
Self-critical n-step Training for Image Captioning

Junlong Gao1, Shiqi Wang4, Shanshe Wang∗2,3, Siwei Ma2,3, and Wen Gao2,3

1Peking University Shenzhen Graduate School
2Institute of Digital Media, Peking University 3Peng Cheng Laboratory

4Department of Computer Science, City University of Hong Kong, Hong Kong

Abstract

Existing methods for image captioning are usually

trained by cross entropy loss, which leads to exposure bias

and the inconsistency between the optimizing function and

evaluation metrics. Recently it has been shown that these

two issues can be addressed by incorporating techniques

from reinforcement learning, where one of the popular tech-

niques is the advantage actor-critic algorithm that calcu-

lates per-token advantage by estimating state value with a

parametrized estimator at the cost of introducing estima-

tion bias. In this paper, we estimate state value without

using a parametrized value estimator. With the properties

of image captioning, namely, the deterministic state transi-

tion function and the sparse reward, state value is equiva-

lent to its preceding state-action value, and we reformulate

advantage function by simply replacing the former with the

latter. Moreover, the reformulated advantage is extended to

n-step, which can generally increase the absolute value of

the mean of reformulated advantage while lowering vari-

ance. Then two kinds of rollout are adopted to estimate

state-action value, which we call self-critical n-step train-

ing. Empirically we find that our method can obtain better

performance compared to the state-of-the-art methods that

use the sequence level advantage and parametrized estima-

tor respectively on the widely used MSCOCO benchmark.

1. Introduction

Image captioning aims at generating natural captions au-

tomatically for images, which is of great significance in

scene understanding. It is a very challenging task, which

requires to recognize important objects in the image, as

well as their attributes and relationships between each other,

such that they can be finally described properly in natural
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language. The ability of the machine to mimic human in

expressing rich information in natural language with correct

grammar is important since it can be applied to human-robot

interaction and blind users guiding.

Inspired by the recently introduced encoder-decoder

framework for machine translation in [6], most recent works

in image captioning have adopted this paradigm to gener-

ate captions for images [24]. In general, an encoder, e.g.

convolutional neural network (CNN), encode images to vi-

sual features, while a decoder, e.g. long short term memory

(LSTM) [10], decodes the visual features to generate cap-

tions. These methods are trained in an end-to-end manner

to minimize cross entropy loss, i.e. maximize the likelihood

of each ground-truth word given the preceding ground-truth

word, which is also known as “Teacher Forcing” [14].

The first problem of cross entropy loss is that it will lead

to “exposure bias”, since in the training stage, the model is

only fed with ground-truth word at each time step, while in

the testing stage, the model is fed with the previously pre-

dicted word. This discrepancy between training and testing

easily results in error accumulation during generation, as

the model is not exposed to its predictions during training

and difficult to handle the errors which never occur in the

training stage. In order to handle exposure bias, Bengio et

al. [4] feed back the model own predictions as input with

scheduled sampling, while Lamb et al. [14] proposed the “

Professor Forcing” on top of the “Teacher Forcing”.

The second problem of cross entropy loss is that the gen-

erated sentences are evaluated in the testing stage by non-

differentiable metrics, such as BLEU 1-2-3-4 [20], ROUGE

[15], METEOR [3], CIDEr [23], SPICE [1], while dur-

ing training the model is trained to minimize cross entropy

loss, which is the inconsistency between the optimizing

function and evaluation metrics. The methods proposed

in [4, 14] cannot address this inconsistency. Recently, it

has shown that policy gradient algorithm in reinforcement

learning (RL) can be trained to avoid exposure bias and di-

rectly optimize such non-differentiable evaluation metrics
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[17,21,22,29]. In this way, the model can be exposed to its

own predictions during training. However, the algorithms

in [22] use sequence level advantage that implicitly makes

an invalid assumption that every token makes the same con-

tribution to the whole sequence. Many works [17, 21, 29]

have been proposed to model per-token advantage. How-

ever, they utilize a parametrized value/baseline estimator at

the cost of introducing estimation bias.

In this paper, we improve the advantage actor-critic algo-

rithm to estimate per-token advantage without introducing

the biased parametrized value estimator. With the properties

of image captioning, namely, the deterministic state transi-

tion function and the sparse reward, state value is equiv-

alent to its preceding state-action value, and we reformu-

late advantage function by simply replacing the former with

the latter. Since state-action value cannot be precisely esti-

mated, the model may easily converge to the local maxima

trained with the reformulated advantage function. There-

fore, we propose n-step reformulated advantage function,

which can generally increase the absolute value of the mean

of reformulated advantage while lowering variance. In or-

der to estimate state-action value, we use Monte Carlo roll-

outs inspired by [17, 28] and max-probability rollout in-

spired by [22], which is termed as self-critical n-step train-

ing. According to the empirical results, our model improves

the performance of image captioning compared to the meth-

ods that use the sequence level advantage and parametrized

estimator respectively.

