dilated convLSTM

[67] are proposed for better capturing spatial and temporal

saliency characteristics. These deep VSOD models gener-

ally achieved better performance due to the strong learning

ability of neural network. However, these models ignored

the saliency shift phenomenon which is quite important for

understanding the human visual attention mechanism. In

contrast, our SSAV model utilizes the saliency shift cue ex-

plicitly, yielding a competitive VSOD model.

In this work, we systematically benchmark 17 state-of-

the-art VSOD models on seven previous datasetsand the

proposed DAVSOD dataset, which represents the largest

8556



takephoto

d
an
ce

chimpanzee
bird

sh
ee
p

Salient Objects

Vehicle

Animal

Human

Artifact

social

art

daily

sport

35%

15%

7%

18%

8%

14%

17%

57%

0 50 100 150 200
0

200

400

600

0 50 100 150 200

instance

object

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

100

200

300

400

(a) (b)

#
in

st
an

ce
s

video

Annotated salient object instances in each video

(c)

#
fr

am
es

video

Image frames in each video

(d)

fr
eq

u
en

cy

ratio

Object/Instance size

(e)

Figure 3: Statistics of the proposed DAVSOD dataset. (a) Scene/object categories. (b, c) Distribution of annotated instances and image

frames, respectively. (d) Ratio distribution of the objects/instances. (e) Mutual dependencies among scene categories in (a).

performance evaluation in VSOD area so far. With our ex-

tensively quantitative results, we present deep insights into

VSOD and point out some promising research directions.

3. Proposed Dataset

Some example frames can be found in Fig. 1 and

Fig. 2. See our website for details. We will show details

of DAVSOD from the following 4 key aspects.

3.1. Stimuli Collection

The stimuli of DAVSOD come from DHF1K [73], which

is the current largest-scale dynamic eye-tracking dataset.

There are several advantages of using DHF1K create our

dataset. DHF1K2 is collected from Youtube and covers di-

verse realistic-scenes, different object appearances and mo-

tion patterns, various object categories, and large span of

major challenges in dynamic scenarios, providing us a solid

basis to build a large-scale and representative benchmark.

More essentially, the companied visual fixation record al-

lows us to produce reasonable and biologically-inspired

object-level saliency annotations. We manually trim the

videos into shot clips (Fig. 3(c)) and remove dark-screen

transitions. In this way, we finally reach a large-scale

dataset, containing 226 video sequences with totally 23, 938

frames and 798 seconds duration.

3.2. Data Annotation

Saliency Shift Annotation. Human attention behavior is

more complex during realistic, dynamic scenes [37,60], i.e.,

selective attention allocation and overt attention shift (due

to abrupt onsets, new dynamic events, etc.) may both hap-

pening. With the eye-tracking record of DHF1K, we also

observe stimulus-driven attention-shifts [23] are ubiquitous,

as shown in Fig. 1. However, none of the previous work in

the VSOD area explicitly emphasizes such essential visu-

al attention behavior. In DAVSOD, we annotate the salient

2Download: https://github.com/wenguanwang/DHF1K

objects according to real human fixations, and the temporal

location at which attention shift occurs, for the first time,

emphasizing the challenge of saliency shift3 in this field.

Scene/Object Category Labeling. Consistent with [73],

each video is manually labeled with a category (i.e., Ani-

mal, Vehicle, Artifact, Human Activity). Human Activity has

four sub-classes: Sports, Daily-, Social-, and Art-Activity.

For object class, following MSCOCO [49], only “thing”

categories instead of “stuff” are included. Then we built

a list of about 70 most frequently present scenes/objects. In

Fig. 3(a)&(e), we show the scene/object categories and their

mutual dependencies, respectively. Five annotators were

asked to annotate the object labels.

Instance-/Object-Level Salient Object Annotation.

Twenty human annotators, who were pre-trained with ten

video examples, are instructed to select up to five objects

per-frame according to the corresponding fixation records

and carefully annotate them (by tracing boundaries instead

of rough polygons). They are also asked to differentiate

instances and annotate them individually, resulting in

totally 23,938 object-level ground-truth masks and 39,498

instance-level salient object annotations.

