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Abstract

Computer Vision applications often require a textual

grounding module with precision, interpretability, and re-

silience to counterfactual inputs/queries. To achieve high

grounding precision, current textual grounding methods

heavily rely on large-scale training data with manual an-

notations at the pixel level. Such annotations are expen-

sive to obtain and thus severely narrow the model’s scope

of real-world applications. Moreover, most of these meth-

ods sacrifice interpretability, generalizability, and they ne-

glect the importance of being resilient to counterfactual in-

puts. To address these issues, we propose a visual ground-

ing system which is 1) end-to-end trainable in a weakly

supervised fashion with only image-level annotations, and

2) counterfactually resilient owing to the modular design.

Specifically, we decompose textual descriptions into three

levels: entity, semantic attribute, color information, and

perform compositional grounding progressively. We vali-

date our model through a series of experiments and demon-

strate its improvement over the state-of-the-art methods.

In particular, our model’s performance not only surpasses

other weakly/un-supervised methods and even approaches

the strongly supervised ones, but also is interpretable for

decision making and performs much better in face of coun-

terfactual classes than all the others.

1. introduction

Deep neural networks have spawned a flurry of suc-

cessful work on various computer vision applications, from

modular tasks like object instance detection [20, 22, 36] and

semantic segmentation [43, 10], to more complex multi-

modal ones like visual question answering (VQA) [1] and

image captioning [2, 33]. For complex vision applica-

tions (e.g., visual search engine and video auto-captioning),

it is critical to build a reliable textual grounding system,

which connects natural language descriptions and image re-

gions [67, 34, 32, 58, 65].

Current methods typically formulate the textual ground-

ing problem as a search process or image-text matching. For

Text: I am looking for a boy in blue.

Woman BrownPerson

BluePerson Boy

Counter-factual Phrase Grounding: woman in brown

Result

N/A

Figure 1: Illustration of our textual grounding framework

that decomposes textual descriptions into three levels: en-

tity, semantic attributes and color information. As an exam-

ple, for textual grounding from the sentence shown above,

our system localizes the entity (person), semantic attributes

(boy, woman), the color blue, and progressively produces

the final textual grounding by combining results. Note that

owing to the decomposable description and modular design,

our system is highly interpretable and resilient to counter-

factual inputs/qeueries (bottom row).

example, [58] proposed textual-visual feature matching by

reconstruction loss. [9] fulfills textual grounding with two

steps: the generation of object proposals and match with the

query. [67] utilizes pre-trained module to conduct search-

ing and matching progressively. Given a novel image and

queries, these models return the proposals which yield the

highest matching score/probability as the final output. Al-

though they achieve state-of-the-art performance in terms of

grounding precision, they rely on a large-scale training sets

with manually annotated bounding boxes on the objects of

interest. This inevitably prevents them from generalizing to

other data domains which have no such fine-grained manual

annotations for model training or fine-tuning [65].

Moreover, these models lack the interpretability for de-

cision making and the resilience to counterfactual queries,

which often appear jointly to make these models even more
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   GT:     A  B  C                             B  C                                   B                                    A                                     N/A
CF Obj:     N/A                                 A                                   A  C                               B  C                                A  B  C  

A - Man in black suits
  

time

C - Man in white shirt and a black apronB - Girl in black dress

GT: Grounding Truth Annotation   CF Obj: Counter-factual Object  

Figure 2: Examples of counterfactual objects and applying our system to video captioning alignment. Although there are

three persons in the beginning of the video, they may disappear later for some frames. This poses a challenge for video

captioning, our system acts as a tool to ground the object temporally and correct mismatched description and frames.

vulnerable in real-world applications [24, 62, 14, 15]. For

example, as demonstrated by Figure 1, if one is asking

“who is the woman in blue shirt in the image”, a good

model should return nothing instead of the closest person

or someone with high matching score. Even more pre-

ferred, the model should explain why the decision is made

in addition to the final grounding result. The interpretabil-

ity and counterfactual resilience properties are also useful

in literature and practical deployment. As demonstrated by

another example about our application to correcting video

auto-captioning, as shown in Figure 2 (details in Section 5).