Overall, we make the following contributions in this pa-

per: (1) with the special properties of image captioning, we

find the equivalence between state value and its preceding

state-action value, and reformulate the original advantage

function for each action; (2) on top of the reformulated ad-

vantage function, we extend to n-step reformulated advan-

tage function to generally increase the the absolute value

of the mean of reformulated advantage while lowering vari-

ance; (3) we utilize two kinds of rollout to estimate state-

action value function to perform self-critical training.

2. Related Work

Many different models have been developed for im-

age captioning, which can be divided into two categories:

template-based methods [8, 13] and neural network-based

methods. Since our method adopts neural network archi-

tecture, we mainly introduce methods in this vein. Efforts

of this line have been devoted to two directions: attention

mechanism and reinforcement learning.

2.1. Attention Mechanism

The encoder-decoder framework of machine translation

[6] was firstly introduced by [24], which feeds the last fully

connected feature of the image into RNN to generate the

caption. Xu et al. [26] proposed soft and hard attention

mechanisms to model the human’s eye focusing on differ-

ent regions in the image when generating different words.

This work is further improved in [2, 5, 18, 22]. In [18], they

introduced a visual sentinel to allow the attention module

to selectively attend to visual and language features. An-

derson et al. [2] adopted a bottom-up module, that uses ob-

ject detection to detect objects in the image, and a top-down

module that utilizes soft attention to dynamically attend to

these object features. Chen et al. [5] proposed a spatial and

channel-wise attention model to attend to visual features.

Rennie et al. [22] proposed FC model and Att2in models

which achieve good performance.

2.2. Reinforcement Learning

Recently a few works use reinforcement learning-based

methods to address the exposure bias and the mismatch be-

tween the optimizing function and the non-differentiable

evaluation metrics [17,21,22,29] in image captioning. Ran-

zato et al. [21] firstly introduced REINFORCE algorithm

[25] to sequence training with RNNs. However, REIN-

FORCE algorithm often results in large variance in gradi-

ent estimation. To lower the variance of the policy gradi-

ent, many works have introduced different kinds of baseline

into REINFORCE algorithm. For example, the reward of

the caption generated by the inference algorithm is adopted

as the baseline in [22], which uses sequence level advan-

tage while the per-token advantage was not considered. A

variety of algorithms proposed in [17, 21, 29] aim at mod-

eling the per-token advantage. Ranzato et al. [21] used a

baseline reward parametric estimator. In [17], they used FC

layers to predict the baseline and used Monte Carlo rollouts

to predict the state-action value function. In [29], they com-

bined the advantage actor-critic algorithm and temporal dif-

ference learning, and used another RNN to predict the state

value function. However, the value/baseline estimator was

used in [17,21,29], which introduces estimation bias. In this

paper, we utilize the properties of image captioning to refor-

mulate the advantage actor-critic method and use different

kinds of rollout to estimate the state-action value function

to calculate per-token advantage without introducing bias.

3. Methodology

3.1. Training with cross entropy loss

Given an image I , the goal of image captioning is to gen-

erate a token sequence A = {a1, a2, ..., aT }, at ∈ A, where

A is the dictionary. The captioning model predicts a token

sequence starting with a0 and ending with aT , where a0 is

a special token BOS indicating the start of the sentence, and

aT is also a special token EOS indicating the end of the sen-

tence. In order to simplify the formulas, T is denoted as the

total length of a generated sequence, ignoring the fact that

generated token sequences have different lengths. We use
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the standard encoder-decoder architecture for image cap-

tioning, where a CNN as an encoder, encodes an image I
to an image feature IF , and a RNN can be adopted as a de-

coder to decode IF to output a token sequence A. In this

work, we adopt the Att2in model proposed by [22]. Given a

ground-truth sequence {a∗1, a
∗

2, ..., a
∗

T }, the model parame-

ters θ are trained to minimize the cross entropy loss (XENT)

L (θ) = −

T
∑

t=1

log (πθ (a
∗

t |a
∗

1:t−1, IF )) (1)

where πθ (at |a1:t−1, IF ) is a probability distribution

of the token at given the preceding generated tokens

{a1, a2, ..., at−1} and the image feature IF .

3.2. Training using policy gradient

Problem formulation. To address both problems of the

cross entropy loss described above, namely, the exposure

bias and the inconsistency between the optimizing function

and evaluation metrics, we incorporate the reinforcement

learning into image captioning. Formally, we consider cap-

tioning process as a finite Markov process (MDP). Our cap-

tioning model introduced above can be viewed as an agent,

which interacts with an environment (words and images).

