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Abstract

In this paper, we address the scene segmentation task

by capturing rich contextual dependencies based on the

self-attention mechanism. Unlike previous works that cap-

ture contexts by multi-scale feature fusion, we propose a

Dual Attention Network (DANet) to adaptively integrate lo-

cal features with their global dependencies. Specifically,

we append two types of attention modules on top of dilated

FCN, which model the semantic interdependencies in spa-

tial and channel dimensions respectively. The position at-

tention module selectively aggregates the feature at each

position by a weighted sum of the features at all positions.

Similar features would be related to each other regardless

of their distances. Meanwhile, the channel attention mod-

ule selectively emphasizes interdependent channel maps by

integrating associated features among all channel maps.

We sum the outputs of the two attention modules to further

improve feature representation which contributes to more

precise segmentation results. We achieve new state-of-the-

art segmentation performance on three challenging scene

segmentation datasets, i.e., Cityscapes, PASCAL Context

and COCO Stuff dataset. In particular, a Mean IoU score

of 81.5% on Cityscapes test set is achieved without using

coarse data.1.

1. Introduction

Scene segmentation is a fundamental and challenging

problem, whose goal is to segment and parse a scene im-

age into different image regions associated with semantic

categories including stuff (e.g. sky, road, grass) and dis-

crete objects (e.g. person, car, bicycle). The study of this

task can be applied to potential applications, such as auto-

*Corresponding Author
1Links can be found at https://github.com/junfu1115/DANet/

Figure 1: The goal of scene segmentation is to recognize

each pixel including stuff, diverse objects. The various

scales, occlusion and illumination changing of objects/stuff

make it challenging to parsing each pixel.

matic driving, robot sensing and image editing. In order to

accomplish the task of scene segmentation effectively, we

need to distinguish some confusing categories and take into

account objects with different appearance. For example, re-

gions of ’field’ and ’grass’ are often indistinguishable, and

the objects of ’cars’ may often be affected by scales, oc-

clusion and illumination. Therefore, it is necessary to en-

hance the discriminative ability of feature representations

for pixel-level recognition.

Recently, state-of-the-art methods based on Fully Con-

volutional Networks (FCNs) [13] have been proposed to ad-

dress the above issues. One way is to utilize the multi-scale

context fusion. For example, some works [3, 4, 29] aggre-

gate multi-scale contexts via combining feature maps gen-

erated by different dilated convolutions and pooling opera-

tions. And some works [15, 27] capture richer global con-

text information by enlarging the kernel size with a decom-

posed structure or introducing an effective encoding layer

on top of the network. In addition, the encoder-decoder

structures [6, 10, 16] are proposed to fuse mid-level and
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high-level semantic features. Although the context fusion

helps to capture different scales objects, it can not leverage

the relationship between objects or stuff in a global view,

which is also essential to scene segmentation.

Another type of methods employs recurrent neural net-

works to exploit long-range dependencies, thus improving

scene segmentation accuracy. The method based on 2D

LSTM networks [1] is proposed to capture complex spa-

tial dependencies on labels. The work [18] builds a recur-

rent neural network with directed acyclic graph to capture

the rich contextual dependencies over local features. How-

ever, these methods capture the global relationship implic-

itly with recurrent neural networks, whose effectiveness re-

lies heavily on the learning outcome of the long-term mem-

orization.

To address above problems, we propose a novel frame-

work, called as Dual Attention Network (DANet), for natu-

ral scene image segmentation, which is illustrated in Figure.

2. It introduces a self-attention mechanism to capture fea-

tures dependencies in the spatial and channel dimensions

respectively. Specifically, we append two parallel attention

modules on top of dilated FCN. One is a position attention

module and the other is a channel attention module. For the

position attention module, we introduce the self-attention

mechanism to capture the spatial dependencies between any

two positions of the feature maps. For the feature at a cer-

tain position, it is updated via aggregating features at all

positions with weighted summation, where the weights are

decided by the feature similarities between the correspond-

ing two positions. That is, any two positions with similar

features can contribute mutual improvement regardless of

their distance in spatial dimension. For the channel atten-

tion module, we use the similar self-attention mechanism to

capture the channel dependencies between any two channel

maps, and update each channel map with a weighted sum of

all channel maps. Finally, the outputs of these two attention

modules are fused to further enhance the feature represen-

tations.

