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Abstract

Probabilistic point-set registration methods have been

gaining more attention for their robustness to noise, out-

liers and occlusions. However, these methods tend to be

much slower than the popular iterative closest point (ICP)

algorithms, which severely limits their usability. In this pa-

per, we contribute a novel probabilistic registration method

that achieves state-of-the-art robustness as well as substan-

tially faster computational performance than modern ICP

implementations. This is achieved using a rigorous yet

computationally-efficient probabilistic formulation. Point-

set registration is cast as a maximum likelihood estimation

and solved using the EM algorithm. We show that with a

simple augmentation, the E step can be formulated as a fil-

tering problem, allowing us to leverage advances in efficient

Gaussian filtering methods. We also propose a customized

permutohedral filter [1] for improved efficiency while re-

taining sufficient accuracy for our task. Additionally, we

present a simple and efficient twist parameterization that

generalizes our method to the registration of articulated and

deformable objects. For articulated objects, the complexity

of our method is almost independent of the Degrees Of Free-

dom (DOFs). The results demonstrate the proposed method

consistently outperforms many competitive baselines on a

variety of registration tasks. The video demo and source

code are available on our project page.

1. Introduction

Point-set registration is the task of aligning two point

clouds by estimating their relative transformation. This

problem is an essential component for many practical vision

systems, such as SLAM [27], object pose estimation [20],

dense 3d reconstruction [40], and interactive tracking of ar-

ticulated [24] and deformable [12] objects.

The ICP [3] algorithm is the most widely used method

for this task. ICP alternatively establishes nearest-neighbor

correspondences and minimizes the point-pair distances.

With spatial indices such as the KD-tree, ICP provides rel-

atively fast performance. The literature contains many vari-

ants of the ICP algorithm; [28] and [29] provide a thorough

review and comparison.

Despite its popularity, the ICP algorithm is suscepti-

ble to noise, outliers and occlusions. These limitations

have been widely documented in the literature [9, 25, 15].

Thus, a great deal of research has been done on the use of

probabilistic models for point-set registration [25, 14, 13],

which can in principle provide better outlier-rejection. Ad-

ditionally, if each point is given a Gaussian variance,

the point cloud can be interpreted as a Gaussian Mixture

Model (GMM). Most statistical registration methods are

built on the GMM and empirically provide improved ro-

bustness [25, 15, 10]. However, these methods tend to be

much slower than the ICP and can hardly scale to large point

clouds, which severely limits their practical usability.

In this paper, we present a novel probabilistic registra-

tion algorithm that achieves state-of-the-art robustness as

well as substantially faster computational performance than

modern ICP implementations. To achieve it, we propose

a computationally-efficient probabilistic model and cast the

registration as a maximum likelihood estimation, which can

be solved using the EM algorithm. With a simple augmen-

tation, we formulate the E step as a filtering problem and

solve it using advances in efficient Gaussian filters [1, 5, 2].

We also present a customized permutohedral filter [1] with

improved efficiency while retaining sufficient accuracy for

our task. Empirically our method is as robust as state-of-

the-art GMM-based methods, such as [25]. In terms of the

speed, our method with CPU is 3-7 times faster than modern

ICP implementations and orders of magnitude faster than

typical robust GMM-based methods. Furthermore, the pro-

posed method can be GPU-parallelized and is 7 times faster

than the CPU implementation.

Additionally, we propose a simple and efficient twist pa-

rameterization that extends our method to articulated and

node-graph [17] deformable objects. Our method is easy

to implement and achieves substantial speedup over direct

parameterization. For articulated objects, the complexity
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of our method is almost independent of the DOFs, which

makes it highly efficient even for high-DOF systems. Com-

bining these components, we present a robust, efficient and

general registration method that outperforms many compet-

itive baselines on a variety of registration tasks. The video

demo, supplemental document and source code are avail-

able on our project page.

2. Related Work

The problem of point set registration is extensively pur-

sued in computer vision and an exhaustive review is pro-

hibitive. In the following text, we limit our discussion

to GMM-based probabilistic registration and review them

roughly according to their underlying probabilistic models.