In the MDP setting {S,A, P,R, γ}, S is a state space, A is

an action space as well as the dictionary, P (st+1|st, at) is

state transition probability, R(st, at) is reward function and

γ ∈ (0, 1] is the discounted factor. The agent selects an

action, that corresponds to generating a token, from a con-

ditional probability distribution π (a |s ) called policy. In

policy gradient algorithms, we consider a set of candidate

policies πθ (a |s ) parametrized by θ. The state st ∈ S is

considered as a list composing of the image feature IF and

the tokens/actions {a0, a1, a2, ..., at−1} generated so far:

st = {IF , a0, a1, ..., at−1} (2)

Here we define the initial state s0 = {IF }. At each time

step, the RNN consumes st and uses the hidden state of

RNN to generate the next token at. With the definition of

the state, we have the next state st+1 = {st, at}: we simply

append the token at to st. According to the process, the

state transition function P can be called deterministic state

transition function. Formally, we have:

P (st+1|st, at) ≡ 1 (3)

When the state st is transferred to the next state st+1

by selecting action at, the agent receives reward rt issued

from the environment. However, in image captioning, we

can only obtain a reward r = R(sT , aT ) = R (a1:T ) when

EOS token is generated and {IF , a0} is not considered in

reward calculation. The reward r is computed by evaluat-

ing the generated complete sentences compared with corre-

sponding ground-truth sentences under an evaluation met-

ric. Therefore, we define the reward for each action as fol-

lows:

rt =

{

0, t < T

r, t = T
(4)

In reinforcement learning, a value function is a predic-

tion of the expected, accumulative, γ discounted future re-

ward, measuring how good each state, or state-action pair,

is. We define the state-action value function Qπ(st, at) and

the state value function V π(st) of the policy π as follows:

Qπ(st, at) = Est+1,at+1,...∼π

[

T
∑

l=0

γlrt+l |St = st, At = at

]

V π(st) = Eat,st+1,...∼π

[

T
∑

l=0

γlrt+l |St = st

]

(5)

where Qπ(st, at) is the expected γ discounted accumulated

reward under policy π starting from taking action at at state

st, and V π(st) is the expected γ discounted accumulated

reward starting from state st. To simplify the notation, we

denote Eat,st+1,...∼π [·] and Est+1,at+1,...∼π [·] with Eπ [·]
in the rest of paper. It is obvious that the difference be-

tween Qπ(st, at) and V π(st) lies in whether taking the

action at or not at state st when calculating the accumu-

lated reward. In reinforcement learning, the agent aims

to maximize the circumulative reward L (θ) = V π(s0) =

Eπ

[

∑T

t=1
γt−1rt

]

by estimating the gradient ∇θL (θ) and

updating its parameters, instead of minimizing the cross en-

tropy loss as Eq. (1).

In policy gradient methods, the gradient ∇θL (θ) can be

written as:

∇θL (θ) = Eπ [(Qπ(st, at)− b(st))∇θ log πθ (at|st)] (6)

where the baseline b(st) can be any arbitrary function, as

long as it does not depend on action at. This baseline does

not change the expected gradient, but can decrease the vari-

ance of the gradient estimate significantly. This algorithm

is known as REINFORCE with a Baseline. Using V π(st)
as the baseline b(st), the algorithm is changed to advantage

actor-critic (A2C) algorithm as follows:

∇θL (θ) = Eπ [Aπ(st, at)∇θ log πθ (at|st)] (7)

In Eq. (7), Aπ (st, at) = Qπ(st, at)− V π(st) is called ad-

vantage function. This equation intuitively guides the agent

to an evolution direction that increases the probability of

better-than-average actions and decrease the probability of

worse-than-average actions [29].

1-step reformulated advantage function. Image caption-

ing is a special case in reinforcement learning, for its state

transition is deterministic, while other applications can have

different next states with a certain probability, such as Atari

Games. Here we use this property to reformulate Eq. (7).
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Figure 1. Each state-action value is estimated by the average re-

wards of K rollouts sequences (K = 1) or a reward of a max-

probability rollout. The advantage function in our method is esti-

mated by the current state-action value minus the preceding n-step

state-action value. The tokens in green and yellow are the special

tokens BOS and EOS. The tokens in white are the Monte Carlo tra-

jectory and the tokens in blue are continuation rollout tokens for

state-action value estimation. The n steps in the figure means that

the model performs rollouts every n steps in n-step reformulated

advantage function.

With the definition of Qπ(st, at) and V π(st) in Eq. (5),

we have

Q
π (st−1, at−1) = rt−1 + γ

∑

st∈S

P (st |st−1, at−1 )V
π(st)

(8)

Due to the deterministic state transition function described

above in Eq. (3), Eq. (8) can be rewritten as

Q
π (st−1, at−1) = rt−1 + γV

π(st) (9)

In this paper, we set discounted factor γ = 1. According

to reward function of Eq. (4), when t ≤ T , we have rt−1 =
0. Then V π(st) can be written as

V
π(st) = Q

π (st−1, at−1) (10)

Eq. (10) indicates that given the two properties of image

captioning, namely the deterministic state transition func-

tion and the reward function, state value is equivalent to its

preceding state-action value. Then we can rewrite Eq. (7)

by incorporating Eq. (10) into Eq. (7) as follows:

∇θL (θ) = Eπ [Aπ
R(st, at)∇θ log πθ (at|st)] (11)

where Aπ
R (st, at) = Qπ(st, at)−Qπ(st−1, at−1) is the re-

fomulated advantage function from Aπ (st, at) in Eq. (7).