It should be noted that our method is more effective and

flexible than previous methods [4, 29] when dealing with

complex and diverse scenes. Take the street scene in Fig-

ure. 1 as an example. First, some ’person’ and ’traffic light’

in the first row are inconspicuous or incomplete objects due

to lighting and view. If simple contextual embedding is ex-

plored, the context from dominated salient objects (e.g. car,

building) would harm those inconspicuous object labeling.

By contrast, our attention model selectively aggregates the

similar features of inconspicuous objects to highlight their

feature representations and avoid the influence of salient

objects. Second, the scales of the ’car’ and ’person’ are

diverse, and recognizing such diverse objects requires con-

textual information at different scales. That is, the features

at different scale should be treated equally to represent the

same semantics. Our model with attention mechanism just

aims to adaptively integrate similar features at any scales

from a global view, and this can solve the above problem to

some extent. Third, we explicitly take spatial and channel

relationships into consideration, so that scene understand-

ing could benefit from long-range dependencies.

Our main contributions can be summarized as follows:

• We propose a novel Dual Attention Network (DANet)

with self-attention mechanism to enhance the discrim-

inant ability of feature representations for scene seg-

mentation.

• A position attention module is proposed to learn the

spatial interdependencies of features and a channel at-

tention module is designed to model channel interde-

pendencies. It significantly improves the segmentation

results by modeling rich contextual dependencies over

local features.

• We achieve new state-of-the-art results on three popu-

lar benchmarks including Cityscapes dataset [5], PAS-

CAL Context dataset [14] and COCO Stuff dataset [2].

2. Related Work

Semantic Segmentation. Fully Convolutional Networks

(FCNs) based methods have made great progress in seman-

tic segmentation. There are several model variants proposed

to enhance contextual aggregation. First, Deeplabv2 [3]

and Deeplabv3 [4] adopt atrous spatial pyramid pooling

to embed contextual information, which consist of paral-

lel dilated convolutions with different dilated rates. PSP-

Net [29] designs a pyramid pooling module to collect the

effective contextual prior, containing information of differ-

ent scales. The encoder-decoder structures [?, 6, 8, 9] fuse

mid-level and high-level semantic features to obtain differ-

ent scale context. Second, learning contextual dependen-

cies over local features also contribute to feature represen-

tations. DAG-RNN [18] models directed acyclic graph with

recurrent neural network to capture the rich contextual de-

pendencies. PSANet [30] captures pixel-wise relation by a

convolution layer and relative position information in spa-

tial dimension. In addition, EncNet [27] introduces a chan-

nel attention mechanism to capture global context.

Self-attention Modules. Attention modules can model

long-range dependencies and have been widely applied in

many tasks [11, 12, 17, 19–21]. In particular, the work [21]

is the first to propose the self-attention mechanism to draw

global dependencies of inputs and applies it in machine

translation. Meanwhile, attention modules are increasingly

applied in image vision flied. The work [28] introduces self-

attention mechanism to learn a better image generator. The

work [23], which is related to self-attention module, mainly
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Figure 2: An overview of the Dual Attention Network. (Best viewed in color)

exploring effectiveness of non-local operation in spacetime

dimension for videos and images.

Different from previous works, we extend the self-

attention mechanism in the task of scene segmentation, and

carefully design two types of attention modules to capture

rich contextual relationships for better feature representa-

tions with intra-class compactness. Comprehensive empiri-

cal results verify the effectiveness of our proposed method.

3. Dual Attention Network

In this section, we first present a general framework of

our network and then introduce the two attention modules

which capture long-range contextual information in spatial

and channel dimension respectively. Finally we describe

how to aggregate them together for further refinement.

3.1. Overview

Given a picture of scene segmentation, stuff or objects,

are diverse on scales, lighting, and views. Since convolution

operations would lead to a local receptive field, the features

corresponding to the pixels with the same label may have

some differences. These differences introduce intra-class

inconsistency and affect the recognition accuracy. To ad-

dress this issue, we explore global contextual information

by building associations among features with the attention

mechanism. Our method could adaptively aggregate long-

range contextual information, thus improving feature repre-

sentation for scene segmentation.