The earliest statistical methods [30, 21, 23, 14] implic-

itly assumed the model points, which is controlled by the

motion parameters (such as the rigid transformation or joint

angles), induce a GMM distribution over the 3d space.

The observation points are independently sampled from this

distribution. Later, several contributions [25, 32, 15] de-

rived the EM procedure rigorously from the aforementioned

probabilistic model. This formulation has also been applied

to the registration of multi-rigid [10], articulated [42, 15]

and deformable [25, 32] objects.

Another type of algorithms is known as the correlation-

based methods [38, 16, 4, 33]. These algorithms treat both

observation points and model points as probabilistic dis-

tributions. The point-cloud registration can be interpreted

as minimizing some distance between distributions, for in-

stance the KL-divergence. To improve the efficiency, tech-

niques such as voxelization [33] or Support Vector Ma-

chine [4] are used to create compact GMM representations.

In this paper, we assume that the observation points

induce a probabilistic distribution over the space. Intu-

itively, the registration is to move the model points to po-

sitions with large posterior probability, subject to kinematic

constraints. This formulation is related to several existing

works [9, 22, 25], and a more technical comparison is pre-

sented in Sec. 3.2. In addition to the formulation, the key

contribution of our work includes the introduction of the

filter-based correspondence and twist parameterization built

on the probabilistic model, as mentioned in Sec. 1. Combin-

ing these components, the proposed method is general, ro-

bust and efficient that outperform various competitive base-

lines.

3. Probabilistic Model for Registration

3.1. Probabilistic Formulation

In this subsection, we present our probabilistic model for

point-set registration. We use X,Y to denote the two point

sets, x1, x2, ..xM and y1, y2, ..., yN are points in X and Y .

We define the model X as the point set that is controlled by

the motion parameter θ. Another point set Y is defined as

the observation, which is fixed during the registration.

We are interested in the joint distribution p(X,Y, θ). We

assume given model geometry X , the observation Y is in-

dependent of θ, and the joint distribution p(X,Y, θ) can be

factored as

p(X,Y, θ) ∝ φkinematic(X, θ)φgeometric(X,Y ) (1)

where φgeometric(X,Y ) is the potential function that encodes

the geometric relationship, and the potential φkinematic(X, θ)
encodes the kinematic model. The φkinematic(X, θ) can en-

code hard constraints such as X = X(θ) and/or soft motion

regularizers, for instance the smooth terms in [25, 26] and

the non-penetration term in [32].

We further assume the kinematic model φkinematic(X, θ)
has already captured the dependency within model points

X . Thus, conditioned on the motion parameter θ, the points

in X are independent of each other. The distribution can be

further factored as

p(X,Y, θ) ∝ φkinematic(X, θ)

M
∏

i=1

φgeometric(xi, Y ) (2)

A factor graph representation of our model is shown in

Fig. 1. With these factorization schemes, the conditional

distribution can be written as

p(X, θ|Y ) ∝ φkinematic(X, θ)

M
∏

i=1

φgeometric(xi|Y ) (3)

Following several existing work [9, 25], we let the geomet-

ric distribution of each model point φgeometric(xi|Y ) be a

GMM,

φgeometric(xi|Y ) =

N+1
∑

j=1

P (yj)p(xi|yj) (4)

where p(xi|yj) = N (xi; yj ,Σxyz) is the Probability Den-

sity Function (PDF) of the Gaussian distribution, yj is the

Gaussian centroid and Σxyz = diag(σ2
x, σ

2
y, σ

2
z) is the diag-

onal covariance matrix. An additional uniform distribution

p(xi|yN+1) =
1
M

is added to account for the noise and out-

liers. Similar to [25], we use equal membership probabili-

ties P (yj) =
1
N

for all GMM components, and introduce a

parameter 0 ≤ w ≤ 1 to represent the ratio of outliers.

We estimate the motion parameter θ and model points X
by maximizing the following log-likelihood,

L =

M
∑

i=1

log(

N+1
∑

j=1

P (yj)p(xi(θ)|yj)) (5)

here we restrict ourselves to the kinematic model X =
X(θ) and leave the general case to supplemental materi-

als. We use the EM [7] algorithm to solve this optimization.