Therefore, Qπ(st−1, at−1) is a new baseline of Qπ(st, at)
instead of V π(st). Each state-action value uses its preced-

ing state-action value as baseline, such that it is termed as

1-step reformulated advantage function.

In our approach, the agent aims at maximizing Eq. (11)

rather than Eq. (7). Eq. (11) has an intuitive interpretation

that it helps the agent to increase the probability of the ac-

tion which has larger expected accumulated rewards com-

pared to that of preceding action and decrease the proba-

bility of the action which has smaller expected accumulate

rewards compared to that of preceding action.

The most straightforward way to simulate the environ-

ment with the current policy π is to obtain a Monte Carlo

trajectory {(st, at, rt)}
T

t=1
from the multinomial strategy

and estimate the gradient ∇θL (θ):

∇̂θL (θ) =
1

T

T
∑

t=1

Â
π
R(st, at)∇θ log πθ (at|st) (12)

where Âπ
R (st, at) = Q̂π(st, at) − Q̂π(st−1, at−1), and

Q̂π(st, at) is an empirical estimate of Qπ(st, at).
n-step reformulated advantage function. According to

the property of Eq. (11) described above, the model encour-

ages tokens better than its preceding token in terms of the

value, and surpress the worse tokens. Though Eq. (11) is

a greedy algorithm, Eq. (11) can guide the evolution direc-

tion of the model towards the global maxima only when

state-action value is estimated precisely. Image captioning

is considered as a model-free reinforcement learning task,

which uses rollouts or function approximation to estimate

state-action value. However, both methods, where the for-

mer suffers from a large variance and the latter introduces

estimation bias, cannot predict absolutely precise value that

may turn out to be wrong to encourage or suppress a to-

ken in this strict greedy strategy. Therefore, we introduce

n-step reformulated advantage function. In n-step reformu-

lated advantage function, we view n steps as a large step to

perform Eq. (11). Each step within the large step shares the

n-step reformulated advantage Âπ
R(st, at) as follows:

Â
π
R (st, at) = Q̂

π(sτ+n, aτ+n)− Q̂
π(sτ , aτ ) (13)

where τ= ⌊t/n⌋n and ⌊·⌋ is denoted as a round-down func-

tion, and n ranges from 1 to T which unifies the two ex-

tremes, namely, 1-step and T -step. In the n-step refor-

mulated advantage, n steps show a much clearer evolution

trend of the Monte Carlo trajectory from the multinomial

strategy than 1 step, and the values of neighboring states

in n-step have a more precise margin than that in 1-step,

except that state-action value estimation use the same strat-

egy of Monte Carlo trajectory that samples one sequence

from multinomial strategy. If they use the same strategy,

estimated values of each time step are from the same distri-

bution and thus larger n cannot enlarge the margin of neigh-

boring state values. Therefore, except for that particular

case, as n increases, the absolute value of the mean and the

variance of reformulated advantage will be increased and

reduced respectively.

However, as n increases, per-token advantage is in-

evitably gradually lost until a sequence level advantage of
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n = T . Therefore, different methods of estimating state-

action value have different distributions and have different

most suitable n that performs best in balancing the approx-

imation of per-token reformulated advantage and the im-

provement on the absolute mean of reformulated advantage.

In general, the performance of small n is better than that of

n = T .

Estimating the state-action value function. Accord-

ing to Eq. (13), we only need to estimate Q̂π(st, at).
Here, we propose two methods to estimate non-parametric

Q̂π(st, at): use K Monte Carlo rollouts inspired by [17,

28] and use inference algorithm (max-probability roll-

out) inspired by [22]. These processes are illustrated as

Fig. 1. Since Qπ(st, at) is an expected accumulated re-

ward, K Monte Carlo is more stable and precise than max-

probability rollout to estimate Qπ(st, at) with additional

computation cost of K − 1 rollouts. In 1-step reformulated

advantage function, the model rollouts every steps, while

in n-step reformulated advantage function, the model roll-

outs every n steps. Therefore, the model adopts self-critical

training [22], which uses rollouts to estimate value func-

tions as a critic.

In K Monte Carlo rollouts, we sample K continuations

of the sequence {st, at} to obtain {at+1, at+2, ..., aT },

which means that the subsequent tokens are sampled from

the multinomial strategy. When γ = 1, according to Eq. (4)

and Eq. (5), the state-action value function can be computed

by the average of the K rewards

Q̂
π(st, at) =

1

K

K
∑

k=1

R
(

a1:t; a
k
t+1:T

)

(14)

where R
(

a1:t; a
k
t+1:T

)

is denoted as the reward of the k’th

continuation sampled after {st, at} from the multinomial

strategy. In our experiment, we set K = 5. A slight dif-

ference between our method and [17, 28] is that we need to

rollout from {s0, a0} to estimate Qπ(s0, a0), and they do

not. If K = 1, state-action value estimation and Monte

Carlo trajectory both sample a sequence from multinomial

strategy in each step, and thus larger n cannot enlarge the

margin of neighboring state values as discussed above. As

K increases, though K rollouts of estimating state-action

value are also sampled from multinomial strategy, the mean

reward of K can estimate more precise state-action value

than K = 1 (i.e. state-action value estimation and Monte

Carlo trajectory use different strategies in K > 1) and thus

larger n will have larger absolute value of the mean of re-

formulated advantage with lower variance.

