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Abstract

It holds great implications for practical applications

to enable centimeter-accuracy positioning for mobile and

wearable sensor systems. In this paper, we propose a

novel, high-precision, efficient visual-inertial (VI)-SLAM

algorithm, termed Schmidt-EKF VI-SLAM (SEVIS), which

optimally fuses IMU measurements and monocular images

in a tightly-coupled manner to provide 3D motion tracking

with bounded error. In particular, we adapt the Schmidt

Kalman filter formulation to selectively include informative

features in the state vector while treating them as nuisance

parameters (or Schmidt states) once they become matured.

This change in modeling allows for significant computa-

tional savings by no longer needing to constantly update the

Schmidt states (or their covariance), while still allowing the

EKF to correctly account for their cross-correlations with

the active states. As a result, we achieve linear computa-

tional complexity in terms of map size, instead of quadratic

as in the standard SLAM systems. In order to fully exploit

the map information to bound navigation drifts, we advo-

cate efficient keyframe-aided 2D-to-2D feature matching to

find reliable correspondences between current 2D visual

measurements and 3D map features. The proposed SEVIS is

extensively validated in both simulations and experiments.

1. Introduction

Enabling centimeter-accuracy positioning for mobile

and wearable devices such as smart phones and micro air

vehicles (MAVs), holds potentially huge implications for

practical applications. One of the most promising meth-

ods providing precision navigation in 3D is through the fu-

sion of visual and inertial sensor measurements (i.e., visual-

inertial navigation systems or VINS) [30, 13, 22, 21, 17,

15]. This localization solution has the advantages of being

both cheap and ubiquitous, and has the potential to provide

position and orientation (pose) estimates which are on-par

in terms of accuracy with more expensive sensors such as

LiDAR. To date, various algorithms are available for VINS

problems including visual-inertial (VI)-SLAM [19, 45] and

visual-inertial odometry (VIO) [30, 29, 22], such as the ex-

tended Kalman filter (EKF) [30, 20, 14, 22, 17, 16, 50, 37],

unscented Kalman filter (UKF) [10, 4], and batch or sliding-

window optimization methods [46, 18, 21, 33, 52, 45, 40],

among which the EKF-based approaches remain arguably

the most popular for resource constrained devices because

of their efficiency. While current approaches can perform

well over a short period of time in a small-scale environ-

ment (e.g., see [13, 22, 15]), they are not robust and accurate

enough for long-term, large-scale deployments in challeng-

ing environments, due to their limited available resources

of sensing, memory and computation, which, if not prop-

erly addressed, often result in short mission duration or in-

tractable real-time estimator performance.

In this paper, we will primarily focus on EKF-based VI-

SLAM rather than VIO. VI-SLAM has the advantage of

building a map of the surrounding environment, which en-

ables “loop closing” to bound long-term navigation drift.

VIO systems do not build a map and therefore cannot

leverage information from prior observations to help im-

prove estimator performance. However, one of the largest

downsides of SLAM is that its computational complexity

grows quadratically with the number of landmarks in the

map, which commonly makes it computationally intractable

without simplifying assumptions to allow for them to run on

resource constrained sensor platforms such as mobile de-

vices. To address this complexity issue, we leverage the

computationally-efficient multi-state constraint Kalman fil-

ter (MSCKF) [30] and selectively keep a number of features

(say n) in the state vector as a map of the environment, en-

abling the system to use them for a long period of time and

thus allowing for (implicit) loop closures to bound drifts.

This, however, would still exhibit O(n2) computational

complexity as in the standard EKF-based SLAM. By ob-

serving that features’ estimates do not have significant up-

dates if they approach their steady state (i.e., becoming ma-

tured/converged), we could gain substantial computational

savings by avoiding performing EKF updates for those ma-

tured map features while still taking into account their un-

certainty. To this end, we adapt the Schmidt Kalman filter

(SKF) [44] and treat map features as nuisance parameters
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which will no longer be updated but whose covariance and

cross-correlations to other states are still utilized in the EKF

update. As a result, this renders only O(n) computational

complexity, making our proposed Schmidt-EKF Visual-

Inertial SLAM (SEVIS) significantly more amenable to

running on resource-constrained sensor platforms.