There exist three people in the first frame, while they may

disappear in the following frames but the captioning are still

not updated. Our counterfactually resilient grounding sys-

tem is able to correct captioning mis-alignment issue.

In this work, we propose to modularize the textual

grounding system by decomposing the textual description

into multiple components, and perform grounding progres-

sively through these components towards the final output.

Recently, modular design is being advocated in the com-

munity [29, 27, 67], mainly focusing on visual-question-

answering and referring expression visual matching. We

show that such a modular design also increases the inter-

pretability of our textual grounding system, that it explains

along the way how the final decision is being made. It is

worth noting that the modular design supports diverse train-

ing protocols to learn each component. Therefore, to al-

leviate the requirement for large-scale fine-grained manual

annotations (e.g., bounding box), we propose to train our

entity grounding module in a weakly supervised manner

which only needs image level labels. We note that such

data are easy to obtain, e.g., from internet search engine or

social media with image tags [21, 3, 8].

To validate our system, we carry out extensive exper-

iments on the COCO dataset [41] and Flickr30k Entities

dataset [56]. We show that our system outperforms other

weakly-supervised methods on textual grounding and even

surpasses some strongly-supervised approaches. By intro-

ducing another dataset consisting of counterfactual cases,

we emphasize that our system performs remarkably better

than other methods w.r.t counterfactual resilience. To sum-

marize our contributions:

1. We propose a textual grounding system with modular

design. Together with the decomposition of textual de-

scriptions, it allows for more diverse and specialized

training protocols for each components.

2. We collect a counterfacutal textual grounding test set,

and show that our system achieves better interpretabil-

ity and resilience to counterfactual testing.

3. We demonstrate practical applications based on our

system and expect future explorations based on our

work.

In the rest of the paper, we first review related work, then

describe our system in Section 3. We elaborate our training

procedure and demonstrate the effectiveness of our system

through experiment in Section 4 and broad application in

Section 5, respectively, before concluding in Section 6.

2. Related Work

Multi-modal tasks, eg. assistive visual search [6, 38] and

image captioning [66, 60], has been studied for decades in

the community. While those tasks are classical topics in

computer vision and natural language processing, current

advancement has further energized it by interplaying vi-

sion (images) and language (high-level guide) for practical

applications. Specific examples include referring express-

ing understanding [49, 29] and reasoning-aware visual-

question-answering [28].

State-of-the-art textual grounding methods [67, 31, 58,

56, 64, 44] are based on deep neural networks and relying

on large-scale training data with manual annotations for the

object bounding box and relationship between phrases and
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figures/objects. This setup largely limits their broad appli-

cations as such strong supervision is expensive to obtain,

and they also lack interpretability and resilience to counter-

factual cases which do not appear in training.

Weakly supervised learning receives increasing atten-

tion [13, 50, 11, 46, 52, 55, 63]. It focuses on learning

granular detectors given only coarse annotations. This is of

practical significance as granular annotations (e.g., bound-

ing boxes and pixel-level labels) are much more expensive

to obtain compared to coarse image-level annotations. Re-

cent study shows that weakly supervised methods can even

outperform the strongly supervised method for image clas-

sification [46]. Unlike current work, we perform weakly-

supervised learning for textual grounding, including train-

ing for both entity grounding and textual-visual matching

through a progressive modular procedure.

Modular design is also receiving more attention recently,

mainly for complex systems like visual-question-answering

or image captioning [29, 27, 67]. Such modular design is

carried out by realizing some linguistic structures. In our

work, we propose to decompose the query textual descrip-

tion into progressive levels, each of which is passed to a

corresponding module, and then produce the final ground-

ing result by progressively merging the intermediate results.

In this way, our system enjoys high interpretability and re-

silience to counterfactual inputs.

3. Modularized Textual Grounding System

To obtain better interpretability and counterfactual re-

silience, we propose to modularize the our whole textual

grounding system by decomposing the textual descriptions

into multiple levels, each of which is passed to a specific

module to process. We generate the final grounding result

by progressively merging intermediate results from these

modules.