In max-probability rollout, we sample only one

continuations of the sequence {st, at} to obtain

{ât+1, ât+2, ..., âT }, which are tokens of the largest

probabilities at every time step. Then we have

Q̂
π(st, at) = R (a1:t; ât+1:T ) (15)

where R (a1:t; ât+1:T ) means the reward of the max-

probability rollout sequence after {st, at} under the infer-

ence algorithm. Interestingly, SCST [22] is equivalent to T -

step reformulated advantage function using max-probability

rollout, i.e. SCST is a variant of ours. Here, state-action

value estimation and Monte Carlo trajectory use different

strategies, where the former are from max-probability strat-

egy and the latter are from multinomial strategy. Moreover,

max-probability strategy can always obtain better sequence

than multinomial strategy. Therefore, though the reward of

max-probability rollout cannot reflect the real state-action

value, larger n can have larger absolute value of the mean

of reformulated advantage with lower variance.

It is worth noting that the rollout of preceding step can be

used both in preceding token and this token with different

effects. Here, we directly optimize CIDEr metric, i.e. R is

CIDEr score. Moreover, only when calculating the last re-

formulated advantage of each sequence that includes token

EOS, we use CIDEr with EOS as a token. Otherwise, we

use CIDEr without EOS as a token. It is because EOS is not

a normal token of a sentence like other words but a special

token indicating the ending of the sentence, and it is ignored

in the standard calculation of evaluation metric scores.

4. Experiments

4.1. Dataset

We evaluate our method on the MSCOCO dataset [16].

For fair comparisons, we use the widely used splits from

[11]. The training set contains 113, 287 images with 5 cap-

tions for each image and 5K images for validation and 5K
images for offline testing. We follow the standard practice

to preprocess all captions, including converting all captions

to lower case, tokenizing on white space, truncating cap-

tions longer than 16 words, and replacing words that do not

occur at least 5 times with UNK token resulting in 9487
words in the dictionary. To evaluate generated caption qual-

ity, we use the standard metrics, namely BLEU 1-2-3-4,

ROUGE, METEOR, CIDEr, SPICE. We extract image fea-

tures using Resnet-101 [9] without finetune.

4.2. Implementation Details

The embedding dimensions of the LSTM hidden, image,

word and attention are all fixed to 512 for all the models.

We pretrain all the models under XENT loss for 30 epochs

using ADAM [12] optimizer with default settings and fixed

learning rate 4 × 10−4. During training under XENT loss,

our batch size is set to 80. We then run RL training with

a fixed learning rate 5 × 10−5. In RL training, we use the

models trained under XENT loss as the pretrained model in

order to reduce the search space, and the batch size is set to

32. In the whole training process, we use fixed dropout rate

0.5 to prevent the models from overfitting.
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4.3. Experiment Configuration

Here are the configurations of the basic model and sev-

eral variants of our models. This series of experiments are

designed to explore the effects of different n-step, different

combinations of n and K Monte Carlo rollouts versus max-

probability rollout. Besides, we re-implement two state-of-

the-art reinforcement learning-based model SCST [22] and

PG-CIDEr [17], and all the hyperparameters are the same

as those of our proposed models for fair comparison.

(1) XENT is the basic model trained with cross entropy

loss, which is then used as the pretrained model of all rein-

forcement learning-based models.

(2) For max-probabilty rollout, we conduct n-step-

maxpro (n = 1, 2, 4) that are trained with n-step refor-

mulated advantage throughout the whole training time. We

also conduct models trained with different n-step succes-

sively, e.g. 1-2-4-T -step-maxpro, T -4-2-1-step-maxpro, 1-

2-2-step-maxpro.

(3) For K Monte Carlo rollouts, we conduct 1-step-

sample that is trained with 1-step reformulated advantage

using K Monte Carlo rollout to estimate the state-action

value function. We also conduct 1-2-2-step-sample.

(4) SCST [22] (i.e. T -step-maxpro) uses sequence level

advantage for every token in a sampled sequence. Here, we

compare self-critical per-token advantage with self-critical

sequence level advantage.

(5) PG-CIDEr [17] uses K Monte Carlo rollouts with a

parametrized estimator. Here, we compare self-critical per-

token advantage with parametrized per-token advantage.