As illustrated in Figure. 2, we design two types of at-

tention modules to draw global context over local features

generated by a dilated residual network, thus obtaining bet-

ter feature representations for pixel-level prediction. We

employ a pretrained residual network with the dilated strat-

egy [3] as the backbone. Noted that we remove the down-

sampling operations and employ dilated convolutions in the

last two ResNet blocks, thus enlarging the size of the fi-

nal feature map size to 1/8 of the input image. It retains

more details without adding extra parameters. Then the fea-

tures from the dilated residual network would be fed into

two parallel attention modules. Take the spatial attention

modules in the upper part of the Figure. 2 as an example,

we first apply a convolution layer to obtain the features of

dimension reduction. Then we feed the features into the

position attention module and generate new features of spa-

tial long-range contextual information through the follow-

ing three steps. The first step is to generate a spatial atten-

tion matrix which models the spatial relationship between

any two pixels of the features. Next, we perform a matrix

multiplication between the attention matrix and the original

features. Third, we perform an element-wise sum opera-

tion on the above multiplied resulting matrix and original

features to obtain the final representations reflecting long-

range contexts. Meanwhile, long-range contextual informa-

tion in channel dimension are captured by a channel atten-

tion module. The process of capturing the channel relation-

ship is similar to the position attention module except for
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Figure 3: The details of Position Attention Module and

Channel Attention Module are illustrated in (A) and (B).

(Best viewed in color)

the first step, in which channel attention matrix is calcu-

lated in channel dimension. Finally we aggregate the out-

puts from the two attention modules to obtain better feature

representations for pixel-level prediction.

3.2. Position Attention Module

Discriminant feature representations are essential for

scene understanding, which could be obtained by capturing

long-range contextual information. However, many works

[15, 29] suggest that local features generated by traditional

FCNs could lead to misclassification of objects and stuff.

In order to model rich contextual relationships over local

features, we introduce a position attention module. The po-

sition attention module encodes a wider range of contextual

information into local features, thus enhancing their repre-

sentation capability. Next, we elaborate the process to adap-

tively aggregate spatial contexts.

As illustrated in Figure.3(A), given a local feature A ∈
R

C×H×W , we first feed it into a convolution layers to gen-

erate two new feature maps B and C, respectively, where

{B,C} ∈ R
C×H×W . Then we reshape them to R

C×N ,

where N = H ×W is the number of pixels. After that we

perform a matrix multiplication between the transpose of C

and B, and apply a softmax layer to calculate the spatial

attention map S ∈ R
N×N :

sji =
exp(Bi · Cj)∑N

i=1
exp(Bi · Cj)

(1)

where sji measures the ith position’s impact on jth posi-

tion. The more similar feature representations of the two

position contributes to greater correlation between them.

Meanwhile, we feed feature A into a convolution layer

to generate a new feature map D ∈ R
C×H×W and reshape

it to R
C×N . Then we perform a matrix multiplication be-

tween D and the transpose of S and reshape the result to

R
C×H×W . Finally, we multiply it by a scale parameter α

and perform a element-wise sum operation with the features

A to obtain the final output E ∈ R
C×H×W as follows:

Ej = α

N∑

i=1

(sjiDi) +Aj (2)

where α is initialized as 0 and gradually learns to assign

more weight [28]. It can be inferred from Equation 2 that

the resulting feature E at each position is a weighted sum

of the features across all positions and original features.

Therefore, it has a global contextual view and selectively

aggregates contexts according to the spatial attention map.

The similar semantic features achieve mutual gains, thus

imporving intra-class compact and semantic consistency.

3.3. Channel Attention Module

Each channel map of high level features can be re-

garded as a class-specific response, and different semantic

responses are associated with each other. By exploiting the

interdependencies between channel maps, we could empha-

size interdependent feature maps and improve the feature

representation of specific semantics. Therefore, we build

a channel attention module to explicitly model interdepen-

dencies between channels.

