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Abstract

Tracking by siamese networks has achieved favorable

performance in recent years. However, most of existing

siamese methods do not take full advantage of spatial-

temporal target appearance modeling under different con-

textual situations. In fact, the spatial-temporal informa-

tion can provide diverse features to enhance the target rep-

resentation, and the context information is important for

online adaption of target localization. To comprehensive-

ly leverage the spatial-temporal structure of historical tar-

get exemplars and get benefit from the context informa-

tion, in this work, we present a novel Graph Convolutional

Tracking (GCT) method for high-performance visual track-

ing. Specifically, the GCT jointly incorporates two types

of Graph Convolutional Networks (GCNs) into a siamese

framework for target appearance modeling. Here, we adopt

a spatial-temporal GCN to model the structured representa-

tion of historical target exemplars. Furthermore, a context

GCN is designed to utilize the context of the current frame

to learn adaptive features for target localization. Extensive

results on 4 challenging benchmarks show that our GCT

method performs favorably against state-of-the-art trackers

while running around 50 frames per second.

1. Introduction

Visual tracking is a fundamental task in computer vi-

sion community, where the target object is localized in a

changing video sequence automatically. It has various ap-

plications such as intelligent video surveillance, human-

computer interaction, robotics, and autonomous driving, to

name a few [71, 33, 13, 24, 74, 42, 17]. Despite much

progress has been achieved in recent years [38, 3, 45, 9,

66, 36, 20, 82, 22], visual tracking remains difficult due to

tremendous challenges such as occlusion, background clut-

ter, illumination variation, scale variation, motion blur, fast

motion, and deformation.
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Figure 1. Comparison of our proposed tracker with the popular

SiamFC tracker [2] and other two state-of-the-art methods.

Recently, tracking by siamese networks has attracted

an increasing attention in the tracking community, which

learns a similarity metric between the target object and can-

didate patches of the current search image in an end-to-end

framework [60, 2, 63, 23, 66, 36, 25, 84]. With the pow-

erful deep network and large-scale labeled video frames

for offline training, siamese based trackers achieve favor-

able performance and efficiency. One notable example is

the SiamFC tracker [2] which learns a matching function in

an embedding space and wins the VOT2017 real-time chal-

lenge [33, 32]. However, based on the results in existing

tracking benchmarks [70, 71], SiamFC does not achieve a

better accuracy than many other types of trackers, such as

ECO-HC [10] and TRACA [5]. Figure 1 also shows that

SiamFC encounters difficulties when the target object has

significant appearance change [25]. To improve the robust-

ness of siamese based methods, various strategies have been

proposed such as attention learning [66], dynamic updat-

ing [23] and structured modeling [84], which have obtained

promising performance.

Despite the above significant progress, most siamese

based tracking methods do not take full advantage of

spatial-temporal target appearance modeling under differ-

ent contextual situations : (1) Many siamese trackers use the

initial target template from the first frame to match candi-

date patches [60, 2, 36]. However, since visual tracking is a
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Figure 2. Illustration of our motivation. From bottom to top: (1)

In spatial-temporal appearance modeling, the historical target ex-

emplar images are converted to a ST-graph, where each target part

corresponds to a graph node (red, green, blue ones in this exam-

ple). By leveraging this graph, diverse target parts are considered

to generate a robust ST-Feature for representing the target object.

(2) In context-guided feature adaption, the current search image

provides useful foreground/ background information, which help-

s conduct graph learning for feature adaption. Here, the red and

green parts are more important than the blue one because the blue

part is occluded in the current search image. With the adaptive

feature, robust target localization can be achieved.

dynamic process with changing scenes, there exists a strong

spatial-temporal relationship between the target object ap-

pearances in consecutive frames. Features from different

frames and locations provide diverse information for target

appearance modeling [76, 61], such as different parts and

viewpoints, motion, deformation, and varied illuminations.

In the tracking process, to characterize rotation and transla-

tion invariance of target objects, image patches can be mod-

eled as a grid graph [8]. As shown in the bottom of Fig-

ure 2, different target parts from historical exemplar images

can be organized as a spatial-temporal graph, where the ST-

feature can be learned comprehensively for representing the

target appearance. (2) The surrounding context of the tar-

get object has a big impact on tracking performance [48].