Without losing generalization, in this work, we decom-

pose the textual descriptions into three levels, and pro-

gressively process them with three different modules, re-

spectively: entity grounding module Me, semantic attribute

grounding module Ma, and color grounding module Mc.

We extracted phrases/words that belong to these three lev-

els from text, and feed them into their corresponding sub-

modules. We note that such a modular design allows for

training different modules using different specialized pro-

tocols, e.g., fully supervised learning or weakly supervised

learning, while also enabling end-to-end training. For the

final grounding heat map G, we merge progressively the in-

termediate results from these modules (see Figure 3):

G =Me · (Ma +Mc). (1)

In practice, we observe that such a merging approach

achieves the best performance over a straightforward mul-

tiplicative or an additive fusion. This is because that the

entity grounding defines the object constraints, and the sum-

mation over the attribute and color modules determines how

the final results are generated interpretably, though they

may partially cover some regions belonging to the object

of interest. For the rest of Sec. 3, we elaborate the three

modules with their adopted training protocols respectively.

3.1. Entity Grounding Module (Me)

To overcome the limitation of current methods that re-

quire expensive manual annotations at fine-grained level,

we propose to train the entity grounding module in a weakly

supervised manner. This can help our system achieve better

generalizability to other novel data domains which may just

require fine-tuning over dataset annotated coarsely at image

level. This weakly supervised learning can be expressed as

selecting the best region r in an image I given an object of

interest represented by a textual feature t, e.g., a word2vec

feature. With well pre-trained feature extractor, we first ex-

tract visual feature maps v over the image, based on which

we train an attention branch F that outputs a heatmap ex-

pected to highlight a matched region in the image.

Mathematically, we are interested in obtaining the region

R = F (t, v) in the format of heatmap and making sense of

it. In practice, we find training a classification model at im-

age level with the attention mechanism works well for entity

grounding, which is the output through the attention maps,

as illustrated by Figure 3 left. Moreover, rather than using a

multiplicative gating layer to make use of the attention map,

we find that it works better by using a bilinear pooling layer

[42, 17, 35].

For bilinear pooling, we adopt the Multimodal Compact

Bilinear (MCB) pooling introduced in [16] that effectively

pools over visual and textual features. In MCB, the Count

Sketch projection function [7] Ψ is applied on the outer

product of the visual feature v2 and an array repeating the

word feature v1 for dimensionality reduction: Ψ(t) ∗Ψ(v).
If converted to frequency domain, the concatenated outer

product can be written as: Φ = FFT−1(FFT (Ψ(t)) ⊙
FFT (Ψ(v))). Based on Φ, the final 2D attentive map R
is computed through several nonlinear 1×1 convolutional

layers : R = conv(Ψ), with the final one as sigmoid func-

tion to shrink all values into [0, 1]. Later we retrieve the re-

gional representation f by a global pooling over the element

wise product between entity attentive map and original vi-

sual feature maps: f = pool(R ⊙ v), on which the weakly

supervised classification loss is applied. Overall, to train

the entity grounding module with the attention mechanism

in a weakly supervised learning fashion, we train for image-

level K-way classification using a cross-entropy loss.

3.2. Semantic Attribute Grounding Module (Ma)

The semantic attribute grounding module improves in-

terpretability of the whole textual grounding system by ex-
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Caption:    A lady discusses something with an older man in blue shirt at a table in a kitchen.
Entity Module

“older man”

“blue”

Semantic 
Attribute Module

Color Module

Bounding Boxes 
Selection

      Target:    older man in blue => {Entity: person    Semantic Attribute: older man    Color: blue}

CNN

MLP
Bilinear 
Pooling

⊙

Figure 3: Illustrative diagram for our entity grounding module (left) and the whole textual grounding system (right). The

textual phrase is first decomposed into sub-elements, e.g., “older man in blue” can be parsed to “person” category with

“older man” and “blue” to be it’s attributes, and later fed into corresponding sub-module. The bounding boxes are generated

and selected based upon the merged attention maps. We train the entity/semantic attribute grounding module in a weakly

supervised fashion with a attention mechanism. The semantic attribute module also adopt similar architecture of entity

module, however with a dictionary learning loss. (best viewed in color)

plaining that it explains how the final decision is being

made. For example, a model finding the “man in black

suits” as shown in Figure 2 should not only output the fi-

nal grounding mask, but also explain how the final result is

being achieved by showing where “man” and “black suits”

are localized in the image.