4.4. Quantitative Analysis

Performance of the Karpathy test split. In Table 1, we

report the performance of our models, SCST [22] and PG-

CIDEr [17] on the Karpathy test split, and all the mod-

els are single model. In general, we can see that our

models have the best performance on all metrics. Com-

paring our basic model 1-step-maxpro and 1-step-sample

with XENT, we obtain a significant improvement on CIDEr

score over XENT at a great margin from 102.1% to 115.1%
and 115.4% of 1-step-maxpro and 1-step-sample respec-

tively, since our basic models are reinforcement learning-

based models and can address the exposure bias and di-

rectly optimize the evaluation metric. In particular, the 1-

step-sample outperform 1-step-maxpro in terms of almost

all metrics, and we can conclude that the average reward of

K Monte Carlo rollouts can estimate the more precise state-

action value than max-probability rollout, which leads to

better performance. However, 1-step-sample need to sam-

ple K rollouts with a greater computation cost.

Regarding max-probability rollout, we compare different

n-step-maxpro in Table 1. We can see that intermediate set-

tings n = 2, 4 attain better overall scores than two extremes

1 and T (SCST [22]). Better performance of intermediate

settings originates from the fact that they increase the ab-

solute value of the mean of reformulated advantage while

lowering variance in most time steps compared to n = 1,

which are quantitatively shown in Fig. 3(a) & 3(b). Since

rollout-based methods estimate a rough state-action value,

when n = 1 reformulated advantage is small with large

variance and it may turn out to be wrong to encourage or

suppress a token in this strict greedy strategy. As n in-

creases, the dilemma will be eased but gradually loses per-

token advantage until a sequence level advantage of n = T .

This implies intermediate n which balances the approxima-

tion of per-token advantage and the improvement of the ab-

solute value of the mean of reformulated advantage, is al-

ways better in max-probability rollout. Moreover, differ-

ent n or combining different n has different effects on bal-

ancing these two conflicts, e.g. the performance of n = 2
is better than that of n = 4 and close to that of 1-2-2,

and 1-2-4-T and T -4-2-1 are both inferior to 1-2-2. We

also show the performance curves of the Karpathy valida-

tion split during training illustrated in Fig. 2. In Fig. 2(a)

& 2(b), our models have an overwhelming advantage over

SCST [22] throughout the whole training process, which

demonstrates that self-critical per-token advantage is better

than self-critical sequence level advantage.

Regarding K Monte Carlo rollouts, 1-step-sample and

1-2-2-step-sample are superior to PG-CIDEr [17], which

demonstrates that self-critical per-token advantage is bet-

ter than parametrized per-token advantage in Table 1 and

Fig. 2(c) & 2(d).

Comparing different effects of n-step towards max-

probability rollout and K Monte Carlo rollouts, we find that

large n can increase the absolute value of the mean of refor-

mulated advantage while lowering the variance using these

two kinds of rollouts in Fig. 3. However, 1-2-2-step-maxpro

is superior to 1-step-maxpro and 1-2-2-step-sample is close

to 1-step-sample in Table 1. Therefore, n-step (n = 2) is

more effective in max-probability rollout than in K Monte

Carlo rollouts. It is possible because degrees of change in

the absolute value of the mean and the variance of refor-

mulated advantage across different n are relatively small in

K Monte Carlo rollouts and thus possibly cannot offset the

lose of per-token advantage, while those are relatively large

in max-probability rollout and large n (e.g. n = 2) can

balance better these two conflicts as illustrated in Fig. 3.

Performance on the official MSCOCO testing server. Ta-

ble 2 shows the result of our single models and 4 ensembled

model using beam search with beam size set to 3 on the of-

ficial MSCOCO evaluation server, and all other results are

based on single model. Our single models and ensembled

models outperform all of them in terms of most metrics,

even the ones which use complex attention mechanisms

[18, 27], and other reinforcement learning-based models

which all introduce parameterized estimator [17,21,29] and
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

XENT 74.1 57.4 42.8 31.7 25.8 54.1 102.1 19.2

PG-CIDER [17] 77.44 60.66 45.85 34.32 26.35 55.61 113.9 19.25

SCST [22](T -step-maxpro) 76.83 60.65 46.05 34.61 26.65 56.03 112.7 19.99

1-step-sample 77.49 61.19 46.64 35.08 26.88 56.11 115.4 20.05

1-2-2-step-sample 77.41 61.10 46.46 34.88 26.88 56.10 114.9 20.23

1-step-maxpro 77.24 60.90 46.13 34.46 26.87 56.11 115.1 20.26

2-step-maxpro 77.82 61.30 46.45 34.80 26.95 56.29 114.6 20.35

4-step-maxpro 77.67 61.01 46.30 34.78 26.91 56.05 114.5 20.20

1-2-4-T -step-maxpro 77.45 61.02 46.25 34.59 26.89 56.26 114.8 20.38

T -4-2-1-step-maxpro 77.30 60.77 46.07 34.48 26.74 56.02 114.0 20.16

1-2-2-step-maxpro 77.93 61.54 46.75 34.96 26.92 56.27 115.2 20.42

Table 1. Performance of our proposed models versus state-of-the-art models on the test portion of the Karpathy splits using greedy search.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Google NIC [24] 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6