In particular, the main contributions of the paper include:

• We design a high-precision, efficient Schmidt-EKF

based VI-SLAM (i.e., SEVIS) algorithm which lever-

ages the Schmidt-KF formulation to allow for concur-

rent estimation of an environmental map used for long-

term loop closures to bound navigation drifts with lin-

ear computational complexity.

• We propose a keyframe-aided 2D-to-2D matching

scheme for the challenging data association problem of

matching 2D visual measurements to 3D map features,

without performing 3D-to-2D matching (which may

not be applicable to sparse 3D environmental maps).

This 2D-to-2D matching is not effected by estimation

performance, allowing for long-term loop closures and

recovery from extreme drifts.

• We validate the proposed SEVIS algorithm extensively

in both Monte-Carlo simulations and real-world ex-

periments, showing the applicability and performance

gains offered by our system. The experimental study

of computation requirements further shows that the

proposed SEVIS remains real-time while building and

maintaining a 3D feature-based map.

2. Related Work

While SLAM estimators – by jointly estimating the

location of the sensor platform and the features in the

surrounding environment – are able to easily incorporate

loop closure constraints to bound localization errors and

have attracted much research attention in the past three

decades [8, 1, 6, 3], there are also significant research ef-

forts devoted to open-loop VIO systems (e.g., [30, 13, 14,

22, 17, 50, 37, 49, 53, 5, 2, 15, 40]). For example, a hy-

brid MSCKF/SLAM estimator was developed for VIO [23],

which retains features that can be continuously tracked be-

yond the sliding window in the state as SLAM features

while removing them when they get lost.

It is challenging to achieve accurate localization by per-

forming large-scale VI-SLAM due to the inability to remain

computationally efficient without simplifying assumptions

such as treating keyframe poses and/or map features to be

perfect (i.e., zero uncertainty). Many methods use feature

observations from different keyframes to limit drift over

the trajectory (e.g., [34, 21]), and with most leveraging a

two-thread architecture that optimizes a small window of

local keyframes and features, while a background thread

solves a long-term sparse pose graph containing loop clo-

sure constraints [11, 32, 24, 40, 39]. For example, VINS-

Mono [40, 39] uses loop closure constraints in both the lo-

cal sliding window and in the global batch optimization.

During the local optimization, feature observations from

keyframes provide implicit loop closure constraints, while

the problem size remains small by assuming the keyframe

poses are perfect (thus removing them from optimization),

while their global batch process optimizes a relative pose

graph. In [31] a dual-layer estimator uses the MSCKF to

perform real-time motion tracking and triggers the global

bundle adjustment (BA) on loop closure detection. This

allows for the relinearization and inclusion of loop clo-

sure constraints in a consistent manner, while requiring

substantial additional overhead time where the filter waits

for the BA to finish. A large-scale map-based VINS [25]

assumes a compressed prior map containing feature posi-

tions and their uncertainty and uses matches to features in

the prior map to constrain the localization globally. The

recent Cholesky-Schmidt-KF [9] however explicitly con-

siders the uncertainty of the prior map, by employing the

sparse Cholesky factor of the map’s information matrix and

further relaxing it by reducing the map size with more sub-

maps for efficiency. In contrast, in this work, we formulate

a single-threaded Schimdt-EKF for VI-SLAM, allowing for

full probabilistic fusion of measurements without sacrific-

ing real-time performance and permitting the construction

and leverage of an environmental map to bound long-term

navigation drift indefinitely.

3. Visual-Inertial SLAM

The process of VI-SLAM optimally fuses camera images

and IMU (gyroscope and accelerometer) measurements to

provide 6DOF pose estimates of the sensor platform as

well as reconstruct 3D positions of environmental features

(map). In this section, we briefly describe VI-SLAM within

the EKF framework, which serves as the basis for our pro-

posed SEVIS algorithm.