The EM procedure is
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E step: For each xi, compute

M0
xi

=
∑

yk

N (xi(θ
old); yk,Σxyz)

M1
xi

=
∑

yk

N (xi(θ
old); yk,Σxyz)yk

(6)

M step: minimize the following objective function

∑

xi

M0
xi

M0
xi

+ c
(xi(θ)−

M1
xi

M0
xi

)TΣ−1
xyz(xi(θ)−

M1
xi

M0
xi

) (7)

where M0
xi

and M1
xi

are computed in the E step (6), c =
w

1−w
N
M

is a constant, and w is the parameter that represents

the ratio of outliers.

The EM procedure is conceptually related to ICP. The

weight-averaged target point (M1
xi
/M0

xi
) replaces the near-

est neighbour in ICP, and each model point is weighted by
M0

Xi

M0

Xi
+c

. Intuitively, the averaged target provides robustness

to noise in observation, while the weight for each model

point should reject outliers in the model. Please refer to

supplemental materials for the complete derivation.

3.2. Discussion and Comparison

At a high level, the proposed formulation can be viewed

as an “inverse” of Coherent Point Drift (CPD) [25] and

many similar formulations [10, 32, 15], as shown in Fig. 1.

CPD [25] assumes the observation points are independently

distributed according to a GMM introduced by model

points, while the proposed formulation directly assumes the

observation points induce a GMM over the space. Empiri-

cally, both methods are very robust to noise and outliers and

significantly outperform ICP.

On the perspective of computation, the proposed method

is much more simple and efficient than CPD [25] and sim-

ilar formulations [10, 32, 15]. The proposed method only

requires sum over Y (6), while CPD [25] requires sum over

both Y and X . Moreover, if a spatial index is used to per-

form this sum, CPD [25] must rebuild the index every EM

iteration as the model points X are updated. In our formu-

lation, we only need to build the index once if the variance

is fixed during EM iterations, which is sufficient for many

applications [32, 39].

Several existing works [9, 22] also build a GMM rep-

resentation of the observation points. Compared with our

method, they do not explicitly account for the outlier dis-

tribution and miss the weight
M0

Xi

M0

Xi
+c

. Furthermore, these

methods assume each model point is only correlated with

one or several “nearest” GMM centroids, while conceptu-

ally we assume each model point is correlated with all ob-

servation GMM centroids. Additionally, combined with the

filter-based correspondence and twist parameterization in

Sec. 4 and Sec. 5, our method tends to be much faster than

these works, as demonstrated by our experiments.

Figure 1. An illustration of the proposed probabilistic model. Top:

at a high level, the proposed formulation assumes the observation

Y introduces a probabilistic distribution, while CPD [25] assumes

the model X introduces a distribution controlled by the motion

parameter θ. Bottom: factor graph representations of both our

formulation and the formulation of CPD [25].

3.3. Several Extensions

The presented probabilistic formulation can be extended

to incorporate many well-established GMM-based registra-

tion techniques. Additionally, these extensions can be ef-

ficiently computed in a unified framework using the filter-

based E step in Sec. 4 and the twist-based M step in Sec. 5.

We select the optimized variance proposed in [25], feature

correspondence in [32] and point-to-plane residual in [6] as

three practically important examples, although many other

methods can also be integrated in a very similar way.

Features: Currently in the E step (6), only the 3d position

is used to measure the similarity between the model and ob-

servation points. Similar to [32], the E step can be extended

to incorporate features such as normal, SHOT [37], learned

features [31] or their concatenation. The E step for arbitrary

feature is

M0
xi

=
∑

yk

N (fxi
; fyk

,Σf )

M1
xi

=
∑

yk

N (fxi
; fyk

,Σf )yk
(8)

where fxi
and fyk

are the feature value for point xi and yk,

Σf is the diagonal covariance for the feature.

Optimized Variance: In our previous formulation, the vari-

ance of Gaussian kernel Σxyz is used as a fixed parameter.

Similar to CPD [25], if Σxyz = diag(σ2, σ2, σ2), the vari-

ance σ can be interpreted as a decision variable and opti-

mized analytically. Please refer to supplemental materials

for the detailed formula and derivation.