The structure of channel attention module is illustrated in

Figure.3(B). Different from the position attention module,

we directly calculate the channel attention map X ∈ R
C×C

from the original features A ∈ R
C×H×W . Specifically,

we reshape A to R
C×N , and then perform a matrix multi-

plication between A and the transpose of A. Finally, we

apply a softmax layer to obtain the channel attention map

X ∈ R
C×C :

xji =
exp(Ai ·Aj)∑C

i=1
exp(Ai ·Aj)

(3)

where xji measures the ith channel’s impact on the jth

channel. In addition, we perform a matrix multiplication

between the transpose of X and A and reshape their result

to R
C×H×W . Then we multiply the result by a scale pa-

rameter β and perform an element-wise sum operation with

A to obtain the final output E ∈ R
C×H×W :

Ej = β

C∑

i=1

(xjiAi) +Aj (4)

where β gradually learns a weight from 0. The Equation 4

shows that the final feature of each channel is a weighted

sum of the features of all channels and original features,

which models the long-range semantic dependencies be-

tween feature maps. It helps to boost feature discriminabil-

ity.
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Noted that we do not employ convolution layers to em-

bed features before computing relationshoips of two chan-

nels, since it can maintain relationship between different

channel maps. In addition, different from recent works [27]

which explores channel relationships by a global pooling or

encoding layer, we exploit spatial information at all corre-

sponding positions to model channel correlations.

3.4. Attention Module Embedding with Networks

In order to take full advantage of long-range contextual

information, we aggregate the features from these two at-

tention modules. Specifically, we transform the outputs of

two attention modules by a convolution layer and perform

an element-wise sum to accomplish feature fusion. At last

a convolution layer is followed to generate the final predic-

tion map. We do not adopt cascading operation because it

needs more GPU memory. Noted that our attention mod-

ules are simple and can be directly inserted in the existing

FCN pipeline. They do not increase too many parameters

yet strengthen feature representations effectively.

4. Experiments

To evaluate the proposed method, we carry out com-

prehensive experiments on Cityscapes dataset [5], PAS-

CAL VOC2012 [7], PASCAL Context dataset [14] and

COCO Stuff dataset [2]. Experimental results demonstrate

that DANet achieves state-of-the-art performance on three

datasets. In the next subsections, we first introduce the

datasets and implementation details, then we perform a se-

ries of ablation experiments on Cityscapes dataset. Finally,

we report our results on PASCAL VOC 2012, PASCAL

Context and COCO Stuff.

4.1. Datasets and Implementation Details

Cityscapes The dataset has 5,000 images captured from 50

different cities. Each image has 2048× 1024 pixels, which

have high quality pixel-level labels of 19 semantic classes.

There are 2,979 images in training set, 500 images in vali-

dation set and 1,525 images in test set. We do not use coarse

data in our experiments.

PASCAL VOC 2012 The dataset has 10,582 images for

training, 1,449 images for validation and 1,456 images for

testing, which involves 20 foreground object classes and

one background class.

PASCAL Context The dataset provides detailed semantic

labels for whole scenes, which contains 4,998 images for

training and 5,105 images for testing. Following [10, 27],

we evaluate the method on the most frequent 59 classes

along with one background category (60 classes in total).

COCO Stuff The dataset contains 9,000 images for training

and 1,000 images for testing. Following [6, 10], we report

our results on 171 categories including 80 objects and 91

stuff annotated to each pixel.

Image Without PAM With PAM Groundtruth

Figure 4: Visualization results of position attention module

on Cityscapes val set.

Image Without CAM With CAM Groundtruth

Figure 5: Visualization results of channel attention module

on Cityscapes val set.

4.1.1 Implementation Details

We implement our method based on Pytorch. Following

[4,27], we employ a poly learning rate policy where the ini-

tial learning rate is multiplied by (1− iter
total iter

)0.9 after each

iteration. The base learning rate is set to 0.01 for Cityscapes

dataset. Momentum and weight decay coefficients are set to

0.9 and 0.0001 respectively. We train our model with Syn-

chronized BN [27]. Batchsize are set to 8 for Cityscapes

and 16 for other datasets.When adopting multi-scale aug-

mentation, we set training time to 180 epochs for COCO

Stuff and 240 epochs for other datasets. Following [3], we

adopt multi-loss on the end of the network when both two

attention modules are used. For data augmentation, we ap-

ply random cropping (cropsize 768) and random left-right

flipping during training in the ablation study for Cityscapes

datasets.