We also train this module with a weakly supervised

learning protocol with similar architecture in the entity

module. But instead of training with K-way classification

over K predefined attributes as in training entity grounding

module, we model this as a multi-label problem, since an

image may deliver multiple attributes which are not exclu-

sive to each other. Moreover, rather than classifying them,

we propose to use regression for training, since attributes

can become large in number while the features representing

attribute names can lie in a manifold in the semantic space.

This makes our module extensible to more novel attributes

even trained with some pre-defined ones.

Note that we represent each attribute with the word2vec

feature [47]. Although the word2vec model demonstrates

very semantic grouping on words, we find that these fea-

tures representing attributes do not deliver reasonable dis-

criminativeness. For example, in word2vec features, “man”

is more similar to “woman” than “boy” but we care more

about the gender meaning in practice. Though retraining

such a word2vec model solves the problem, we adopt an

alternative method in this paper by proposing a dictionary

based scoring function over the original word2vec features.

We note that this method not only offers more discrimina-

tive scoring power, but also inherits the semantic manifolds

in word2vec features, extensible to novel attributes without

re-training whole model as done in K-way classification.

To introduce our dictionary based scoring function, we

revisit the classic logistic normalization widely used in bi-

nary classification as below:

yi =
1

1 + exp(−wT
i
x)

(2)

where wi here represents the learning parameters, and

x, yi are the input vectors and predicted probability with re-

spect to class i. Note again that, although the logistic loss

works well for binary classification or multi-label classifi-

cation, it is not extensible to novel classes unless retraining

the whole model. Our solution to this is based on the pro-

posed dictionary based scoring function. Suppose there are

C attributes, represented by word2vec and stacked as a dic-

tionary D = [d1, . . . ,dC ]. We can measure the (inverse)

Euclidean distance between x and each dictionary atom for

the similarity about which attribute x is predicted.

So the dictionary acts as the parameter bank which can

be fixed if we want to preserve the semantic manifold in the

word2vec feature space, and we have the following modi-

fied sigmoid transformation:

yi =
2

1 + exp(‖di − x‖2
2
)

(3)

However, as this may also be less discriminative, we opt to

learn a new latent space. Concretely, we build new layers

before the sigmoid transformation, and these layers form

new function φ and ψ to transform the feature x and dic-

tionary atoms, respectively. Then we have the following

dictionary based scoring function for the ith attribute:

yi =
2

1 + exp(‖ψ(D)i − φ(x)‖2
2
)

(4)
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Furthermore, despite using the dictionary based scoring

function as a modified sigmoid for logistic loss over the

holistic feature globally pooled over the image, we also per-

form it at pixel levels. Concretely, during each iteration on

each training image, we choose the T pixels with the top

scores to feed into the logistic loss. This practice is es-

sentially a multi-instance learning at pixel level [53]. We

find in our experiment that jointly using the two losses helps

generate better attention maps.

3.3. Color Grounding Module (Mc)

When querying in natural languages, human beings typ-

ically rely on textual descriptions for low-level vision char-

acteristics, e.g., color, texture, shape and locations. Recent

work also demonstrates the feasibility of grounding low-

level features in unsupervised learning [61]. In our work

for the datasets we studied in our work, we notice that color

is the most used one. In the Flickr30k Entities dataset [56]

as studied in this paper, 70% attributes words are colors de-

scribing persons. Therefore, without loss of generalization,

we develop a separate color grounding module to improve

the interpretability of the overall textual grounding system.