3.3. Dataset Features and Statistics

To offer deeper insights into the proposed DAVSOD, we

discuss its several important characteristics.

Sufficient Salient Object Diversity. The salient objects in

DAVSOD span a large set of classes (Fig. 3 (a)) such as an-

imals (e.g., lion, bird), vehicles (e.g., car, bicycle), artifacts

(e.g., box, building), and humans in various activities (e.g.,

dancer, rider), enabling a comprehensive understanding of

object-level saliency in dynamic scenes.

3 Notion of saliency shift. The saliency shift is not just represented

as a binary signal, w.r.t., whether it happens in a certain frame. Since we

focus on an object-level task, we change the saliency values of different

objects according to the shift of human attention.
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Camera Mo. Object Mo. # Object Instances
DAVSOD

slow fast stable slow fast 1 2 3 ≥ 4

# videos 102 124 117 72 37 134 125 46 33

Table 3: Statistics regarding camera/object motions and

salient object instance numbers in DAVSOD dataset.

Amount of Salient Object Instances. Existing datasets

fall in short of limited numbers of salient object instances

(Table 1). However, previous studies [34] showed human

could accurately enumerate up to five objects at a glance

without counting. In Table 3, DAVSOD is therefore de-

signed to contain more salient objects (≤ 5 salient object

instances per-frame, avg.: 1.65). The distribution of anno-

tated instances in each video can be found in Fig. 3(b).

Size of Salient Objects. The size of object-level salien-

t object is defined as the proportion of foreground objec-

t pixels to the image. In Fig. 3(d), the ratio distribution

in DAVSOD are 0.29%∼ 91.3% (avg.: 11.5%), yielding a

broader range.

Varied Camera Motion Patterns. DAVSOD contains di-

verse camera motions (summarized in Table 3). Algorithms

trained on such data could potentially handle realistic dy-

namic scenes better and thus are more practical.

Diverse Object Motion Patterns. DAVSOD inherits the

advantage of DHF1K that covers diverse (Table 3) realistic

dynamic scenes (e.g., object motion from stable to fast). It

is crucial to avoid over-fitting and benchmark algorithms

objectively and precisely.

Center Bias. To depict the degree of center bias, we

compute the average saliency map over all frames for

each dataset. The center bias of DAVSOD and existing

datasets [35, 40, 43, 52, 56, 59, 75] are presented in Fig. 4.

3.4. Dataset Splits

Existing datasets do not maintain a preserved test set,

easily leading to model over-fitting. Thus, our videos are s-

plit into separate training, validation and test sets in the ratio

of 4:2:4. Following random selection, we arrive at a unique

split containing 90 training and 46 validation videos with

released annotations, and 90 test videos with preserved an-

notations for benchmarking. The test set is further divided

into 35 easy, 30 normal, and 25 difficult subsets according

to the degree of difficulty of the VSOD task.

4. Proposed Approach

4.1. SaliencyShiftAware VSOD Model

Overview of Model. The proposed SSAV model has two

essential components: pyramid dilated convolution (PD-

C) [67], and saliency-shift-aware convLSTM (SSLSTM).

The former is for robust static saliency representation learn-

ing. The latter one extends traditional convLSTM [65]

with saliency-shift-aware attention (SSAA) mechanism. It

takes the static feature sequence from PDC module as input
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Figure 4: Center bias of DAVSOD and existing VSOD datasets.

and produces corresponding VSOD results with considering

temporal dynamics and saliency-shift simultaneously.

Pyramid Dilated Convolution (PDC) Module. Recent ad-

vance [10,67] in semantic segmentation and VSOD showed

that stacking a set of parallel dilated convolution layer with

sampling rates can bring better performance, due to the ex-

ploit of multi-scale information and the preservation of s-

patial details. We use the PDC module [67] as our static

feature extractor. Formally, let Q ∈ R
W×H×C denote a 3D

feature tensor of an input frame I∈R
w×h×3. A dilated conv

layer Dd with the dilated rate d > 1 can be applied to Q

to obtain an output feature P∈R
W×H×C′

, which maintains

original spatial resolution while considering a larger recep-

tive field (with sampling step d). The PDC is achieved by

arranging a set of K dilated conv layers {Ddk
}Kk=1 with d-

ifferent dilated rates {dk}
K
k=1 in parallel:

X = [Q, P1, . . . , Pk, . . . , PK ], (1)

where X∈R
W×H×(C+KC′) and Pk=Ddk

(Q). [., .] indicates

the concatenation operation. The PDC-enhanced feature X

is a more robust representation (by leveraging multi-scale

information) and preserves original information Q (through

residual connection).