Point-to-Plane Distance: The objective in our M step (7) is

similar to the point-to-point distance in ICP, which doesn’t

capture the planar structure. A simple solution is to com-

pute a normal direction to characterize the local planar
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structure in the vicinity of the target (M1
xi
/M0

xi
)

Nxi
= (

∑

yk

N (xi; yk,Σxyz)Nyk
)/M0

xi
(9)

where Nyk
is the normal of the observation point yk. The

objective in the M step is then a point-to-plane error

∑

xi

M0
xi

M0
xi

+ c
dot(Nxi

, xi(θ)−
M1

xi

M0
xi

)2 (10)

4. E Step: Filter-based Correspondence

4.1. General Formulation

In this section, we discuss the method to compute the E

step (6) and several extensions (8 and 9). These specific E

steps can be written into the following generalized form

G(fxi
) =

∑

yk

e−
1

2
(fxi

−fyk )
2

vyk
(11)

where vyk
generalizes the 3d position yk and the unit weight

in (6, 8) and the normal Nyk
in (9). The G(fxi

) generalizes

M0
xi

and M1
xi

in (6, 8) and the normal Nxi
in (9). The

features fxi
and fyk

generalize 3d positions xi and yk in the

Gaussian PDF N (xi; yk,Σxyz). The features fxi
and fyk

are normalized to have identity covariance. We also omit

the normalization constant det(2πΣxyz)
−

1

2 of the Guassian

PDF N (xi; yk,Σxyz) for notational simplicity.

Equ. (11) is known as the general Gaussian Transform

and the Improved Fast Gaussian Transform (IFGT) [41] is

proposed for it. However, IFGT [41] uses a k-means tree

internally and there would be too many k-means centroids

for typical parameters in the registration. Practically, [41]

is not much faster than brute-force evaluation for our task.

We instead propose to compute (11) using Gaussian fil-

tering algorithms [5, 1, 2], which demonstrate promising

accuracy and efficiency on image processing. The filtering

operation that these algorithms accelerated is

G(fyi
) =

∑

yk

e−
1

2
(fyi−fyk )

2

vyk
(12)

which is a subset of the general Gaussian transform: the

feature fyi
used to retrieve the filtered value G(fyi

) must

be included in the input point set Y .

In our case, we would like to retrieve the value G(fxi
)

using feature fxi
from another point cloud X , which cannot

be directly expressed in (12). To resolve it, we propose the

following augmented input:

Ffilter-input = [FX , FY ]

Vfilter-input = [0, VY ]
(13)

where FX = [fx1
, fx2

, ..., fxM
], FY = [fy1

, fy2
, ..., fyN

]
and VY = [vy1

, vy2
, ..., vyN

]. The new input feature

Ffilter-input and value Vfilter-input are suitable for these filtering

Figure 2. An illustration of the permutohedral lattice filter [1].

Splat: The input features are interpolated to permutohedral lat-

tice using barycentric weights. Blur: lattice points exchange their

values with nearby lattice points. Slice: The filtered signal is in-

terpolated back onto the input signal.

algorithms [5, 1, 2], and the filtered output is

G(fxi
) =

∑

zk∈Ffilter-input

e−
1

2
(fxi

−fzk )
2

vzk

=
∑

yk∈FY

e−
1

2
(fxi

−fyk )
2

vyk

(14)

With this augmentation, we can apply these filtering al-

gorithms [1, 2, 5] as a black box to our problem. However,

by exploiting the structure of these methods, we can make

them more efficient for our tasks. In the following text, the

permutohedral lattice filter [1] is discussed as an example,

which is used in our experiments.

4.2. Permutohedral Lattice Filter

We briefly review the filtering process of [1], an illustra-

tion is shown in Fig. 2. The d-dimension feature f is first

embedded in (d+ 1)-dimensional space, where the permu-

tohedral lattice lives. In the embedded space, each input

value v Splats onto the vertices of its enclosing simplex

with barycentric weights. Next, lattice points Blur their val-

ues with nearby lattice points. Finally, the space is Sliced

at each input position using the same barycentric weights to

interpolate output values.

Although the permutohedral filter [1] has demonstrated

promising performance on a variety of tasks, it is still not

optimal for our problem. In particular, the index building

in [1] can be inefficient when the variance Σxyz is too small.