The state vector of VI-SLAM contains the IMU naviga-

tion state xI and a sliding window of cloned past IMU (or

camera) poses xC as in the MSCKF [30], as well as the map

features’ positions xS expressed in the global frame:1

xk =
[
x⊤
I x⊤

C x⊤
S

]⊤
=:

[
x⊤
A x⊤

S

]⊤
(1)

xI =
[
Ik
G q̄⊤ b⊤

ωk

Gv⊤
Ik

b⊤
ak

Gp⊤
Ik

]⊤
(2)

xC =
[
Ik−1

G q̄⊤ Gp⊤
Ik−1

· · ·
Ik−m

G q̄⊤ Gp⊤
Ik−m

]⊤
(3)

xS =
[
Gp⊤

f1
· · · Gp⊤

fn

]⊤
(4)

1Throughout this paper the subscript ℓ|j refers to the estimate of a

quantity at time-step ℓ, after all measurements up to time-step j have been

processed. x̂ is used to denote the estimate of a random variable x, while

x̃ = x− x̂ is the error in this estimate. In×m and 0n×m are the n×m

identity and zero matrices, respectively. Finally, the left superscript de-

notes the frame of reference the vector is expressed with respect to.

12106



where Ik
G q̄ is the unit quaternion parameterizing the rotation

C(IkG q̄) = Ik
G C from the global frame of reference {G} to

the IMU local frame {Ik} at time k [47], bω and ba are the

gyroscope and accelerometer biases, and GvIk and GpIk

are the velocity and position of the IMU expressed in the

global frame, respectively. The clone state xC contains m

historical IMU poses in a sliding window, while the map

state xS has n features. With the state decomposition (1),

the corresponding covariance matrix can be partitioned as:

Pk =

[
PAAk

PASk

PSAk
PSSk

]
(5)

3.1. IMU Propagation

The inertial state xI is propagated forward using incom-

ing IMU measurements of linear accelerations (am) and an-

gular velocities (ωm) based on the following generic non-

linear IMU kinematics [7]:

xk+1 = f(xk,amk
− nak

,ωmk
− nωk

) (6)

where na and nω are the zero-mean white Gaussian noise of

the IMU measurements. We linearize this nonlinear model

at the current estimate, and then propagate the state covari-

ance matrix forward in time:

Pk|k−1 =

[
Φk−1PAAk−1|k−1

Φ⊤
k−1 Φk−1PASk−1|k−1

PSAk−1|k−1
Φ⊤

k−1 PSSk−1|k−1

]
+

[
Qk−1 0

0 0

]

(7)

where Φk−1 and Qk−1 are respectively the system Jacobian

and discrete noise covariance matrices for the active state

[30]. Since the repeated computation of the above covari-

ance propagation can become computationally intractable

as the size of the covariance or rate of the IMU (e.g., >

200Hz) grows, we instead compound the state transition

matrix and noise covariance as follows:

Φ(i+ 1) = Φk−1Φ(i) (8)

Q(i+ 1) = Φk−1Q(i)Φ⊤
k−1 +Qk−1 (9)

with the initial conditions of Φ(i = 0) = I and Q(i = 0) =
0. After compounding Φ(i+ 1) and Q(i+ 1), we directly

apply them to propagate Pk−1|k−1 based on (7).

3.2. Camera Measurement Update

Assuming a calibrated perspective camera, the measure-

ment of a corner feature at time-step k is the perspective

projection of the 3D point, Ckpfi , expressed in the current

camera frame {Ck}, onto the image plane, i.e.,

zk =
1

zk

[
xk

yk

]
+ nfk (10)



xk

yk
zk


 = Ckpfi = C(CI q̄)C(IkG q̄)

(
Gpfi −

GpIk

)
+ CpI (11)

where nfk is the zero-mean, white Gaussian measurement

noise with covariance Rk. In (11), {CI q̄,
CpI} is the extrin-

sic rotation and translation between the camera and IMU.