Hard-Attention [26] 70.5 88.1 52.8 77.9 38.3 65.8 27.7 53.7 24.1 32.2 51.6 65.4 86.5 86.3

MSRCap [7] 71.5 90.7 54.3 81.9 40.7 71.0 30.8 60.1 24.8 33.9 52.6 68.0 93.1 93.7

mRNN [19] 71.6 89.0 54.5 79.8 40.4 68.7 29.9 57.5 24.2 32.5 52.1 66.6 91.7 93.5

ATT [27] 73.1 90.0 56.5 81.5 42.4 70.9 31.6 59.9 25.0 33.5 53.5 68.2 94.3 95.8

Adaptive [18] 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9

MIXER [21] 74.7 - 57.9 - 43.1 - 31.7 - 25.8 - 54.5 - 99.1 -

PG-SPIDEr [17] 75.1 91.6 59.1 84.2 44.5 73.8 33.1 62.4 25.5 33.9 55.1 69.4 104.2 107.1

AC [29] 77.8 92.9 61.2 85.5 45.9 74.5 33.7 62.5 26.4 33.4 55.4 69.1 110.2 112.1

SCST-Att2in(Ens. 4) [22] - - - - - - 34.4 - 26.8 - 55.9 - 112.3 -

1-step-maxpro 77.1 92.5 60.6 85.1 45.8 74.9 34.1 63.5 26.6 35.2 55.6 70.0 111.1 114.0

1-step-sample 77.3 92.5 60.9 85.4 46.2 75.2 34.5 64.0 26.6 35.2 55.6 70.2 111.6 114.5

1-2-2-step-maxpro 77.4 92.9 60.9 85.6 46.0 75.2 34.3 63.7 26.7 35.2 55.8 70.0 111.3 113.5

1-2-2-step-maxpro(Ens. 4) 77.6 93.1 61.3 86.1 46.5 76.0 34.8 64.6 26.9 35.4 56.1 70.4 112.6 115.3

Table 2. Leaderboard of published image captioning models on the official MSCOCO evaluation server.

sequence level advantage [22].

4.5. Qualitative Analysis

Fig. 4 shows some qualitative results of 1-step-maxpro

against Ground Truth and the model trained with XENT

loss. Each image has three captions from these sources

listed below. In general, the captions predicted by 1-step-

maxpro are better compared with the model trained with

XENT loss. In Fig. 4(a), we can see that when the image

content is common in the dataset and not too complex to

describe, XENT and 1-step-maxpro can predict correct cap-

tions. Since the reinforcement learning-based model can

avoid accumulating errors during generating the caption,

the captions in Fig. 4(b)-4(e) generated by 1-step-maxpro

can describe more important objects and capture their re-

lationships with more distinctive information of the image,

while those generated by XENT are less descriptive or in-

correct to some degree. When a variety of human activi-

ties that appear rarely in the dataset or different activities

with the same objects that are difficult to distinguish by the

model, the models easily have the incorrect prediction. For

example, in Fig. 4(f), 1-step-maxpro and XENT both pre-

dict wrong captions that the player in the base is throwing

the ball, who in fact is catching the ball with a glove.

5. Conclusion

We reformulate advantage function to estimate per-token

advantage without using parametrized estimator. More-

over, n-step reformulated advantage is proposed to increase

the absolute value of the mean of reformulated advantage

while lowering variance. Our methods outperform state-of-

the-art methods that use the sequence level advantage and

parametrized estimator on MSCOCO benchmark.
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(a) CIDEr (b) METEOR (c) CIDEr (d) METEOR

Figure 2. (a)(b): Performance of SCST [22], 1-step-maxpro and 1-2-2-step-maxpro; (c)(d): Performance of PG-CIDEr [17], 1-step-sample

and 1-2-2-step-sample. The horizotal axes are every 2K training steps and the vertical axes are corresponding metrics on validation set.

(a) max-probability-mean (b) max-probability-variance (c) K-Monte-Carlo-mean (d) K-Monte-Carlo-variance

Figure 3. Mean and variance of those n-step reformulated advantage in max-probability rollout (a)(b) and K Monte Carlo rollouts (c)(d),

where n = {1, 2, 4, T}. We do rollout 100 times for each state-action pair after pretraining using cross entropy loss, calculate the mean

and variance of reformulated advantage, and finally average all absolute value of the mean and variance of all training data in sequence

time step order, where time step t = {1, 2, ..., 16} (horizotal axis).

a woman and a kid are standing on skis in the snow.

a woman and a child on skis in the snow.

a woman and a child standing on skis in the snow.

(a)

a box of donuts of different colors and varieties.

a box of donuts and a variety of donuts.

a box of donuts sitting on top of a table.

(b)

a wide variety of vases and chandelier in a window display.

a glass case with many different types of glass.

a display case with a bunch of vases on it.