Additionally, naively apply [1] to the E step (6) requires re-

building the index every EM iteration as the model point X
is updated. To resolve these problems, we propose a cus-

tomization of the permutohedral filter [1] that is more effi-

cient while retaining sufficient accuracy for our task. The

detailed method is presented in the supplemental material.

5. M Step: Efficient Twist Parameterization

In this section, we present methods to solve the optimiza-

tions (7, 10) with the twist parameterization. We first dis-

cuss the twist in the general kinematic model, then special-

ize it to articulated and node-graph deformable objects.
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We focus on the following general kinematic model,

xi = Ti(θ)xi reference (15)

where Ti(θ) ∈ SE(3) is a rigid transformation, xi reference is

the fixed reference point for the xi. Note that Ti(θ) depends

on i and the kinematic model is not necessarily a global

rigid transformation.

Twist is a 6-vector that represents the locally linearized

“change” of SE(3). Let the twist ζi = (wi, ti) =
(αi, βi, γi, ai, bi, ci) be the local linearization of Ti, we

have

T new
i ≈









1 −γi βi ai
γi 1 −αi bi
−βi αi 1 ci
0 0 0 1









Ti (16)

Thus, the Jacobian ∂xi

∂ζi
= [skew(xi), I3×3] is a 3×6 matrix,

where I3×3 is identity matrix, and skew(xi) is a 3×3 matrix

such that skew(xi)b = cross(xi, b) for arbitrary b ∈ R3.

The optimization (7, 10) are least squares problems, and

we focus on the following generalized form of them
∑

xi

rTxi
rxi

(17)

where rxi
is the concatenated least-squares residuals that

depends on xi. We use the Gauss-Newton (GN) algorithm

to solve (17). In each GN iteration we need to compute the

following A and b matrices by

A =
∑

xi

(
∂rxi

∂θ
)T

∂rxi

∂θ
, b =

∑

xi

(
∂rxi

∂θ
)T (rxi

) (18)

and the update of the motion parameters is ∆θ = −A−1b.
Thus, the primary computational bottleneck is to assemble

the matrices A and b. In the following text, we only discuss

the computation of the A matrix, while the computation of

the b vector is similar and easier. The computation of the A
matrix can be written as

A =
∑

xi

(
∂ζi
∂θ

)T ((
∂rxi

∂ζi
)T

∂rxi

∂ζi
)(
∂ζi
∂θ

) (19)

where ∂ζi
∂θ

is the Jacobian that maps the change of motion

parameter θ to the change of the rigid transformation Ti,

while the change of Ti is expressed as its twist. Note that

the term
∂rxi

∂ζi
=

∂rxi

∂xi

∂xi

∂ζi
is very easy to compute, as both

∂rxi

∂xi
and ∂xi

∂ζi
are only dependent on xi.

If the kinematic model is a global rigid transformation,

we have ∂ζi
∂θ

= I6×6 and A =
∑

xi
((

∂rxi

∂ζi
)T

∂rxi

∂ζi
). In

the following subsections, we proceed to the articulated and

node-graph deformable kinematic models.

5.1. Articulated Model

Articulated objects consist of rigid bodies connected

through joints in a kinematic tree. A broad set of real-world

objects, including human bodies, hands and robots are artic-

ulated objects. If the kinematic model (15) is an articulated

Algorithm 1 The A matrix for articulated kinematic

1: for all bodyj do ⊲ can be parallelized

2: JTJ twist j = 06×6

3: for all point xi in bodyj do ⊲ can be parallelized

4: JTJ twist j += (
∂rxi

∂ζi
)T

∂rxi

∂ζi

5: A = 0Njoint×Njoint

6: for all bodyj do

7: ⊲ The spatial velocity Jacobian can be computed

8: ⊲ using off-the-shelf simulators such as [36, 34]

9: Jspatial j = spatial velocity Jacobian of bodyj
10: A += JT

spatial j(J
TJ twist j)Jspatial j

model, the motion parameter θ ∈ RNjoint would be the joint

angles, where Njoint is the number of joints. The Ti(θ) is the

rigid transform of the rigid body that the point xi is attached

to. The computation of the A matrix can be factored as

A =
∑

bodyj

(
∂ζj
∂θ

)T (
∑

xi in bodyj

(
∂rxi

∂ζi
)T

∂rxi

∂ζi
)(
∂ζj
∂θ

) (20)

where ζj is the twist of rigid body j, and we have exploited
∂ζi
∂ζj

= I6×6 if point i is on rigid body j. Importantly,
∂ζj
∂θ

is known as the spatial velocity Jacobian and is provided by

many off-the-shelf rigid body simulators [34, 36, 19]. The

algorithm that uses (20) is shown in Algorithm 1.