This transformation can be obtained, e.g., by performing

camera-IMU extrinsic calibration offline [28]. For the use

of EKF, linearization of (10) yields the following residual:

rfk = Hkx̃k|k−1 + nfk (12)

= HIk x̃Ik|k−1
+Hfk

Gp̃fi,k|k−1
+ nfk (13)

where Hk is computed by (for simplicity assuming i = 1):

Hk =
[
HIk 03×6m Hfk 03×(3n−3)

]
= (14)

HprojC(CI q̄)
[
Hθk

03×9 Hpk
03×6m C(IkG ˆ̄q) 03×(3n−3)

]

Hproj =
1

ẑ2k

[
ẑk 0 −x̂k

0 ẑk −ŷk

]
(15)

Hθk
= ⌊C(IkG ˆ̄q)

(
Gp̂fi −

Gp̂Ik

)
×⌋ , Hpk

= −C(IkG ˆ̄q) (16)

Once the measurement Jacobian and residual are computed,

we can apply the standard EKF update equations to update

the state estimates and error covariance [26].

4. Schmidt-EKF based VI-SLAM

It is known that the EKF update of state estimates and

covariance has quadratic complexity in terms of the num-

ber of map features [38], making naive implementations of

VI-SLAM too expensive to run in real-time. Leveraging the

SKF [44], we propose a novel Schmidt-EKF for VI-SLAM

(SEVIS) algorithm which mitigates this quadratic complex-

ity. The key idea is to selectively treat map features as

nuisance parameters in the state vector [i.e., Schmidt state

xS (1)] whose mean and covariance will no longer be up-

dated, while their cross-correlations with the active state xA

are still utilized and updated.

In particular, the IMU propagation of the proposed SE-

VIS is identical to that of the standard EKF in Section 3.1.

In what follows we primarily focus on the update with

monocular images, which is at the core of our SEVIS, but

the approach is easily extendable to stereo systems. As

the camera-IMU sensor pair moves through the environ-

ment, features are tracked using descriptor-based tracking.

FAST features are first detected [41] and ORB descriptors

[43] are extracted for each. The OpenCV [36] “BruteForce-

Hamming” KNN descriptor matcher is used to find corre-

spondences, after which we perform both a ratio test be-

tween the top two returns to ensure valid matches and 8-

point RANSAC to reject any additional outliers. Once vi-

sual tracks are found, three types of tracked features are

used to efficiently update state estimates and covariance: (i)

VIO features that are opportunistic and can only be tracked

for a short period time, (ii) SLAM features that are more

stable than the above one and can be tracked beyond the

current sliding window, and (iii) map features that are the
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matured and informative SLAM features which are kept in

the Schmidt state for an indefinite period of time.

4.1. VIO Features: MSCKF Update

For those features that have lost active track in the cur-

rent window (termed VIO features), we perform the stan-

dard MSCKF update [30]. In particular, we first perform

BA to triangulate these features for computing the feature

Jacobians Hf [see (14)], and then project rk [see (13)] onto

the left nullspace of Hf (i.e., N⊤Hf = 0) to yield the

measurement residual independent of features:

N⊤rf = N⊤Hxx̃Ak|k−1
+N⊤Hf

Gp̃fi +N⊤nf (17)

⇒ r′f = H′
xx̃Ak|k−1

+ n′
f (18)

where Hx is the stacked measurement Jacobians with re-

spect to the navigation states in the current sliding window,

R′
f = N⊤RfN is the inferred noise covariance [30].

4.2. SLAM Features: EKF Update

For those features that can be reliably tracked longer than

the current sliding window, we will initialize them into the

active state and perform EKF updates as in the standard

EKF-based VI-SLAM (see Section 3.2). However, it should

be noted that SLAM features will not remain active forever,

instead they will either be moved to the Schmidt state as

nuisance parameters (see Section 4.3) or marginalized out

for computational savings as in [23].