Different from entity grounding and semantic attribute

grounding modules, we train this color grounding module

in a fully supervised way over a small-scale dataset, called

Color Name Dataset [59], which contains 400 images with

color name annotations at pixel level. We essentially per-

form pixel-level color segmentation over the input image

to ground color reference. Moreover, we build this color

grounding module over a ResNet50 model [23] pretrained

on ImageNet dataset [12], and concatenate intermediate fea-

tures at lower levels for pixel-level color segmentation. We

find this works better than combining high-level features.

We conjecture the reason is due to that color is a very low-

level cue that does not require deep architectures and high-

level feature abstraction. This is consistent with what re-

ported in [40].

3.4. Architecture and Training

Our three modules are based on the ResNet architec-

ture [23]. Similar to [10, 37], we increase the output res-

olution of ResNet by removing the top global 7× 7 pooling

layer and the last two 2 × 2 pooling layers, replacing them

with atrous convolution with dilation rate 2 and 4, respec-

tively to maintain a spatial sampling rate. Our model thus

outputs predictions at 1/8 the input resolution which are

upsampled for benchmarking. For (multi-label or K-way)

classification, we use a global pooling layer that produces a

holistic image feature for classification. In addition, we also

insert an L2 regularization over the attention maps, and we

observe that such a regularization term helps reduce noises

effectively.

We use the standard stochastic gradient decent (SGD) for

training in a stagewise fashion. Specifically, we first train a

plain classification model for entity and semantic attribute

grounding modules, then we build the attention branch for

attentional learning.

Though our textual grounding system is end-to-end

trainable, we train each module separately. And though

joint training is straightforward to implement, we do not

do this for practical reasons: 1) we can easily plug in a bet-

ter trained module without retraining the whole system for

better comparison; 2) we focus on the modular design, iso-

lating the influence of the settings and parameters of each

module.

4. Experiments

We now experimentally validate our system and com-

pare it with the state-of-the-art methods. To highlight the

generalizability of our system, we train it on COCO2017

dataset [41] while test it on another Flickr30K Entities

dataset [56]. We first introduce the two datasets briefly be-

fore conducting thorough comparisons, then we carry out

another experiment to show our (weakly supervised) model

performs remarkably better than other (fully supervised)

methods on a collected dataset consisting of counterfactual

testing cases. We implement our algorithm using PyTorch

toolbox [51] on a single GTX1080 Ti GPU 1.

4.1. Datasets and Preprocessing

The two datasets we used in our experiments are:

COCO2017 [41] for training our system and Flickr30k En-

tities Dataset [56] for testing it.

COCO2017 dataset contains 110k training images with

80 object categories at image level. These 80 object cate-

gories are used for training our entity grounding module as

they can be seen exclusive to each other. The captioning

task and the annotations provided in COCO2017 enables

us to train our semantic attribute grounding module. Us-

ing [4, 48], we tokenize and mine out words related to se-

mantic attributes (e.g., man, woman, boy, old and young) to

form our corpus. To train the semantic attribute grounding

module, we retrieve images from COCO2017 whose cap-

tions contain the attributes existing in our corpus. Even-

tually, 10,000 images and 34 attributes are collected from

COCO2017 for weakly supervised training our modules.

To alleviate imbalanced distribution of these attributes, we

adopt inverse frequency reweighting during training.

The Flickr30k Entities dataset contains over 31k images

with 275k bounding boxes with natural languages descrip-

tions, and we only use this dataset for testing our system

with the bounding boxes.

To carry out counterfactual testing experiment, we col-

lect a new testing set with images from Flickr30k and Ref-

1 https://github.com/jacobswan1/MTG-pytorch
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 Attribute Grounding Counter-factual Attribute Grounding

        Image         Semantic-Attribute         Color           Grounding Result         Attribute1           Attribute2               Color1                  Color2

               Woman      White+Blue                 Boy                    Man                    Red                          Green

               Child     Blue+Green               Lady             Grown-Man             Yellow                     Pink             

         Old-Man              Child                     Grey                     Green          

   

             Woman      Purple   

Figure 4: Examples of attribute grounding predictions (left) and counterfactual attribute grounding results (right). (best

viewed in color)

person

zebra

horse & person

person train

dog

sheep cat

Figure 5: Qualitative examples of attention maps from the

entity module.