The lines 1-4 of Algorithm 1 dominates the overall per-

formance and the complexity is O(62M ), where M is the

number of model points and usually M ≫ Njoint. Thus,

the complexity of this algorithm is almost independent of

Njoint. As a comparison, previous articulated registration

methods [19, 35] need O(N2
jointM ) time to assemble the A

matrix, and Njoint is usually much larger than 6. Further-

more, lines 1-4 of Algorithm 1 is very simple to implement

and can be easily GPU parallelized. Combined with an off-

the-shelf simulator, the overall pipeline can achieve promis-

ing efficiency. On the contrary, previous methods [19, 35]

typically need a customized kinematic tree implementation

for real-time performance, while requires substantial soft-

ware engineering effort to realize.

5.2. Node­Graph Deformable Model

To capture the motion of objects such as rope or cloth,

we need a kinematic model which allows large deforma-

tion while preventing unrealistic collapsing or distortion.

In this paper, we follow [17] to represent the general de-

formable kinematic model as a node graph. Intuitively, the

node graph defines a motion field in the 3D space and the

reference vertex in Equ. (15) is deformed according to the

motion field. More specifically, the node graph is defined as

a set {[pj ∈ R3, Tj ∈ SE(3)]}, where j is the node index,

pj is the position of the jth node, and Tj is the SE(3) mo-

tion defined on the jth node. The kinematic equation (15)
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can be written as

Ti(θ) = normalized(Σk∈Ni(xi reference)wkiTk) (21)

where Ni(xi reference) is the nearest neighbor nodes of model

point xi reference, and wki is the fixed skinning weight. The

interpolation of the rigid transformation Tk is performed us-

ing the DualQuaternion [18] representation of the SE(3).

The A matrices for this kinematic model can be con-

structed using an algorithm very similar to Algorithm 1.

The detailed method is provided in supplemental materials.

6. Results

We conduct a variety of experiments to test the robust-

ness, accuracy and efficiency of the proposed method. Our

hardware platform is an Intel i7-3960X CPU except for

Sec. 6.5, where the proposed method is implemented with

CUDA on a Nivida Titan Xp GPU. The video demo and the

source code are available on our project page.

6.1. Robustness Test on Synthetic Data

We follow CPD [25] to setup an experiment on syn-

thetic data. We use a subsampled Stanford bunny with 3500

points. The initial rotation discrepancy is 50 degrees with a

random axis. The proposed method is compared with two

baselines: CPD [25], a representative GMM-based algo-

rithm; TrICP [6], a widely used robust ICP variant. Param-

eters for all methods are well tuned and provided in supple-

mental materials. We use the following metric to measure

the pose estimation error

error(T ) =
1

M
ΣM

i=1|(T − Tgt)xi reference|2 (22)

where Tgt is the known ground truth pose, xi reference defined

in (15) is the reference position. We terminate the algo-

rithm when the twist (change of transformation) is less than

a threshold. In this way, the final alignment error (22) is

about 1 [mm] for all methods. All of the statistical results

are the averaged value of 30 independent runs.

Fig. 3 shows the robustness of different algorithms with

respect to outliers in the point sets. We add different num-

ber of points randomly to both the model and observation

clouds. An example of such point sets with initial align-

ment is shown in Fig. 3 (a), the converged alignment by the

proposed method and TrICP [6] are shown in Fig. 3 (b) and

Fig. 3 (c), respectively. The proposed method and CPD [25]

significantly outperform the robust ICP.

Fig. 4 shows the robustness of different algorithms with

respect to noise in the point sets. We corrupt each point in

both model and observation clouds with a Gaussian noise.