Saliency-Shift-Aware convLSTM (SSLSTM). We pro-

pose a saliency-shift-aware convLSTM, which equips con-

vLSTM [65] with a saliency-shift-aware attention mecha-

nism. It is a powerful recurrent model that not only captures

temporal dynamics but also discriminates salient objects

from the background as well as encodes attention-shift in-

formation. More specifically, through the PDC module, we

obtain the static representations {Xt}
T
t=1 of an input video

with T frames. At time step t, given Xt, the saliency-shift-

aware convLSTM outputs the corresponding salient object

mask St∈ [0, 1]W×H :
Hidden state: Ht=convLSTM(Xt,Ht−1),

Saliency-shift-aware attention: At =FA({X1, · · · ,Xt}),

Attention-enhanced feature: Gm,t=At ⊙Hm,t,

Salient object prediction: St=σ(wS⊗Gt),

(2)

where H ∈ R
W×H×M indicates the 3D-tensor hidden s-

tate. The attention map A ∈ [0, 1]W×H is computed from

a saliency-shift-aware attention network FA, which takes

previous frames into account. Gt∈R
W×H×M indicates the

attention-enhanced feature in time t. Gm,t ∈ R
W×H indi-

cates the 2D feature slice of Gt in the m-th channel (m ∈
[1,M ]). ⊙ is element-wise multiplication. wS ∈ R

1×1×M ,

a 1×1 conv kernel, is adopted as a salient object readout
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Figure 5: Overall architecture of the proposed SSAV model. SSAV consists of two components: pyramid dilated convolution (PDC)

module and saliency-shift-aware convLSTM (SSLSTM) module. The former is for efficient static saliency learning, and the latter captures

temporal dynamics and saliency-shift simultaneously. See § 4 for details.

function, ⊗ indicates conv operation and σ is the sigmoid

activation function.

The key component of above module is the saliency-

shift-aware attention networkFA. Clearly, it acts as a neural

attention mechanism since it is utilized to weight the output

feature H of the convLSTM. Besides, it is desired to be ef-

fective enough to model the human attention-shift behavior.

Considering such task is also different, a small convLSTM

is introduced to build FA, generating a convLSTM in con-

vLSTM structure:

Saliency-shift-aware attention: At=FA({X1, · · · ,Xt}),

Attention feature extraction: H
A
t =convLSTM

A(Xt,H
A
t−1),

Attention mapping: At=σ(wA⊗H
A
t ),

(3)

note that the first equation is formulated by the last two

equations. Where wA ∈ R
1×1×M indicates a 1× 1 con-

v kernel that maps the attention feature HA as a signif-

icance matrix and sigmoid σ maps the significance value

into [0, 1]. Then the attention At is employed to enhance

the salient object segmentation feature H in Eq. 2. Due

to the apply of convLSTMA, our attention module gain-

s strong learning ability, which provides a solid founda-

tion for learning attention-shift in both explicit and implicit

manners. Let {It∈R
w×h×3}Tt=1denote a training video with

T frames, {Ft∈ [0, 1]W×H}Tt=1human eye-tracking annota-

tion sequence and {Mt∈ {0, 1}W×H}Tt=1video salient ob-

ject ground-truth, we adopt a loss defined over the output

{At ∈ {0, 1}W×H}Tt=1 of the attention model and the final

video salient object estimation {St∈{0, 1}W×H}Tt=1:

L =
∑T

t=1

(

ℓ(It) · L
Att(At,Ft) + LVSOD(St,Mt)

)

, (4)

where LAtt and LVSOD are both cross entropy loss. ℓ(·) ∈
{0,1} indicates whether the attention annotation is avail-

able (since most current VSOD datasets lack eye-fixation

record, see Table 1). When the corresponding attention an-

notation is missing, the error cannot be propagated back.