4.2. Results on Cityscapes Dataset

4.2.1 Ablation Study for Attention Modules

We employ the dual attention modules on top of the dila-

tion network to capture long-range dependencies for better

scene understanding. To verify the performance of attention

modules, we conduct experiments with different settings in

Table 1.

As shown in Table 1, the attention modules improve

the performance remarkably. Compared with the base-

line FCN (ResNet-50), employing position attention mod-
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Method BaseNet PAM CAM Mean IoU%

Dilated FCN Res50 70.03

DANet Res50 X 75.74

DANet Res50 X 74.28

DANet Res50 X X 76.34

Dilated FCN Res101 72.54

DANet Res101 X 77.03

DANet Res101 X 76.55

DANet Res101 X X 77.57

Table 1: Ablation study on Cityscapes val set. PAM repre-

sents Position Attention Module, CAM represents Channel

Attention Module.

ule yields a result of 75.74% in Mean IoU , which brings

5.71% improvement. Meanwhile, employing channel con-

textual module individually outperforms the baseline by

4.25%. When we integrate the two attention modules to-

gether, the performance further improves to 76.34%. Fur-

thermore, when we adopt a deeper pre-trained network

(ResNet-101), the network with two attention modules sig-

nificantly improves the segmentation performance over the

baseline model by 5.03%. Results show that attention mod-

ules bring great benefit to scene segmentation.

The effects of position attention modules can be visu-

alized in Figure.4. Some details and object boundaries are

clearer with the position attention module, such as the ’pole’

in the first row and the ’sidewalk’ in the second row. Selec-

tive fusion over local features enhance the discrimination

of details. Meanwhile, Figure.5 demonstrate that, with our

channel attention module, some misclassified category are

now correctly classified, such as the ’bus’ in the first and

third row. The selective integration among channel maps

helps to capture context information. The semantic consis-

tency have been improved obviously.

4.2.2 Ablation Study for Improvement Strategies

Following [4], we adopt the same strategies to improve per-

formance further. (1) DA: Data augmentation with random

scaling. (2) Multi-Grid: we apply employ a hierarchy of

grids of different sizes (4,8,16) in the last ResNet block. (3)

MS: We average the segmentation probability maps from 8

image scales{0.5 0.75 1 1.25 1.5 1.75 2 2.2} for inference.

Experimental results are shown in Table 2. Data aug-

mentation with random scaling improves the performance

by almost 1.26%, which shows that network benefits from

enriching scale diversity of training data. We adopt Multi-

Grid to obtain better feature representations of pretrained

network, which further achieves 1.11% improvements. Fi-

nally, segmentation map fusion further improves the perfor-

mance to 81.50%, which outperforms well-known method

Deeplabv3 [4] (79.30% on Cityscape val set) by 2.20%.

Method DA Multi-Grid MS Mean IoU%

DANet-101 77.57

DANet-101 X 78.83

DANet-101 X X 79.94

DANet-101 X X X 81.50

Table 2: Performance comparison between different strate-

gies on Cityscape val set. DANet-101 represents DANet

with BaseNet ResNet-101, DA represents data augmenta-

tion with random scaling. Multi-Grid represents employing

multi-grid method, MS represents multi-scale inputs during

inference.