COCO+ [34]. The images only contain persons and relevant

attributes (e.g., gender, age, etc), so we call this dataset Per-

son Attribute Counterfactual Grounding dataset (PACG).

By developing an easy-to-use interface, we are able to gen-

erate counterfactual captions for a given image with the

good captions provided by the original dataset. Similar to

work in [24], we generate counterfactual attributes by min-

ing the negation of existing attributes. The overall PACG

dataset consists 2,000 images, a half of which are with

counterfactual attributes not existing in the image and the

other half with “correct” attributes.

Language Processing: To deal with free-form textual

queries, we use a language parser [4] to select the key-

words according to the functionalities of the three modules.

We first extract the entity words and pick the most similar

object classes by word similarities. We then extract the se-

mantic attribute words in the same way. Finally, we extract

the the color keywords simply for the color grounding. To

represent the textual attributes and color names, we adopt

the word vectors from GloVe [54]. This enables meaningful

similarity between the defined attributes/colors and novel

ones when encountered at testing stage.

4.2. Textual Grounding Evaluation

We compare our modular textual grounding system with

other supervised/unsupervised methods on the Flickr30k

Entities dataset. We use the mean average precision (mAP)

metric to measure the quantitative performance. The de-

tailed comparison is listed in Table 1.

As the first baseline method similar to [65], we select the

largest proposal as the final result. This method achieves

24.34% mAP. Then, we build another baseline model that
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Aprroach Image Features mAP (%)

Supervised

SCRC [31] VGG-cls 27.80

GroundeRs [58] VGG-cls 47.81

CCA [56] VGG-det 50.89

IGOP [64] YOLO+DeepLab 53.97

Unsupervised

Largest proposal n/a 24.34

GroundeRu [58] VGG-det 28.94

Mutual Info. [68] VGG-det 31.19

UTG [65] VGG-det 35.90

UTG [65] YOLO-det 36.93

Weakly-Supervised

Ours1 Res101 29.01

Ours(Attr)1 Res101 32.04

Ours(Attr+Col)1 Res101 33.43

Faster-RCNN2 [57] Res101-det 35.35

Ours+Attr2 Res101-det 47.46

Ours+Attr+Col2 Res101-det 48.66

Table 1: Phrase localization performance on Flickr 30k En-

tities (accuracy in %).

we train the entity grounding module only through weakly

supervised learning over a ResNet101 backbone, which is

pretrained over ImageNet dataset. Then, over the entity

grounding heatmaps, we generate bounding boxes candi-

dates by sub-window search [39] together with contour de-

tection results, followed by a Non-Maximum Suppression

to further refine the proposal boxes. We select the box that

encompasses largest ratio of object according to equation 1.

We note that this simple baseline module (29.01% mAP)

outperforms GroundRu [58] (28.94% mAP) that learns

grounding in an attentive way over large-scale training data.

If we include our semantic attribute module, we improve the

performance further (32.04% mPA), outperforming Mutual

Info. [68]. If we further insert the color grounding mod-

ule, we achieve comparable performance (33.43%) to UTG

(36.93% mAP), which adopts an unsupervised method to

link image concepts to query words [65]. We note that our

models are trained on COCO dataset only, unlike all these

methods which are trained on the same dataset (Flickr30k

dataset). The effectiveness of our model is demonstrated by

its good transferability, as it is trained and tested on differ-

ent data domains.

It is also worth noting that, all the compared unsuper-

vised methods unanimously adopt a well-trained object de-

tector, even though they claim to be unsupervised learning.

To gain an idea how the detector improves the performance,

we fine-tune the faster-RCNN detector [19] on COCO and

train our modules with weak supervision again. We re-

port our results as the bottom two rows in Table 1. Now

we can see our models perform significantly better, and

even surpasses some fully supervised methods (SCRC [31]

and GroundeR [58]). Although it seems unfair that our

system adopts ResNet101 architecture while most com-

pared methods uses shallower VGG networks, we note that

IGOP which adopts both VGG and ResNet101 (denoted by

DeepLab) achieves the best performance with fully super-

vised training. Even though our best model does not out-

perform IGOP, we believe the performance gap is small

and reasonable as our training is carried out on a different

dataset (COCO) rather than Flickr30k, and it does not rely

on any strong supervision signals. We show output exam-

ples of entity grounding module in Figure 5 with various ob-

ject categories as input, and attribute grounding outputs in

Figure 4, with both existing attributes and counterfactual at-

tributes as queries. These visualizations demonstrates how

our system rejects in an explainable way the counterfactual

queries through the modular output.