However, most existing siamese tracking methods ignore

context information of search images for guiding the adap-

tion of target appearance model. Due to lack of the online

adaptability, they can hardly capture the variations of target

objects, backgrounds or situations in search images well,

which may lead to tracking failures [23]. We point out that

visual tracking can benefit from the current context infor-

mation. As shown in the top of Figure 2, with the help of

the current context, a new graph is learned as the adaption

guidance. Based on the learned graph, the feature used for

target localization can be adaptively changed by focusing

on the first two parts (green and red ones) and paying less

attention to the last part (the blue one) since the part is oc-

cluded in the search image. While some methods utilize

attention learning [87, 66] or transformation learning [23]

for online adaption, they only use the previous target exem-

plars for updating the target appearance model but ignore

the context information from the current search image.

Inspired by the above observation, it is desirable to au-

tomatically capture the spatial-temporal patterns of target

appearance under the context information of current search

image. During the tracking process of siamese based meth-

ods, the target exemplar sequence can be organized as a

3D spatial-temporal graph where each target part is con-

sidered as a node. Although 3D CNN [62] can be applied

for spatial-temporal modeling, it is computationally expen-

sive [52] and cannot handle arbitrary graph structures. Re-

cently, Graph Convolutional Networks (GCNs), which can

model the dependencies and propagate messages between

different nodes in an arbitrary graph, have received increas-

ing attention and successfully been adopted in various com-

puter vision tasks [35, 46, 67, 72, 56]. Until now, the appli-

cation of GCNs to visual tracking is yet to be explored.

In this paper, we propose an end-to-end Graph Convolu-

tional Tracking (GCT) method based on a siamese frame-

work, which can jointly consider both the spatial-temporal

target appearance structure of historical frames and the con-

text information of the current search image. As shown

in Figure 3, for target appearance modeling, we construct

a spatial-temporal graph to form a structured representation

of the historical target exemplars. A Spatial-Temporal GCN

(ST-GCN) is employed to learn a robust target appearance

model on this graph and generate a spatial-temporal feature

(ST-Feature). Furthermore, to incorporate context informa-

tion of the current search image for target localization, we

combine the ST-Feature and the context feature to produce

an adaptive graph. A ConText GCN (CT-GCN) then op-

erates on this graph and generates the adaptive feature for

target localization. To make the tracking highly efficient,

all the learning processes are performed in offline training.

We validate the effectiveness and efficiency of our approach

on five popular tracking benchmarks [70, 71, 33, 40, 47].

To summarize, the main contributions of this paper are

three-fold:

• An end-to-end graph convolutional tracking frame-

work is explored. To the best of our knowledge, this

is the first work to train GCNs in a deep siamese net-

work for visual tracking.

• Both ST- and CT-GCN are designed in a siamese net-

work. The proposed GCT can jointly achieve spatial-

temporal target appearance modeling and context-

guided adaptive learning for robust target localization.

• Extensive experimental results on five visual tracking

benchmarks demonstrate that the proposed GCT algo-

rithm performs favorably against state-of-the-art track-

ers and runs in real-time.

2. Related Work

Tracking by Siamese Network. One simple yet effective

manner of using deep learning for visual tracking is to di-
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rectly apply siamese networks as a matching function be-

tween target object and candidate patches [60, 2, 26, 63,

23, 66, 87, 36]. The pioneering work, SINT [60], learn-

s a matching function in the off-line phase and applies it

to find the most similar target candidate in online tracking.

Despite SINT achieves promising tracking performance, its

speed is only 2 fps because of the candidate sampling pro-

cess. To improve running speed, Bertinetto et al. [2] pro-

pose a fully convolutional Siamese framework (SiamFC) to

conduct similarity learning in an embedding space, which

runs nearly 86 fps with a GPU. Recently, more siamese

network based tracking methods have been proposed with

real-time high quality. Guo et al. [23] propose a dynam-

ic Siamese network (DSiam), which adopts a transforma-

tion learning model to adaptively conduct online learning.

Wang et al. [66] introduce different kinds of attention mech-

anisms in siamese learning, which mitigates the over-fitting

problem and enhances its discriminative capacity. More-

over, other strategies are also adopted to improve the perfor-

mance of siamese tracking, such as two-fold learning [25],

triplet loss optimization [12], region proposal network [36],

adversarial learning [68], deep reinforcement learning [30],

distractor-aware module [86], and structured modeling [84].

Different from the above methods, we are among the first to

utilize graph convolutional operators in siamese networks to

comprehensively model the structured cues of a target ob-

ject, which can jointly consider the spatial-temporal struc-

ture and current context information.