4.2.3 Visualization of Attention Module

For position attention, the overall self-attention map is in

size of (H × W ) × (H × W ), which means that for each

specific point in the image, there is an corresponding sub-

attention map whose size is (H ×W ). In Figure.6, for each

input image, we select two points (marked as #1 and #2)

and show their corresponding sub-attention map in columns

2 and 3 respectively. We observe that the position attention

module could capture clear semantic similarity and long-

range relationships. For example, in the first row, the red

point #1 are marked on a building and its attention map

(in column 2) highlights most the areas where the buildings

lies on. Moreover, in the sub-attention map, the boundaries

are very clear even though some of them are far away from

the point #1. As for the point #2, its attention map fo-

cuses on most positions labeled as ”car”. In the second row,

the same holds for the ’traffic sign’ and ’person’ in global

region, even though the number of corresponding pixels is

less. The third row is for the ’vegetation’ class and ’per-

son’ class. In particular, the point #2 does not respond to

the nearby ’rider’ class, but it does respond to the ’person’

faraway.

For channel attention, it is hard to give comprehensible

visualization about the attention map directly. Instead, we

show some attended channels to see whether they highlight

clear semantic areas. In Figure.6, we display the eleventh

and fourth attended channels in column 4 and 5. We find

that the response of specific semantic is noticeable after

channel attention module enhances. For example, 11th

channel map responds to the ’car’ class in all three ex-

amples, and 4th channel map is for the ’vegetation’ class,

which benefits for the segmentation of two scene categories.

In short, these visualizations further demonstrate the ne-

cessity of capturing long-range dependencies for improving

feature representation in scene segmentation.
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Image GroundtruthChannel map #4 ResultSub-attention map #1 Sub-attention map #2 Channel map #11

1

2

1

2

2
1

2
1

2

1

2

1

Figure 6: Visualization results of attention modules on Cityscapes val set. For each row, we show an input image, two sub-

attention maps (H×W ) corresponding to the ponits marked in the input image. Meanwhile, we give two channel maps from

the outputs of channel attention module, where the maps are from 4th and 11th channels, respectively. Finally, corresponding

result and groundtruth are provided.
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DeepLab-v2 [3] 70.4 97.9 81.3 90.3 48.8 47.4 49.6 57.9 67.3 91.9 69.4 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8

RefineNet [10] 73.6 98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 70

GCN [15] 76.9 - - - - - - - - - - - - - - - - - - -

DUC [22] 77.6 98.5 85.5 92.8 58.6 55.5 65 73.5 77.9 93.3 72 95.2 84.8 68.5 95.4 70.9 78.8 68.7 65.9 73.8

ResNet-38 [24] 78.4 98.5 85.7 93.1 55.5 59.1 67.1 74.8 78.7 93.7 72.6 95.5 86.6 69.2 95.7 64.5 78.8 74.1 69 76.7

PSPNet [29] 78.4 - - - - - - - - - - - - - - - - - - -

BiSeNet [26] 78.9 - - - - - - - - - - - - - - - - - - -

PSANet [30] 80.1 - - - - - - - - - - - - - - - - - - -

DenseASPP [25] 80.6 98.7 87.1 93.4 60.7 62.7 65.6 74.6 78.5 93.6 72.5 95.4 86.2 71.9 96.0 78.0 90.3 80.7 69.7 76.8

DANet 81.5 98.6 86.1 93.5 56.1 63.3 69.7 77.3 81.3 93.9 72.9 95.7 87.3 72.9 96.2 76.8 89.4 86.5 72.2 78.2

Table 3: Per-class results on Cityscapes testing set. DANet outperforms existing approaches and achieves 81.5% in Mean

IoU.

Method BaseNet PAM CAM Mean IoU%

Dilated FCN Res50 75.7

DANet Res50 X X 79.0

DANet Res101 X X 80.4

Table 4: Ablation study on PASCAL VOC 2012 val set.

PAM represents Position Attention Module, CAM repre-

sents Channel Attention Module.

4.2.4 Comparing with State-of-the-art

We further compare our method with existing methods on

the Cityscapes testing set. Specifically, we train our DANet-

101 with only fine annotated data and submit our test re-

sults to the official evaluation server. Results are shown

in Table 3. DANet outperforms existing approaches with

dominantly advantage. In particular, our model outperforms

PSANet [30] by a large margin with the same backbone

ResNet-101. Moreover, it also surpasses DenseASPP [25],

which use more powerful pretrained models than ours.