4.3. Counterfactual Grounding Evaluation

We now carry out in-depth study on how our system per-

forms when facing of counterfactual textual queries over

our collected PACG dataset, and compare with three base-

line or state-of-the-art methods, Faster-RCNN [57], Mat-

tNet [67], SNLE [30]. We plot the ROC curves for these

methods in Figure 6. Textual grounding system then selects

the region with highest scores/probability. We compare the

prediction scores/probabilities of the predicted regions be-

tween the counterfactual queries and normal queries and ex-

pecting to observe distinct difference between their numer-

ical scores.

We clearly see from the figure that our system achieves

the highest AUC among of these methods, meaning that

modular design successfully increases the counterfactual

resilience of the grounding system. Specifically, end-to-

end models like SNLE [30] encode the textual query into

a vector representation to extract spatial feature maps from

the image as response map. However, such encoding do

not consider the internal structure of sentences [45], also

neglecting semantic nuances of near-synonyms. Note that

MattNet [67] also adopts a modular design, but it is trained

with fully supervised learning, also it is not easily ex-

tended to novel attributes and unable to reject counterfactual

queries as effectively as our method. The AUC of Faster-

RCNN is approximately 0.5 since the recognition ability is

restricted to entity-level and not been able to discern among

semantic attributes. We conclude that with the modular de-

sign and better scoring function in each modules, our model

demonstrated highly resilient ability against counterfactual

queries, even with only weakly-supervised training.

5. Extensive Applications

The counterfactual resilient design can be furthered ap-

plied to various tasks. In this section we showcase some
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Figure 6: ROC of our modular network demonstrates high

resolving ability on PACG dataset with an AUC of 0.88,

comparing to other state of the art baseline models (best

viewed in color).

Girl in yellow coat.

A man with white shirt.

Lady with red dress.
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Figure 7: Temporal/Spatial grounding in video sequences.

Time-segments contain phrases are selected to filter out ir-

relevant frmaes.

practical applications.

Grounding Textual Phrase in Video To ground textual

phrase in video, the system needs to first determine which

temporal segment and moment to retrieve [25], then local-

ize the region associated with the descriptions. In this case,

textual information may be irrelevant to most of the video

frames, thus requiring the system to be counterfactual re-

silient to query and discern whether it is existing or not

in the current segment. Unlike an existing approach [18],

which treats the problem as temporal localization, we score

a set of frames and select out segments that are more likely

to be relevant to sentence. We demonstrate this process

in Figure 7 that modular network successfully conduct a

Boy on right 
picks something 
up from table.

Three kids run 
up.

Man in red hat
 is seen for first 
time.  

Figure 8: Video captioning alignment. With unordered cap-

tions, our system links each sentence to it’s corresponding

frames. Examples took from DiDeMo [26].

temporal-spatial grounding task in video clips.

Video to Captioning alignment Our model can be used to

correct misaligned captioning sentences like the work in [5].

Given mis-matched frames and captions, we examine the

sentence-frame relevance and find the corresponding frame

for each sentence. Figure 8 shows an example of the cap-

tioning alignment, the temporal linked sentences can be re-

ordered based on video.

6. Conclusion

In this paper, we propose to modularize the complex

textual grounding system by decomposing the textual de-

scription/query into three parts: entity, semantic attributes

and color. Such a modular design largely improves the in-

terpretability and counterfactual resilience of the system.