(c)

many cars and motorcycles are parked in a parking lot.

a motorcycle parked in a parking lot next to a parking lot.

a motorcycle parked in a parking lot with a group of cars.

(d)

a helicopter is flying upwards in the sky.

a black and white photo of a black and white photo.

a black and white photo of a helicopter flying in the sky.

(e)

a man catching a baseball as another slides into the base

a baseball player is throwing a baseball

a baseball player throwing a ball on a field

(f)

Figure 4. Qualitative results of our model compared with Ground Truth and the model trained under XENT loss. Captions in black (first

line), red(second line) and blue (third line) are ground truth captions, and those predicted by XENT and 1-step-maxpro respectively.

6307



References

[1] P. Anderson, B. Fernando, M. Johnson, and S. Gould. Spice:

Semantic propositional image caption evaluation. In Eu-

ropean Conference on Computer Vision, pages 382–398.

Springer, 2016.

[2] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson,

S. Gould, and L. Zhang. Bottom-up and top-down at-

tention for image captioning and vqa. arXiv preprint

arXiv:1707.07998, 2017.

[3] S. Banerjee and A. Lavie. Meteor: An automatic metric for

mt evaluation with improved correlation with human judg-

ments. In Proceedings of the acl workshop on intrinsic and

extrinsic evaluation measures for machine translation and/or

summarization, pages 65–72, 2005.

[4] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled

sampling for sequence prediction with recurrent neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1171–1179, 2015.

[5] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and

T.-S. Chua. Sca-cnn: Spatial and channel-wise attention

in convolutional networks for image captioning. In 2017

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 6298–6306. IEEE, 2017.

[6] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau,

F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase

representations using rnn encoder-decoder for statistical ma-

chine translation. Computer Science, 2014.

[7] H. Fang, S. Gupta, F. Iandola, R. K. Srivastava, L. Deng,

P. Dollár, J. Gao, X. He, M. Mitchell, J. C. Platt, et al. From

captions to visual concepts and back. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1473–1482, 2015.

[8] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young,

C. Rashtchian, J. Hockenmaier, and D. Forsyth. Every

picture tells a story: Generating sentences from images.

In European conference on computer vision, pages 15–29.

Springer, 2010.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[10] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural Computation, 9(8):1735–1780, 1997.

[11] A. Karpathy and F. F. Li. Deep visual-semantic alignments

for generating image descriptions. In Computer Vision and

Pattern Recognition, pages 3128–3137, 2015.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[13] G. Kulkarni, V. Premraj, V. Ordonez, S. Dhar, S. Li, Y. Choi,

A. C. Berg, and T. L. Berg. Babytalk: Understanding and

generating simple image descriptions. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 35(12):2891–

2903, 2013.

[14] A. M. Lamb, A. G. A. P. GOYAL, Y. Zhang, S. Zhang, A. C.

Courville, and Y. Bengio. Professor forcing: A new algo-

rithm for training recurrent networks. In Advances In Neural

Information Processing Systems, pages 4601–4609, 2016.

[15] C.-Y. Lin. Rouge: A package for automatic evaluation of

summaries. Text Summarization Branches Out, 2004.

[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on computer

vision, pages 740–755. Springer, 2014.

[17] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy. Im-

proved image captioning via policy gradient optimization of

spider. In Proc. IEEE Int. Conf. Comp. Vis, volume 3, page 3,

2017.

[18] J. Lu, C. Xiong, D. Parikh, and R. Socher. Knowing when

to look: Adaptive attention via a visual sentinel for image

captioning. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), volume 6,

page 2, 2017.

[19] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille.

Deep captioning with multimodal recurrent neural networks

(m-rnn). arXiv preprint arXiv:1412.6632, 2014.

[20] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a

method for automatic evaluation of machine translation. In

Proceedings of the 40th annual meeting on association for

computational linguistics, pages 311–318. Association for

Computational Linguistics, 2002.

[21] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence

level training with recurrent neural networks. arXiv preprint

arXiv:1511.06732, 2015.

[22] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel.

Self-critical sequence training for image captioning. In

CVPR, volume 1, page 3, 2017.

[23] R. Vedantam, C. Lawrence Zitnick, and D. Parikh. Cider:

Consensus-based image description evaluation. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 4566–4575, 2015.

[24] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and

tell: A neural image caption generator. In Computer Vision

and Pattern Recognition, pages 3156–3164, 2015.

[25] R. J. Williams. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. Machine

learning, 8(3-4):229–256, 1992.

[26] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudi-

nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural

image caption generation with visual attention. In Interna-

tional conference on machine learning, pages 2048–2057,

2015.

[27] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo. Image caption-

ing with semantic attention. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

4651–4659, 2016.

[28] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence

generative adversarial nets with policy gradient. In AAAI,

pages 2852–2858, 2017.

[29] L. Zhang, F. Sung, F. Liu, T. Xiang, S. Gong, Y. Yang, and

T. M. Hospedales. Actor-critic sequence training for image

captioning. arXiv preprint arXiv:1706.09601, 2017.

6308