Structured Target Appearance Modeling. To handle

various challenges in visual tracking scenes, a number of

tracking algorithms have been proposed to impose struc-

ture information on target appearance modeling. Some

trackers explore spatial-temporal modeling in visual track-

ing [76, 59, 57, 87, 37, 61, 77, 79, 83]. However, these

methods are either not end-to-end trainable [76, 37] or only

using a holistic target appearance model [57, 87, 61, 21].

For example, although FlowTrack [87] utilizes optical flow

to get benefit from inter-frame motion cues, it only adopt-

s the holistic model for target representation and ignores

detailed information such as interactions between local tar-

get parts. Recently, part-based methods that decompose

target object into several parts have been studied active-

ly [8, 78, 22, 39, 7, 8, 80, 20, 82, 85]. For example, a

spectral tracking method [8] is proposed to operate on lo-

calized surrounding regions of each pixel via graph filters.

With the development of deep learning techniques, some

part-based methods learn structured information in an end-

to-end fashion [84, 15]. Zhang et al. [84] utilize conditional

random field as a message passing module for learning lo-

cal structure in a siamese network. However, most existing

part-based trackers only consider spatial-structure informa-

tion of previous frames for locating target object, and can

hardly benefit from the long-range temporal information. In

this paper, we make full use of both spatial-temporal target

structure and context information of search images for tar-

get localization in an end-to-end siamese framework.

Graph Neural Networks for Computer Vision. General-

ization of neural networks for arbitrarily structured graphs

has drawn great attention in recent years. There are two typ-

ical ways to develop graph neural networks. On one hand,

some methods adopt feed-forward neural networks to every

node in a spatial manner [55]. On the other hand, spec-

tral methods provide well-defined localization operators on

graphs via convolutions in the Fourier domain [31]. For

computer vision tasks, Wang et al. [67] propose to represent

videos as space-time region graphs which capture similari-

ty relationships and spatial-temporal relationships. To mod-

el dynamic skeletons for human action recognition, Yan et

al. [72] propose a spatial-temporal graph convolutional net-

work with several types of kernels. Shen et al. [56] uti-

lize graph convolutional operator to learn probe-gallery re-

lationships for person re-identification. Gao et al. utilize

graph neural networks to improve the performance of video

classification [18] and zero-shot video classification [19].

3. Graph Convolutional Tracking

In this work, we propose a Graph Convolutional Track-

er, GCT, which jointly performs spatial-temporal target ap-

pearance modeling and context-guided adaptive learning in

an end-to-end manner. Figure 3 overviews the pipeline of

the proposed tracking algorithm based on a siamese archi-

tecture (SiamFC) [2]. The SiamFC learns a similarity func-

tion f(z, x) to compare a 127× 127 exemplar image z to a

255×255 search image x in a learned convolutional feature

embedding space φ (we denote Z = φ(z),X = φ(x)):

f(z, x) = φ(z) ⋆ φ(x) + b

= Z ⋆X+ b,
(1)

where ⋆ represents cross-correlation between two feature

maps, b ∈ R denotes a bias for each location. By using E-

q. (1), the most similar patch from the search image will

be selected as the target object. Despite the favorable effi-

ciency and expansibility of SiamFC, it only uses the first

frame as a fixed template in the whole tracking process,

which can hardly benefit from the spatial-temporal struc-

ture of target appearance under different contextual situa-

tions. In fact, features from different frames and locations

provide diverse and abundant information for the target ap-

pearance modeling [76], such as different parts and view-

points, motion, deformation, and varied illuminations. For

target localization, these features should be adaptively ag-

gregated in spatial-temporal domain guided by the context

information of the current search image. To this end, we de-

sign a graph convolutional transformation into the siamese

architecture to jointly consider target appearance modeling
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Figure 3. The pipeline of our GCT, which can jointly perform spatial-temporal target appearance modeling and context-guided feature

adaption in a siamese framework. Specifically, we use a ST-GCN to model the historical exemplars with a spatial-temporal graph. Then,

the generated ST-feature is combined with the current context feature to learn an adaptive graph, which is used by CT-GCN to produce the

adaptive feature. This feature is evaluated on the search image embedding via a cross-correlation layer (XCorr) for target localization.

with context information of the current search image:

f(zt−T :t−1, xt) = ψGCN (Zt−T :t−1,Xt) ⋆Xt + b, (2)

where ψGCN denotes the proposed graph convolutional

transformation. It aims to learn robust spatial-temporal fea-

tures of the target object in previous frames t − T : t − 1,

guided by the context information of the current search im-

age embedding Xt. T controls the time range for remem-

bering historical information. However, learning ψGCN is

not efficient since it suffers from high computational burden

for modeling the message passing between current contex-

t information Xt and each of the historical exemplar em-

beddings Zt−T :t−1. To reduce the computational cost, we

further decompose ψGCN into two sequential graph con-

volution modules named Spatial-Temporal GCN (ST-GCN)