Moreover, we propose to train the modules in a weakly su-

pervised way, so we merely needs image-level labels which

are easy to obtain. This largely helps alleviate the require-

ment of large-scale manual annotated images for training,

and for fine-tuning if transferring the system to a new data

domain. Through extensive experiments, we show our sys-

tem not only surpasses all unsupervised textual grounding

methods and some of fully supervised ones, but also deliv-

ers strong resilience when facing counterfactual queries.

Our modularized textual grounding system is of practical

significance as it can be deployed in various problems. In

this paper, we show how our system can be applied to video

captioning correction and visual-textual search. We expect

more applications can benefit from our modular design.

Acknowledgements: The support of the National Sci-

ence Foundation under the Robust Intelligence Program

(1816039 and 1750082), and a gift from Verisk AI are grate-

fully acknowledged. We also acknowledge NVIDIA for the

donation of GPUs.

6385



References

[1] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra,

C. Lawrence Zitnick, and D. Parikh. Vqa: Visual question

answering. In Proceedings of the IEEE international confer-

ence on computer vision, pages 2425–2433, 2015.

[2] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled

sampling for sequence prediction with recurrent neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1171–1179, 2015.

[3] A. Bergamo and L. Torresani. Exploiting weakly-labeled

web images to improve object classification: a domain adap-

tation approach. In Advances in neural information process-

ing systems, pages 181–189, 2010.

[4] S. Bird, E. Klein, and E. Loper. Natural language process-

ing with Python: analyzing text with the natural language

toolkit. ” O’Reilly Media, Inc.”, 2009.

[5] P. Bojanowski, R. Lajugie, E. Grave, F. Bach, I. Laptev,

J. Ponce, and C. Schmid. Weakly-supervised alignment of

video with text. In Proceedings of the IEEE international

conference on computer vision, pages 4462–4470, 2015.

[6] D. Cai, X. He, Z. Li, W.-Y. Ma, and J.-R. Wen. Hierarchical

clustering of www image search results using visual, tex-

tual and link information. In Proceedings of the 12th annual

ACM international conference on Multimedia, pages 952–

959. ACM, 2004.

[7] M. Charikar, K. Chen, and M. Farach-Colton. Finding fre-

quent items in data streams. In International Colloquium on

Automata, Languages, and Programming, pages 693–703.

Springer, 2002.

[8] J. Chen, Y. Cui, G. Ye, D. Liu, and S.-F. Chang. Event-driven

semantic concept discovery by exploiting weakly tagged in-

ternet images. In Proceedings of International Conference

on Multimedia Retrieval, page 1. ACM, 2014.

[9] K. Chen, R. Kovvuri, and R. Nevatia. Query-guided regres-

sion network with context policy for phrase grounding. arXiv

preprint arXiv:1708.01676, 2017.

[10] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. IEEE transactions on pattern analysis and ma-

chine intelligence, 40(4):834–848, 2018.

[11] R. G. Cinbis, J. Verbeek, and C. Schmid. Weakly supervised

object localization with multi-fold multiple instance learn-

ing. IEEE transactions on pattern analysis and machine in-

telligence, 39(1):189–203, 2017.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. Ieee, 2009.

[13] T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects

while learning their appearance. In European conference on

computer vision, pages 452–466. Springer, 2010.

[14] A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C. Tu, P. Ting,

K. Shanmugam, and P. Das. Explanations based on the miss-

ing: Towards contrastive explanations with pertinent nega-

tives. arXiv preprint arXiv:1802.07623, 2018.

[15] F. Doshi-Velez, M. Kortz, R. Budish, C. Bavitz, S. Gersh-

man, D. O’Brien, S. Schieber, J. Waldo, D. Weinberger, and

A. Wood. Accountability of ai under the law: The role of

explanation. arXiv preprint arXiv:1711.01134, 2017.

[16] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell,

and M. Rohrbach. Multimodal compact bilinear pooling

for visual question answering and visual grounding. arXiv

preprint arXiv:1606.01847, 2016.

[17] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact

bilinear pooling. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 317–326,

2016.

[18] K. Gavrilyuk, A. Ghodrati, Z. Li, and C. G. Snoek. Actor

and action video segmentation from a sentence. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5958–5966, 2018.

[19] R. Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015.
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