The unit of the noise is the diameter of the Bunny. An ex-

ample of such point sets with initial alignment are shown in

Fig. 4 (a). Fig. 4 (b) and (c) are the final alignment by the

proposed method and TrICP [6] initialized from (a). Note

Figure 3. A comparison of the robustness of various algorithms

with respect to outliers. Top: (a) shows an example initialization

with 0.2 outlier ratio; (b) and (c) are the final alignment by the

proposed method and TrICP [6] initialized from (a), respectively.

Bottom: the alignment error (22) of each algorithm for different

numbers of outliers.

time[ms]

per iteration
#iterations

overall

time[ms]

Proposed

fixed σ
0.96 40.4 38.4

Proposed

updated σ
1.16 27.6 32.1

CPD 228 26.8 6110

Robust ICP 3.10 70.2 217.6
Table 1. The performance of different algorithms for the registra-

tion of the Stanford Bunny.

that we use clean point clouds for better visualization. Our

method and CPD [25] are more accurate than the robust ICP.

Table. 6.1 summarizes the computational performance of

each method. The running time is measured on clean point

cloud. Our method is about 7 times faster than TrICP [6]

and two orders of magnitude faster than CPD [25]. The pro-

posed method with fixed σ is faster per iteration, but need

more iterations to converge. Overall the proposed method is

as robust as the state-of-the-art statistical registration algo-

rithm CPD [25], and runs substantially faster than the mod-

ern ICP implementation.

6.2. Rigid Registration on Real­World Data

We follow [9] to setup this experiment: the algorithm

is used to compute the frame-to-frame rigid transformation

on the Stanford Lounge dataset [43]. We register every 5th

frame for the first 400 frames, each downsampled to about

5000 points. The average Euler angle deviation from the

ground truth is used as the estimation error.

Fig. 5 (a) shows an example registration by the proposed

method. Fig. 5 (b) shows the accuracy and speed of vari-

ous algorithms. The results of baseline methods are from
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Figure 4. A comparison of the robustness of various algorithms

with respect to noise. Top: (a) shows an example initialization

with 0.03 relative noise; (b) and (c) are the final alignment by the

proposed method and TrICP [6] initialized from (a). Note that

we use clean point clouds for better visualization. Bottom: the

alignment error (22) of each algorithm for different levels of noise.

Figure 5. Rigid registration on the Stanford Lounge dataset [43].

The results for most baselines are from [9]. (a) shows an example

registration by the proposed method. (b) shows the accuracy and

performance of various algorithms.

[9]1 except for CPD [25]. For CPD [25] we use σinit =
20 [cm] instead of the data-based initialization of [25], with

which we observed improved performance. As the point-to-

point error doesn’t capture the planar structure, the point-

to-point version of the proposed method as well as many

other point-to-point algorithms [25, 22, 3, 6] are less accu-

rate on this dataset. The proposed method with point-to-

1Our CPU (i7-3960X) is slightly inferior to [9] (i7-5920K), and we

observe similar accuracy and slightly worse speed using CPD [25] and

TrICP [6]. Thus, we think our speed result are comparable to [9] despite

hardware difference.

Figure 6. A feature-based global registration under ambiguous

outliers and strong occlusion. (a) shows the initialization of the

registration colored by the feature [11]. (b) and (c) are the feature-

based registration by our method and the baseline. (d) and (e) show

the final alignment using 3d local refinement initialized from (b)

and (c). The proposed method converges to the correct pose while

the baseline method is trapped to bad alignment.

plane error achieves state-of-the-art accuracy. On the per-

spective of computation, the proposed method significantly

outperforms all the baselines, including GMMTree [9] and

EMICP [14] that rely on a high-end Titan X GPU.

6.3. Global Pose Estimation using Learned Features

We demonstrate global pose estimation using motion-

invariant features. The task is to align a pre-built geomet-

ric model to observation clouds from RGBD images, where

both the model and observation clouds are colored by the

learned feature [11]. We use the proposed method with

feature correspondence in Sec. 3.3 and fixed σ = 0.05 as

the feature has unit norm. The proposed method is com-

pared with a modified TrICP [6]: the nearest neighbour

is searched in feature space (instead of 3d-space). After

feature-based registration, we apply 3d-space local refine-

ment to get the final alignment.