Method Mean IoU%

FCN [13] 62.2

DeepLab-v2(Res101-COCO) [3] 71.6

Piecewise [11] 75.3

ResNet38 [10] 82.5

PSPNet(Res101) [29] 82.6

EncNet (Res101) [27] 82.9

DANet(Res101) 82.6

Table 5: Segmentation results on PASCAL VOC 2012 test-

ing set.

4.3. Results on PASCAL VOC 2012 Dataset

We carry out experiments on the PASCAL VOC 2012

dataset to further evaluate the effectiveness of our method.

Quantitative results of PASCAL VOC 2012 val set are

shown in Table. 4. Our attention modules improves perfor-
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Method Mean IoU%

FCN-8s [13] 37.8

Piecewise [11] 43.3

DeepLab-v2 (Res101-COCO) [3] 45.7

RefineNet (Res152) [10] 47.3

PSPNet (Res101) [29] 47.8

Ding et al.( Res101) [6] 51.6

EncNet (Res101) [27] 51.7

Dilated FCN(Res50) 44.3

DANet (Res50) 50.1

DANet (Res101) 52.6

Table 6: Segmentation results on PASCAL Context testing

set.

mance significantly, where DANet-50 exceeds the baseline

by 3.3%. When we adopt a deeper network ResNet-101,

the model further achieves a Mean IoU of 80.4%. Follow-

ing [4, 27, 29], we employ the PASCAL VOC 2012 trainval

set further fine-tune our best model. The results of PASCAL

VOC2012 on test set is are shown in Table 5.

4.4. Results on PASCAL Context Dataset

In this subsection, we carry out experiments on the PAS-

CAL Context dataset to further evaluate the effectiveness of

our method. We adopt the same training and testing set-

tings on PASCAL VOC 2012 dataset. Quantitative results

of PASCAL Context are shown in Table. 6. The base-

line (Dilated FCN-50) yields Mean IoU 44.3%. DANet-50

boosts the performance to 50.1%. Furthermore, with a deep

pretrained network ResNet101, our model results achieve

Mean IoU 52.6%, which outperforms previous methods

by a large margin. Among previous works, Deeplab-v2

and RefineNet adopt multi-scale feature fusion by different

atrous convolution or different stage of encoder. In addition,

they trained their model with extra COCO data or adopt a

deeper model (ResNet152) to improve their segmentation

results. Different from the previous methods, we introduce

attention modules to capture global dependencies explicitly,

and the proposed method can achieve better performance.

4.5. Results on COCO Stuff Dataset

We also conduct experiments on the COCO Stuff dataset

to verify the generalization of our proposed network. Com-

parisons with previous state-of-the-art methods are reported

in Table. 7. Results show that our model achieves 39.7%

in Mean IoU, which outperforms these methods by a large

margin. Among the compared methods, DAG-RNN [18]

utilizes chain-RNNs for 2D images to model rich spatial de-

pendencies, and Ding et al. [6] adopts a gating mechanism

in the decoder stage for improving inconspicuous objects

Method Mean IoU%

FCN-8s [13] 22.7

DeepLab-v2(Res101) [3] 26.9

DAG-RNN [18] 31.2

RefineNet (Res101) [10] 33.6

Ding et al.( Res101) [6] 35.7

Dilated FCN (Res50) 31.9

DANet (Res50) 37.2

DANet (Res101) 39.7

Table 7: Segmentation results on COCO Stuff testing set.

and background stuff segmentation. our method could cap-

ture long-range contextual information more effectively and

learn better feature representation in scene segmentation.

5. Conclusion

In this paper, we have presented a Dual Attention Net-

work (DANet) for scene segmentation, which adaptively

integrates local semantic features using the self-attention

mechanism. Specifically, we introduce a position attention

module and a channel attention module to capture global

dependencies in the spatial and channel dimensions respec-

tively. The ablation experiments show that dual attention

modules capture long-range contextual information effec-

tively and give more precise segmentation results. Our at-

tention network achieves outstanding performance consis-

tently on four scene segmentation datasets, i.e. Cityscapes,

Pascal VOC 2012, Pascal Context, and COCO Stuff. In

addition, it is important to decrease the computational com-

plexity and enhance the robustness of the model, which will

be studied in future work.
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