4.3. Map Features: Schmidt­EKF Update

If we perform VIO by linearly marginalizing out fea-

tures [51] as in the MSCKF [30], the navigation errors may

grow unbounded albeit achieving efficiency; on the other

hand, if performing full VI-SLAM by continuously main-

taining features (map) in the state, the computational cost

may become prohibitive albeit gaining accuracy. In partic-

ular, two challenges arise in SLAM that must be tackled:

(i) the increase in computational complexity due to num-

ber of map features included, and (ii) the data association

of detecting whether actively tracked features match previ-

ously mapped features in the state vector. This motivates us

to design our SEVIS algorithm that builds a sparse feature-

based map of the environment which can then be leveraged

to prevent long-term drift while still preserving necessary

efficiency via the SKF.

4.3.1 Keyframe-aided 2D-to-2D Matching

To overcome the data association challenge, given 3D po-

sitions of map features already included in the state vec-

tor, one straightforward approach might be through 3D-to-

2D projection (i.e., projecting the 3D map feature onto the

current frame) to find the correspondence of current visual

fC2g
fC1g

fK1g

Figure 1: Illustration of the proposed keyframe-aided 2D-

to-2D matching for data association. Assuming a cloned

frame {C2} matches to a keyframe {K1} with all actively

tracked features, and among these positive matches, one

feature (red) corresponds to a map feature, the measure-

ments in {C2} and {C1} will be used to update the active

state by performing Schmidt-EKF update.

measurements to the mapped feature, which is often used in

the literature (e.g., [9, 25]). However, in a typical SLAM

scenario, estimating a map of 3D point features and match-

ing them to current features is often sparse; for example,

we found that it was common for a multi-floor indoor en-

vironment with up to 600 map features to only have about

10 features that can successfully project back into the active

frame. Moreover, if there is any non-negligible drift in the

state estimates (which is inevitable in practice), then pro-

jected features are likely to not correspond to the same spa-

cial area as the current image is observing, thus preventing

utilization of map information to reduce navigation errors.

For these reasons, we advocate 2D-to-2D matching for

data association with the aid of “keyframes” that observe

previous areas in the environment, due to its ability to pro-

vide high quality estimates and not be effected by estima-

tion drift. Each keyframe contains a subset of the extracted

features that correspond to map features in the state vec-

tor, and thus, if we match active feature tracks to previ-

ous keyframes we can find the correspondence between the

newly tracked features and the previously mapped features

that reside in our state.

Specifically, we first query the keyframe database to re-

trieve the closest keyframe to the current frame. To this end,

different place recognition approaches such as DBoW2 [12]

and CALC [27] can be used to find the best candidate. Af-

ter retrieval, we perform an additional geometric check by

ensuring that the fundamental matrix can be calculated be-

tween the current frame and the proposed keyframe match,

which we found provided extremely good matches to the

best keyframe in the database. After retrieving a matching

keyframe, we perform descriptor-based matching from fea-

tures in the current frame to the keyframe with all extracted

features from both frames followed by 8-point RANSAC to

reject outliers. We now have the correspondences between

the current frame feature tracks and keyframe map features.

Fig. 1 visualizes this process.
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4.3.2 Schmidt-EKF Update

To gain significant computational savings while still per-

forming SLAM and exploiting map constraints to bound

navigation errors, we adapt the SKF methodology [44] and

treat the map features as nuisance parameters by only track-

ing their cross-correlations with the active states while still

allowing for probabilistic inclusion of them during update.

In particular, we compute the gain matrix of the Schmidt-

EKF as follows:

[
KAk

KSk

]
=

[
PAAk|k−1

H⊤
Ak

+PASk|k−1
H⊤

Sk

PSAk|k−1
H⊤

Ak
+PSSk|k−1

H⊤
Sk

]
S−1
k (19)

where HA and HS are respectively the measurement Jaco-

bians with respect to the active and Schmidt states features

[see (13)], and Sk is the residual covariance given by:

Sk =
[
HAk

HSk

]
Pk|k−1

[
HAk

HSk

]⊤
+Rk (20)

To reduce the computational complexity, we do not update

the map feature nuisance parameters (Schmidt state), and

thus, as in the SKF, we set the gain corresponding to the

Schmidt state to zero, i.e., KSk
= 0. As a result, the state

estimate is updated as follows:

x̂Ak|k
= x̂Ak|k−1

+KAk
rfk , x̂Sk|k

= x̂Sk|k−1
(21)