Fig. 6 shows an example registration. Note that we treat

the background as outliers. As shown in Fig. 6 (a), the

observation (RGBD cloud) is under severe occlusion and

contains very ambiguous outliers. Fig. 6 (b) and (c) show

feature-based registration by our method and the “feature”

TrICP. The proposed method is more robust to the outliers

and occlusion. Fig. 6 (d) and (e) show the final alignment

using local refinement initialized from (b) and (c). The pro-

posed method converges to correct pose while the baseline

is trapped to bad alignment. Table. 2 summaries the suc-

cess rate of both methods on 30 RGBD images with differ-

ent view points and lighting conditions. Our method has a

higher success rate and is more efficient than the baseline.
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success rate time [ms]

Proposed 29/30 13

Feature ICP 25/30 34
Table 2. The success rate and speed on the feature-based global

registration.

6.4. Articulated Tracking

The proposed method with articulated kinematic model

is used to track a robot manipulating a box. The robot and

box model has 20 DOFs (12 for the floating bases of the box

and the robot, 8 for robot joints). We use drake [34] for the

kinematic computation in (20). We use fixed σ = 1 [cm]

and set the maximum EM iterations to be 15. Our template

has 7500 points and the depth cloud has about 10000 points.

Fig. 7 (a) shows the snapshots of the tracked manipula-

tion scenario. Fig. 7 (b) shows the live geometric model

and the observation clouds. Points from observation are in

black, while the geometric model is colored according to

rigid bodies. Note that points from the table are treated as

outliers. Fig. 7 (c) summaries the averaged per-frame per-

formance of various algorithms. The proposed twist param-

eterization is an order of magnitude faster than direct pa-

rameterization. Combining the filter-based correspondence

and twist parameterization leads to a real-time tracking al-

gorithm and substantial performance improvement over ar-

ticulated ICP and [42].

6.5. Application to Dynamic Reconstruction

The proposed method with node-graph deformable kine-

matic is implemented on GPU and used as the internal non-

rigid tracker of DynamicFusion [26] (our implementation).

The proposed method is compared with the projective ICP,

the original non-rigid tracker of [26]. We use fixed σ = 2
[cm]. Fig. 8 shows both methods operate on a RGBD se-

quence with relative fast motions. The proposed method

tracks it correctly, while the projective ICP fails to track the

right hand of the actor. The proposed method is more robust

to fast and tangential motion than the projective ICP.

To test the efficiency of the proposed twist parameteriza-

tion on node-graph deformable objects, we compare it with

Opt [8], a highly optimized GPU least squares solver using

direct parameterization. The per-frame computational per-

formance of various algorithms is summarized in Table. 3.

The GPU parallelization of our filter-based E step achieves

8 times speedup over the CPU version, and the proposed

twist parameterization is about 20 times faster than [8].

Proposed

(GPU)

Proposed

(CPU)

Proposed

(Opt [8])

E step [ms] 7.8 62 7.8

M step [ms] 21.6 Not implemented 382
Table 3. The per-frame performance of various algorithms for

deformable tracking on the sequence in Fig. 8.

Figure 7. The proposed method is applied to track a robot ma-

nipulating a box. (a): the snapshots of the tracked manipulation

scenario. (b) the observation point clouds (black) and the live ge-

ometric model (colored according to rigid bodies). (c): the per-

frame performance of various algorithms on this dataset. Ye &

Yang stands for our CPU implementation of [42].

Figure 8. The proposed method with node-graph deformable kine-

matic is implemented on GPU and used as the internal non-rigid

tracker of DynamicFusion [26]. For a relative fast motion, the pro-

posed method tracks it correctly while the projective ICP used by

DynamicFusion [26] fails to track the right hand of the actor.

7. Conclusion

To conclude, we present a probabilistic registration

method that achieves state-of-the-art robustness, accuracy

and efficiency. We show that the correspondence search

can be formulated as a filtering problem, and employ ad-

vances in efficient Gaussian filtering methods to solve it.

In addition, we present a simple and efficient twist param-

eterization that generalizes our method to articulated and

deformable objects. Extensive empirical evaluation demon-

strates the effectiveness our method.
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