ψ1 and ConText GCN (CT-GCN) ψ2. As a result, the de-

composed formulation is:

f(zt−T :t−1, xt) = ψ2(ψ1(Zt−T :t−1),Xt) ⋆Xt + b, (3)

where ψ1 conducts spatial-temporal target appearance mod-

eling for historical exemplars and generates aggregated ST-

feature V1 = ψ1(Zt−T :t−1). ψ2 takes V1 and the con-

text information of current search image embedding Xt for

learning the adaptive feature V2, which is then evaluated

on the search image embedding Xt via cross-correlation. In

the offline training stage, the loss of an exemplars-instance

pair is generally represented as a logistic function [2] :

L(zt−T :t−1, xt,Y) =
1

|∇|

∑

u∈∇

log(1+exp(−Y[u]R[u])),

(4)
where ∇ is the set of all the shifting positions on the search

image and u denotes a sample of the same size with the

target template. Y[u] ∈ {+1,−1} is the ground-truth label

as in [2], and R[u] = V2[u] ·Xt[u] is the response score.

In the following, we first introduce the preliminary of our

main building block, GCN [31], which generalizes CNN to

graphs. Then we illustrate both ST-GCN and CT-GCN. The

details of our tracking method are finally presented.

3.1. Preliminary: Graph Convolutional Networks

Given an undirected graph G = (V, E) with M nodes

V , a set of edges E between nodes, an adjacency matrix

A ∈ RM×M , and a degree matrix Λii =
∑

j Aij . We for-

mulate a linear transformation of graph convolution as the

multiplication of a graph signal X ∈ RD×M (the colum-

n vector Xi· ∈ RD is the feature representation at the ith

node) with a filter W ∈ RD×C :

V = Λ̂
− 1

2 ÂΛ̂
− 1

2X
⊤
W, (5)

where Â = A+ I, I is the identity matrix. Λ̂ii =
∑

j Âij .

In this formulation, the output is a C ×M matrix V. Note

that a GCN can be built by stacking multiple graph convolu-

tional layers of the form of Eq. (5), each layer followed by

a non-linear operation (such as ReLU). Readers can refer

to [31] for more details and an in-depth discussion.

3.2. Target Appearance Modeling via ST­GCN

Spatial-temporal structure of target object is crucial for

robust visual tracking. However, most existing siamese

network based methods either describe the target appear-

ance from the global view or ignore the historical informa-

tion in an end-to-end training, resulting in high sensitivity

to significant appearance change. In this section, we de-

sign a spatial-temporal graph to form a structured represen-

tation of the historical exemplar (target object) sequence.
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Specifically, the shared ConvNet φ in the exemplar branch

(the top of Figure 3) takes the historical exemplar images

{zi}
t−T

i=t−1
as inputs and produces the corresponding em-

beddings {Zi}
t−T

i=t−1
. Here, Zi ∈ RD1×Mz , where D1 and

Mz represent the feature dimensionality and the number of

parts respectively. Although other automatic part genera-

tion methods [84, 67] can be exploited, for simplicity and

efficiency, we follow [7, 8] to consider each D1 × 1 × 1
grid of the feature map Zi as a target part. To perform

spatial-temporal modeling of target object, we construct an

undirected ST-graph G1 = (V1, E1) on an exemplar embed-

ding sequence with Mz parts (nodes) and T frames featur-

ing both intra-exemplar and inter-exemplar relationships.

In the graph G1, the node set V1 = {vij |i = t− 1, ..., t−
T, j = 1, ...,Mz} consists of all the target parts in an

exemplar embedding sequence. The edge set E1 is com-

posed of two types of edges: (1) Spatial edges ES
1 repre-

sents the intra-exemplar connection at each frame: ES
1 =

{vijvik|1 6 j, k 6 Mz, j 6= k}. Note that similar with [8],

we adopt a fully-connected graph to depict the spatial re-

lationships since all the target parts may have interactions

under various appearance changes. In addition, in our ex-

periment, we find that the fully-connected graph achieves

favorable performance while needs less graph convolutional

layers than other types of graphs such as k-nearest neighbor

graph [8]. (2) Follow [72], we connect the parts with the

same location in consecutive frames as the temporal edges

ET
1 = {vijvi+1,j}. As a result, the information can be prop-

agated in the temporal domain. With both types of edges,

each node is connected to at mostMz+1 nodes among a to-

tal of MzT nodes in V1, which makes the ST-graph sparse

and reduces the computational cost of graph convolution.