The covariance is efficiently updated in its partitioned form:

PAAk|k
= PAAk|k−1

−KAk
(HAk

PAAk|k−1
+HSk

P⊤
ASk|k−1

) (22)

PASk|k
= PASk|k−1

−KAk
(HAk

PASk|k−1
+HSk

PSSk|k−1
) (23)

PSSk|k
= PSSk|k−1

(24)

Up to this point, we have fully utilized the current camera

measurement information to update the SEVIS state esti-

mates and covariance [see (1) and (5)]. The main steps of

the proposed SEVIS are outlined in Algorithm 1.

4.4. Computational Complexity Analysis

Here we demonstrate the computational efficiency of the

proposed SEVIS by providing detailed analysis that shows

the complexity is linear with respect to the number of map

features. This efficiency will also be demonstrated with ex-

perimental data in Section 6.

Propagation: The main computational cost of propagation

comes from the matrix multiplication of Φk−1PASk−1|k−1

[see (7)], where Φk−1 is a square matrix of dim(xA) size

and PASk−1|k−1
is a fat matrix with size of O(n). This in-

curs a total cost of O(n) because the number of map fea-

tures far exceeds the size of the active state.

Algorithm 1 Schimdt-EKF Visual-Inertial SLAM (SEVIS)

Propagation: Propagate the IMU navigation state esti-

mate x̂Ik|k−1
based on (6), the active state’s covariance

PAAk|k−1
and cross-correlation PASk|k−1

based on (7).

Update: For an incoming image,

• Perform stochastic cloning [42] of current state.

• Track features into the newest frame.

• Perform keyframe-aided 2D-to-2D matching to find

map feature correspondences:

– Query keyframe database for a keyframe visu-

ally similar to current frame.

– Match currently active features to the features

in the keyframe.

– Associate those active features with mapped

features in the keyframe.

• Perform MSCKF update for VIO features (i.e., those

that have lost their tracks) as in Section 4.1.

• Initialize new SLAM features if needed and perform

EKF update as in Section 4.2.

• Perform Schmidt-EKF update for map features as in

Section 4.3.2.

Management of Features and Keyframes:

• Active SLAM features that have lost track are

moved to the Schmidt state or marginalized out.

• Marginalize the oldest cloned pose from the sliding

window state.

• Marginalize map features if exceeding the maxi-

mum map size.

• Insert a new keyframe into database if we have many

map features in the current view.

• Remove keyframes without map features in view.

Update: After propagation, we augment the state by ap-

pending the propagated state to the active clone state xC .

This is an O(n) computation as we simply need to append

a new row and column on the active covariance PAAk
and

then a row on the Schmidt cross-correlation terms PASk

yielding an O(n) operation. SLAM feature initialization

follows the same logic and is an O(n) operation. During

update, naively, the operation allows for the computation

cost to be on order O(n2) in the case that the current frame

matches to all features in the map at the same time instance.

A close inspection of (20) reveals that if the size of HSk
is

order n, the calculation of Sk will be of O(n2). However,

this is not common in practice due to large environments

and limited viewpoints. Therefore, we limit the number of

features that can be used in one update to be far lower than

the order of n and additional features can be processed at

future instances to spread the computation over a period of

time allowing for O(n) complexity at every time step.

Management: We manage the matrices PAAk
, PASk

, and

PSSk
as separate entities and pre-allocate PSSk

to the max-
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(a) Orientation RSSE (b) Position RSSE

Figure 2: Monte-Carlo simulation averaged RSSE of pose

(position and orientation) estimates for the three considered

VIO and VI-SLAM algorithms.

imum number of allowed features to prevent overhead from

memory allocation operations. When moving a state from

the active state xAk
to the Schmidt state xSk

, special care

is taken such that this operation remains on order O(n).
In particular, we first copy the associated block column

from PAAk
onto the last column of PASk

, after which we

copy the associated block row in PASk
to the last row and

column in the pre-allocated PSSk
, thus yielding an total

cost of O(n). Marginalizing states in the active state is of

O(n) as it requires removal of a row from the PASk
ma-

trix which is achieved through copying all rows after the to-

be-removed upwards overwriting the to-be-removed entries.