More importantly, when ℓ(·) = 0, the saliency-shift-aware

attention model FA in Eq. 3 is trained implicitly, which can

be viewed as a typical neural attention mechanism. When

the ground-truth attention is available (ℓ(·) = 1), FA is

trained in an explicit way. With the convLSTM structure,

FA is powerful enough to accurately shift the attention of

our VSOD model to the important objects (see Fig. 6).

4.2. Implementation Details

The base CNN network of PDC model is borrowed from

the conv blocks from ResNet-50 [30] and the conv strides

of the last two blocks are changed to 1. All the input frame

images are resized into 473×473 spatial resolution, and Q∈
R

60×60×2048. Following [67], we set K = 4, C = 512 and

dk= 2k (k ∈ {1, · · ·, 4}). For the convLSTM in Eq. 2, we

use a 3× 3× 32 conv kernel. The convLSTMA in Eq. 3

utilizes a 3×3×16 conv kernel. For training protocol, we

follow the same settings in [67] (exclude MSRA-10k [12]

dataset). In addition, we further exploit the validation set of

DAVSOD to train the saliency-shift-aware attention module

explicitly.

5. Benchmark Evaluation Results
5.1. Experimental Settings

Evaluation Metrics. To quantitatively assess the model

performance, we adopt 2 popular evaluation metrics: Mean

Absolute Error (MAE) M [58], F-measure F [1], and the

recent released structure measure S-measure S [18].

Benchmark Models. We benchmark 17 models in total (11

traditional methods, 6 deep learning based models). These

models were selected based on the two criteria: i) having

released implementations, and ii) being representative.

Benchmark Protocols. To provide a comprehensive
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2010-2015 2016-2017 2018

Metric SIVM TIMP SPVM RWRV MB+M SAGM GFVM MSTM STBP SGSP SFLR SCOM SCNN DLVS FGRN MBNM PDBM SSAV†

[62] [92] [53] [35] [87] [74] [75] [70] [81] [52] [8] [11]† [68]† [76]† [41]† [44]† [67]†

V
iS

a
l max F ↑ .522 .479 .700 .440 .692 .688 .683 .673 .622 .677 .779 .831 .831 .852 .848 .883 .888 .939

S ↑ .606 .612 .724 .595 .726 .749 .757 .749 .629 .706 .814 .762 .847 .881 .861 .898 .907 .943

M ↓ .197 .170 .133 .188 .129 .105 .107 .095 .163 .165 .062 .122 .071 .048 .045 .020 .032 .020

F
B

M
S
-T max F ↑ .426 .456 .330 .336 .487 .564 .571 .500 .595 .630 .660 .797 .762 .759 .767 .816 .821 .865

S ↑ .545 .576 .515 .521 .609 .659 .651 .613 .627 .661 .699 .794 .794 .794 .809 .857 .851 .879

M ↓ .236 .192 .209 .242 .206 .161 .160 .177 .152 .172 .117 .079 .095 .091 .088 .047 .064 .040

D
A

V
IS

-T max F ↑ .450 .488 .390 .345 .470 .515 .569 .429 .544 .655 .727 .783 .714 .708 .783 .861 .855 .861

S ↑ .557 .593 .592 .556 .597 .676 .687 .583 .677 .692 .790 .832 .783 .794 .838 .887 .882 .893

M ↓ .212 .172 .146 .199 .177 .103 .103 .165 .096 .138 .056 .048 .064 .061 .043 .031 .028 .028

S
eg

V
2

max F ↑ .581 .573 .618 .438 .554 .634 .592 .526 .640 .673 .745 .764 ** ** ** .716 .800 .801

S ↑ .605 .644 .668 .583 .618 .719 .699 .643 .735 .681 .804 .815 ** ** ** .809 .864 .851

M ↓ .251 .116 .108 .162 .146 .081 .091 .114 .061 .124 .037 .030 ** ** ** .026 .024 .023

U
V

S
D max F ↑ .293 .338 .404 .281 .339 .414 .426 .336 .403 .544 .562 .420 .550 .564 .630 .550 .863 .801