Based on the ST-graph, we can obtain the corresponding

adjacency matrix A1 and stack multiple graph convolution-

al layers of Eq. (5) to construct the ST-GCN. The ST-GCN

then generates refined feature vectors {Ẑi}
t−T

i=t−1
for each

node of the spatial-temporal graph, Ẑi ∈ RD2×Mz . To re-

duce the computational burden of the following layers, we

then aggregate the features along the temporal axis to pro-

duce the compact ST-feature V1 ∈ RD2×Mz :

V1 = MaxPoolingT ([Ẑt−T , Ẑt−T+1, ..., Ẑt−1]), (6)

where the MaxPoolingT operation is applied with a time

range T . V1 is then taken as input of the CT-GCN.

3.3. Target Feature Adaption via CT­GCN

Our framework not only models the spatial-temporal

structure between target exemplars, but also incorporates

the context information of current search images to guide

the adaptive feature learning. To take full advantage of the

context information, we integrate a graph learning model

to our framework as shown in Figure 3, which generates an

adaptive graph structure for guiding the CT-GCN. As shown

in the bottom of Figure 3, taking the current search image

xt as input, the shared ConvNet produces the instance em-

bedding Xt ∈ RD1×Mx . To get the global information of

the search image, we utilize a convolutional layer followed

by a max pooling layer to generate a global feature xt with

the size of D1 × 1. Here, the convolutional layer has D2

filters with a kernel size of 3×3 and stride 1, and the size of

the pooling layer is Mx. Taking the global feature xt as the

current context information, we use a deconvolutional layer

to get an enlarged feature X̂t, which is the same size as the

ST-feature V1. X̂t is then fused with V1 by element-wise

addition as follows:

Vx = V1 + X̂t, (7)

where Vx considers both the spatial-temporal feature of tar-

get object and the context information of current frame. To

perform graph learning for robust feature adaption, we use

Vx to generate an adaptive graph G2 = (V2, E2) with the

adjacency matrix A2 defined as:

A
ji
2 =

exp(g(Vx,i)
⊤h(Vx,j))∑Mz

i=1
exp(g(Vx,i)⊤h(Vx,j))

, (8)

where Vx,i is the ith column vector of Vx, g(·) and h(·) are

two 1× 1 convolutional layers with D1 filters.

With the learned graph, we are able to construct the CT-

GCN via Eq. (5), which takes the ST-feature as input and

produces the adaptive feature V2 ∈ RD1×Mz for target lo-

calization in tracking process.

3.4. The Proposed Tracking Algorithm

Network Structure. As shown in Figure 3, we use the

modified AlexNet [34] pre-trained on ImageNet [54] as the

shared ConvNet. The weights of the first three conv lay-

ers are fixed and only the last two conv layers are fine-

tuned. We also add an additional 3× 3 conv layer to reduce

the output channel dimensionality to D1 = 256. The part

numbers of the exemplar and search image embedding are

Mz = 6 × 6 = 36 and Mx = 22 × 22 = 484, respec-

tively. For the ST-GCN, we adopt 2 graph convolutional

layers with the output channel dimensionality of 512 and

256 (D2). The CT-GCN also has 2 graph convolutional lay-

ers with 384 and 256 channel numbers. Following [69], we

apply the LeakyReLU as the activation function for both

ST-GCN and CT-GCN.

Offline Training. We use videos from the video object de-

tection dataset of the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC2015) [54] as training data. The

dataset contains almost 4500 videos with a total of more

than one million annotated frames. In each video snippet of

an object, we collect each training sample of T + 1 frames

within the nearest 100 frames. We use the former T frames

as exemplar images and take the last one as the search im-

age. We adopt the ADAM optimizer with learning rate of
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0.005 and set weight decay to 5e− 5. The model is trained

for 50 epochs with a batch size of 24.

Tracking Inference. For the tracker initialization, we du-

plicate the first frame T times as the exemplar images. We

set T = 10 in our experiments. In the tracking process,

we use an interval τ = 7 to update the exemplar images,

which enables our method to effectively remember a long

range of historical information. Specifically, for every τ

frames, the first exemplar image is removed and the new

exemplar is added. We use a ratio of 0.4 to smooth the new

exemplar with the initial exemplar. The target center can be

determined by locating the maximum value in the response

map RG generated by the cross-correlation layer, as shown

in Figure 3. Since different layers in a deep network charac-

terize the target from different perspectives [45, 25], we fur-

ther use the features from the 5-th conv layer of the shared

ConvNet to generate the other response map RS . The final

response map is calculated by balancing RG and RS with a

coefficient γ: R = γRG + (1− γ)RS . γ is set to 0.7. Fol-

low [2], a cosine window is further added to the response

map to penalize large displacement.

Scale Estimation. To handle scale variations, we follow [2]

to search on three scales of the current search image with

scale factors of 1.0375{−1,0,1}. We update the scale by lin-

ear interpolation with a factor of 0.59 to provide damping.

To further speed up the tracker, we only use the response

map RS to estimate the scales, which also shows favorable

performance in the experiments.

Discussion. The proposed GCT consists of both ST-GCN

and CT-GCN, which can jointly perform spatial-temporal

target appearance modeling and feature adaption with con-

text information in an end-to-end framework. For the ST-

GCN, we design a fixed spatial-temporal graph in consid-

eration of two factors. (1) Since the spatial-temporal graph

is large with MzT nodes, fixing the adjacency matrix A1

is more computationally efficient than fine-tuning it [18].

Note that another graph-based tracking method [8] also

adopts a fixed graph for appearance modeling. (2) Although

the temporal edges may not connect the same target part in

consecutive frames, the message can still be passed between

any related parts because the spatial edges in each frame are

fully-connected. In addition, ST-GCN has multiple layers

which can enlarge the receptive field of each node. For the

CT-GCN, we use the search image to provide rich context

information such as target object and the surrounding back-

ground for guiding the feature adaption1. After the end-to-

end offline training with large-scale training videos, in the

online tracking process, the graph G2 can be automatical-

ly and adaptively produced with different ST-features and

context features. The effectiveness of both types of GCN is

verified in our experiments.

1In siamese learning, the exemplar images also include background in-

formation surrounding the target object.
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(a) Results for OTB-2013 benchmark [70]
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(b) Results for OTB-2015 benchmark [71]

Figure 4. Quantitative results on OTB datasets. Our GCT method

performs favorably against the state-of-the-art trackers.
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Figure 5. 11 attributes comparison of 7 real-time trackers on OTB-

2015 in term of AUC. The proposed GCT method performs favor-

ably against the state-of-the-arts.

4. Experimental Results

We conduct extensive experiments 2 on 4 challenging

datasets including the OTB-2013 Object Tracking Bench-

mark [70] with 50 sequences, its updated version OTB-

2015 [71] with 100 sequences, VOT2017 benchmark [33]

with 60 videos, and UAV123 benchmark [47] with 123 aeri-

al tracking videos. Our tracker is implemented on Tensor-

Flow. The hardware environment includes an Intel E5-2687

3.0GHz CPU, 256GB RAM and a NVidia 1080Ti GPU.

4.1. Experiments on OTB

Evaluation Protocol. Following the protocol used in the

recently published methods [84, 73, 81, 57], we report the

results in one-pass evaluation (OPE) [70]. The evaluation is

based on two metrics: success plot and precision plot. (1)

The success plot illustrates the ratios of successful frames

2http://nlpr-web.ia.ac.cn/mmc/homepage/jygao/

gct_cvpr2019.html (project page of our GCT)
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Table 1. Comparison with 6 state-of-the-art trackers on the OTB-

2013 and OTB-2015, based on AUC score. Our method provides

comparable results against the state-of-the-art trackers.

Method
MDNet

[49]

SANet

[15]

ECO

[9]

CCOT

[11]

DSLT

[43]

VITAL

[58]

GCT

(Ours)

OTB-2013 70.8 68.6 70.9 67.2 68.3 71.0 67.0

OTB-2015 67.8 69.2 69.1 67.1 66.0 68.2 64.8

Speed(FPS) 2.6 1.0 6.0 0.6 5.7 1.5 49.8

over the range of thresholds [0, 1], where Area-under-the-

curve (AUC) is included in the legend. (2) The precision

plot shows the average distance precision along with a range

of thresholds, and the average Distance precision (DP) score

at 20 pixels for each tracker is reported.