S ↑ .481 .537 .581 .536 .563 .629 .628 .551 .614 .601 .713 .555 .712 .721 .745 .698 .901 .861

M ↓ .260 .178 .146 .180 .169 .111 .106 .145 .105 .165 .059 .206 .075 .060 .042 .079 .018 .025

M
C

L max F ↑ .420 .598 .595 .446 .261 .422 .406 .313 .607 .645 .669 .422 .628 .551 .625 .698 .798 .774

S ↑ .548 .642 .665 .577 .539 .615 .613 .540 .700 .679 .734 .569 .730 .682 .709 .755 .856 .819

M ↓ .185 .113 .105 .167 .178 .136 .132 .171 .078 .100 .054 .204 .054 .060 .044 .119 .021 .027

V
O

S
-T

max F ↑ .439 .401 .351 .422 .562 .482 .506 .567 .526 .426 .546 .690 .609 .675 .669 .670 .742 .742

S ↑ .558 .575 .511 .552 .661 .619 .615 .657 .576 .557 .624 .712 .704 .760 .715 .742 .818 .819

M ↓ .217 .215 .223 .211 .158 .172 .162 .144 .163 .236 .145 .162 .109 .099 .097 .099 .078 .073

D
A

V
S

O
D

-T max F ↑ .298 .395 .358 .283 .342 .370 .334 .344 .410 .426 .478 .464 .532 .521 .573 .520 .572 .603

S ↑ .486 .563 .538 .504 .538 .565 .553 .532 .568 .577 .624 .599 .674 .657 .693 .637 .698 .724

M ↓ .288 .195 .202 .245 .228 .184 .167 .211 .160 .207 .132 .220 .128 .129 .098 .159 .116 .092

Table 4: Benchmarking results of 17 state-of-the-art VSOD models on 7 datasets: SegV2 [40], FBMS [56], ViSal [75], MCL [35],

DAVIS [59], UVSD [52], VOS [43] and the proposed DAVSOD (35 easy test set). Note that TIMP was only tested on 9 short sequences of

VOS because it cannot handle long videos. “**” indicates the model has been trained on this dataset. “-T” indicates the results on the test

set of this dataset. “†” indicates deep learning model. Darker color indicates better performance. The best scores are marked in bold.

benchmark, we evaluate 17 representative methods on ex-

isting 7 datasets and the proposed DAVSOD dataset. The

test sets of FBMS [56] (30 clips), DAVIS [59] (20 clips),

DAVSOD (35 easy clips) datasets, and the whole ViSal [75]

(17 clips), MCL [35] (9 clips), SegV2 [40] (13 clips), UVS-

D [52] (18 clips) datasets are used for testing. For VOS [43]

dataset, we randomly select 40 sequences as test set. There

are total 182 videos with 848,340 (47,130×18) frames.

5.2. Performance Comparison and Data Analysis

In this section, we provide some interesting findings

which would benefit the further research.

Performance of Traditional Models. Based on the differ-

ent metrics in Table 4, we conclude that: “SFLR [8], S-

GSP [52], and STBP [81] are the top 3 non-deep learning

models for VSOD.” Both SFLR and SGSP explicitly con-

sider the optical flow strategy to extract the motion features.

However, the computational cost is usually expensive (see

Table 2). One noteworthy finding is that all these models u-

tilize the superpixel technology to integrate spatiotemporal

features on region level.

Performance of Deep Models. The top 3 models in this

benchmark (i.e., SSAV, PDBM [67], MBNM [44]) are al-

l based on deep learning technique, which demonstrates

the strong learning power of neural networks. For ViSal

dataset (the first specifically-designed dataset for VSOD),

their average performance (e.g., max E-measure [19], max

F-measure, or S-measure) is even higher than 0.9.

Traditional vs Deep VSOD Models. In Table 4, almost

all of the deep models outperform traditional algorithms,

as more powerful saliency representations can be extract-

ed from networks. Another interesting finding is the clas-

sic leading method (SFLR [8]) performs better than some

deep models (e.g., SCOM [11]) on MCL, UVSD, ViSal, and

DAVSOD datasets. It indicates that investigating more ef-

fective deep learning architectures with the exploit of hu-

man prior knowledge for VSOD is a promising direction.

Dataset Analysis. We mark the scores with gray color in

Table 4. Darker colors mean better performance for specific

metrics (e.g., max F ,S , and M). We find that ViSal and

UVSD datasets are relatively easy, since the top 2 models:

SSAV and PDBM [67] gained very high performance (e.g.,

S > 0.9). However, for more challenging datasets like

DAVSOD, the performance of VOSD models decrease dra-

matically (S < 0.73). It reveals that both the overall and

individual performance of VOSD models leave abundant

room for future research.

Runtime Analysis. Table 2 reports the computation time of

previous VSOD methods and the proposed SSAV approach
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Figure 6: Visual comparisons with top 3 deep (MBNM [44], FGRN [41], PDBM [67]) models and 2 traditional classical (SFLR [8],

SAGM [74]) models on the proposed DAVSOD dataset. Our SSAV model captures the saliency shift phenomenon successfully.

(in PCT column). For the models with released codes, the

timings are tested on the same platform: Intel Xeon(R) E5-

2676v3 @2.4GHz×24 and GTX TITAN X. The rest of the

timings are borrowed from their papers. Note that the pro-

posed model does not apply any pre-/post-processing (e.g.,

CRF), thus the processing speed only takes about 0.05s.

5.3. Ablation Study

Implicit vs Explicit Saliency-Shift-Aware Attention

Mechanism. To study the influence of different training

strategies of the proposed SSAA module, we derive 2 base-

lines: explicit and implicit, refer to the proposed SSAV

model trained explicitly or implicitly. We obtain the im-

plicit baseline by only using VSOD annotations (exclude

DAVSOD). We observe that SSAV with explicit attention is

better than the one with implicit attention, according to the

statistics in Table 5. It demonstrates that utilizing fixation

data can help our model to better capture saliency shift and

thus further boost final VSOD performance.

Effectiveness of Saliency-Shift-Aware convLSTM. To s-

tudy the effectiveness of SSLSTM (§ 4), we provide another

baseline: w/o SSLSTM, which excludes SSLSTM module

from the proposed SSAV model. From Table 5, we observe

a performance decrease (e.g., S : 0.724 → 0.667), which

confirms that the proposed SSLSTM module is effective to

learn both selective attention allocation and attention shift

cues from the challenging data.

Comparison with State-of-the-Arts. In Table 4, we com-

pare the proposed SSAV model with current 17 state-of-the-

art VSOD algorithms. The proposed baseline method per-

forms better against other competitors over most existing

datasets. More specifically, our model obtains significant

performance improvements on ViSal and FBMS datasets. It

also obtains comparable performance on VOS, SegV2 and

DAVIS datasets.

5.4. Analysis for the saliency shift challenge

For the proposed challenging DAVSOD dataset, the

SSAV model also gains the best performance. We attribute

Type Baseline S ↑ max F ↑ M ↓

SSAA
explicit 0.724 0.603 0.092
implicit 0.684 0.593 0.103

SSLSTM w/o SSLSTM 0.667 0.541 0.132

Table 5: Ablation studies of the SSAV on DAVSOD dataset.

the promising performance to the introduce of SSLSTM,

which efficiently captures saliency allocations in dynam-

ic scenes and guides our model to accurately attend to

those visually important regions. Fig. 6 shows that the pro-

posed SSAV approach obtains more visually favorable re-

sults than other top competitors. Our SSAV model captures

the saliency shift successfully (from frame-1 to frame-5:

cat→ [cat, box]→ cat→ box→ [cat, box]). However, the

other top-performance VSOD models either do not high-

light the whole salient objects (e.g., SFLR, SAGM) or on-

ly capture the moving cat (e.g., MBNM). We envision our

SSAV model would open up promising future directions for

model development.

6. Conclusion

We have presented a comprehensive study on VSOD by

creating a new visual-attention-consistent DAVSOD dataset,

building up the largest-scale benchmark, and proposing a

SSAV baseline model. Compared with other competing tra-

ditional or deep learning models, the proposed SSAV model

achieves superior performance and produces more visually

favorable results. Extensive experiments verified that even

considering top performing models, VSOD remain seems

far from being solved. The above contributions and in-depth

analyses would benefit the develop of this area and be help-

ful to stimulate broader potential research, e.g., saliency-

aware video captioning, video salient object subitizing and

instance-level VSOD.
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