Baseline Methods. We evaluate our GCT method with 29
trackers in the OTB benchmark [70, 71] and other state-of-

the-art tracking methods that presented at top conferences

and journals, including MetaCREST (ECCV 2018) [50],

ACT (ECCV 2018) [4], MCCT-H (CVPR 2018) [64], TRA-

CA (CVPR 2018) [5], STRCF (CVPR 2018) [37], CREST

(ICCV 2017) [57], PTAV (ICCV 2017) [14], BACF (IC-

CV 2017) [16], ECO-HC (CVPR 2017) [9], ACFN (CVPR

2017) [6], ADNet (CVPR 2017) [73], CSR-DCF (CVPR

2017) [44], Staple CA (CVPR 2017) [48], CFNet (CVPR

2017) [63], SINT (CVPR 2016, only for OTB-2013) [60],

Staple (CVPR 2016) [1], HDT (CVPR 2016) [51], SiamFC

(ECCVW 2016) [2], SRDCF (ICCV 2015) [10], MUSTer

(CVPR 2015) [29], CNN-SVM (ICML 2015) [28], RPT

(CVPR 2015) [39], KCF (T-PAMI 2015) [27] and MEEM

(ECCV 2014) [75].

Quantitative Evaluation. Figure 4 illustrates the success

and precision plots of the overall performance among com-

pared trackers. To make it clear, we only plot the top

10 ranked methods. The proposed GCT approach per-

forms favorably with AUC of (67.0%, 64.8%) and DP of

(87.3%, 85.4%) on the OTB-2013 and OTB-2015, respec-

tively. SINT [60], CFNet [63], and SiamFC [2] are three

state-of-the-art siamese based trackers, which provide the

results with an AUC score of 63.5%, 61.0%, and 60.7% on

OTB-2013, respectively. Compared to them, our method

gets an absolute gain of 3.5%, 6.0%, and 6.3%. Another

siamese based tracker, DaSiamRPN [86], has the AUC s-

core of 65.9% on OTB-2015, which is slightly better than

our method (64.8%). However, DaSiamRPN uses other

large-scale datasets for model training, such as COCO De-

tection dataset [41] and Youtube-BB [53]. This strategy can

also be used to further boost the performance of our method.

Overall, compared with the state-of-the-arts, the proposed

GCT achieves better or comparable results. Note that the

DP score of our method is not very significant, which may

because of the low resolution of the response map (17×17)

and its interpolation process in target localization. This

can be improved by training a siamese network with high-

resolution response map like [65]. We also compare GC-

T to the currently topmost non-realtime trackers including

MDNet (CVPR2016) [49], SANet (CVPRW2017) [15], E-

15913172125293337414549

0.05

0.1

0.15

0.2

0.25

0.3

0.35
LSART[0.323] 
CFWCR[0.303] 
CFCF[0.286] 
ECO[0.280] 
GCT[0.274] 
Gnet[0.274] 
MCCT[0.270] 
CCOT[0.267] 
CSRDCF[0.256] 
SiamDCF[0.249] 
MCPF[0.248]

GCT

SiamFC

Figure 6. Comparison of EAO scores on VOT2017 challenge. The

gray horizontal line denotes the VOT2017 state-of-the-art bound.
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Figure 7. The EAO scores for the real-time experiment on

VOT2017 challenge. GCT performs the best.

CO (CVPR2017) [9], CCOT (ECCV2016) [11], DSLT (EC-

CV2018) [43], and VITAL (CVPR2018) [58] . In Table 1,

the AUC scores of the algorithms on both benchmarks are

presented along with the run-time speed. Our method has

comparable performance and achieves a significant speed

improvement. Moreover, MDNet, SANet, and VITAL train

and test deep models for tracking using videos from the

same ALOV/OTB/VOT domain, which is forbidden in VOT

challenges due to the overfitting problem [2].

Attribute-based Evaluation. We further analyze the per-

formance of our GCT tracker under different attributes on

OTB-2015 benchmark. Figure 5 shows the comparison of

GCT and another seven state-of-the-art real-time trackers.

Specifically, our method achieves the best under 6 out of 11
attributes. For the rest five, GCT performs favorably.

4.2. Experiments on VOT2017

We compare our GCT with the state-of-the-art methods

on VOT 2017 benchmark [33, 32]. The performance is eval-

uated by Expected Average Overlap (EAO), which reflects

both robustness and accuracy. Figure 6 reports the results

of ours against other 51 trackers with respect to the EAO

score. As presented in the VOT2017 report [33], tracker-

s whose EAO values exceed 0.203 will be considered as

state-of-the-art methods. Our proposed GCT ranks the fifth

with the EAO score of 0.274. Figure 7 shows the EAO s-

cores in the real-time experiment of VOT2017. Our tracker

achieves the best performance with the EAO score of 0.269
and outperforms other real-time methods by a large margin.

4.3. Experiments on UAV123

Finally, we evaluate the proposed GCT on the recently

proposed aerial video dataset, UAV123 [47], which has 123
UAV tracking sequences with more than 110K frames. GCT

is compared with all 14 trackers reported in [47] and other

real-time state-of-the-art methods including MCCT-H [64],

STRCF [37], ECO-HC [9], and Staple [1]. Figure 8 again
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Figure 8. Quantitative results on the UAV123 benchmark [40]. Our

proposed GCT method performs favorably.

Table 2. Analysis of our approach on the OTB-2013 and OTB-

2015. The impact of progressively integrating one component at

the time, from left to right, is displayed.
SiamFC =⇒S-GCN =⇒ST-GCN =⇒CT-GCN

OTB-2013(%) 60.7 62.5 64.9 67.0

OTB-2015(%) 57.7 60.2 63.5 64.8

FPS(OTB-2015) 76.1 66.7 58.6 49.8

shows that our proposed GCT performs favorably.

4.4. Further Remarks

Component Contribution. To verify the contributions of

each component in our framework, we implement and eval-

uate four variants of our approach on OTB-2013 and OTB-

2015 benchmarks. In Table 2, the impact of progressively

adding one component, from left to right, is presented. For

simplicity, we take the results on OTB-2015 for illustration

here. The first is the baseline SiamFC3, which removes the

following GCN modules and only uses the response map

RS for target localization. We then add a spatial GCN

(S-GCN) on SiamFC and use the fused response map in

tracking process. Specifically, S-GCN removes the tempo-

ral edges in ST-GCN and sets T = 1. S-GCN outperforms

SiamFC by an absolute gain of 2.5%, which shows the part-

based spatial modeling is useful in visual tracking. Addi-

tionally incorporating our proposed ST-GCN elevates us to

an AUC score of 63.5%, leading to a relative gain of 5.5%
compared to S-GCN. The significant result clearly shows

the effectiveness of our spatial-temporal appearance mod-

eling. Finally, we add CT-GCN to our framework, which

obtains a relative gain of 2.0% compared to ST-GCN. Ta-

ble 2 also shows the impact on the tracker speed achieved by

our components. Overall, the proposed GCT with both ST-

GCN and CT-GCN achieves the best tracking performance

and a favorable run-time speed.

Detailed Analysis of the ST-GCN. To quantitatively an-

alyze different depths of the ST-GCN, we design another

two variants, ST-1L and ST-4L. ST-1L has 1 graph convo-

lutional layers with output channel number of 256. The 4-

layer model ST-4L has channel numbers as 512 → 1024 →
512 → 256. In the left of Figure 9, we do not find much

gain by adding more layers above our 2-layer ST-GCN

model. To make our tracker efficient, we set the number

of layers in ST-GCN to 2. We also explore other graph

3Since this baseline is implement by ourselves, the results are slightly

different from the initial SiamFC tracker [2]
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Figure 9. Ablation study of both ST-GCN and CT-GCN on OTB-

2013 benchmark.

structures for ST-GCN. As shown in Figure 9, we design

two baselines ST-knn-2L and ST-knn-4L, which adopt an

8-nearest-neighbor graph used in [8] to represent spatial

edges. Although ST-knn-4L can achieve similar perfor-

mance compared to our method, it is less efficient since it

needs more graph convolutional layers.

Detailed Analysis of the CT-GCN. We also evaluate the

effect of different numbers of layers in CT-GCN and design

similar baselines with them in ST-GCN. Figure 9 (b) shows

CT-1L gets inferior results while CT-4L has lower running

speed. In addition, to verify the effectiveness of the CT-

GCN, we develop a baseline method, CT-noGCN, which

removes the graph convolutional layers. CT-noGCN only

uses the scores produced by Eq. (8) to generate the adaptive

feature via linear combination. We can find that our pro-

posed GCT outperforms it by a relative gain of 2.3%. In

fact, GCT can further conduct message passing between re-

lated parts based on the learned graph, which is better than

the linear combination with the generated scores.

5. Conclusions

In this paper, we propose a graph convolutional tracking

framework, which can jointly achieve spatial-temporal tar-

get appearance modeling and context-aware adaptive learn-

ing for robust target localization in a unified framework. We

show that by carefully designing the spatial-temporal GCN

and the context GCN, the proposed GCT achieves state-of-

the-art results in both accuracy and speed. The encourag-

ing performance is demonstrated in extensive experiments

of four challenging benchmarks. In the future, we intend

to explore other types of graph neural networks for visu-

al tracking, such as graph embedding and graph attention

model. We will also apply our method in other computer

vision tasks, e.g. multi-object tracking and person re-id.
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