During marginalization of map features from the Schmidt

state PSSk
, we overwrite the rows and columns correspond-

ing with the to-be-removed state with the last inserted map

feature, allowing for an O(n) operation.

5. Monte-Carlo Simulation Results

To validate the back-end estimation engine of the pro-

posed SEVIS, we first perform Monte-Carlo simulations

of visual-inertial SLAM with known measurement-feature

correspondences, where a monocular-visual-inertial sensor

platform is moving on a circular trajectory within a cylin-

der arena observing a series of environmental features. The

simulation parameters about the sensors and the trajectory

are listed in Table 1.

In particular, we compare three VINS algorithms to re-

veal the benefits of the proposed SEVIS: (i) The baseline

VIO approach, which consists of the MSCKF augmented

with 6 SLAM features (see [23]). These SLAM features

are explicitly marginalized out when they leave the field of

view. (ii) The baseline SLAM method, which uses the same

MSCKF window but is augmented with 90 SLAM features.

Different from the above VIO, in this case the SLAM fea-

tures are never marginalized so that they can be used for

(implicit) loop closures. (iii) The proposed SEVIS algo-

Table 1: Monte-Carlo Simulation Parameters

Parameter Value Units

IMU Angle Random Walk Coeff. 0.4 deg/
√

Hr

IMU Rate Random Walk Coeff. 0.02 deg/sec/
√

Hr

IMU Velocity Random Walk Coeff. 0.03 m/sec/
√

Hr

IMU Acceleration Random Walk Coeff. 0.25 milli-G/
√

Hr

IMU Sample Rate 100 Hz

Image Processing Rate 5 Hz

Feature Point Error 1σ 0.17 deg

Number of MSCKF Poses 15

Approximate Loop Period 32 sec

rithm, which consists of the same MSCKF window and 6

SLAM features as in the baseline VIO, while being aug-

mented with a bank of 90 map features that are modeled as

nuisance parameters. When the SLAM features leave the

field of view, they are moved into the Schmidt states, be-

coming the map features as described in Algorithm 1.

The average root sum squared error (RSSE) performance

of 50 Monte-Carlo simulation runs are shown in Fig. 2. As

expected, the baseline VIO accumulates drift in both orien-

tation and position over time while the baseline SLAM pro-

vides bounded error performance without long term drift.

It is interesting to point out that the position RSSE oscil-

lates slightly depending on the location relative to the ini-

tial loop closure. This is because that the EKF has limited

ability to correct these errors as it cannot re-linearize past

measurements unlike optimization-based approaches [48].

More importantly, it is clear that the proposed SEVIS algo-

rithm also does not accumulate long-term drift, although it

is slightly less accurate than the baseline SLAM. However,

this degradation in accuracy is a small price to pay consid-

ering that the SEVIS is of linear computational complexity

with respect to the number of map features, while the base-

line SLAM has quadratic complexity.

6. Real-World Experimental Results

We further evaluated the baseline MSCKF-based VIO

(without map features), the baseline full VI-SLAM, and the

proposed SEVIS on real-world datasets. In what follows,

we first examine the estimator accuracy and computational

overhead, after which the systems are evaluated on a chal-

lenging nighttime multi-floor dataset, showing that the pro-

posed SEVIS can robustly be extended to realistic applica-

tions.

6.1. Vicon Loops Dataset

We first validated the proposed system on the Vicon

loops dataset [21] that spans 1.2km in a single room over

a 13 minute collection period. A hand-held VI-sensor [35]

provides grayscale stereo image pairs and inertial informa-
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Figure 3: Trajectory of the baseline VIO, baseline SLAM

with map features, proposed SEVIS with Schmidt covari-

ance update, and VINS-Mono [40, 39]. Clearly the inclu-

sion of map features has limited the drift and allows for high

accuracy.

Table 2: Relative trajectory error for different segment

lengths along with the overall absolute trajectory error. Val-

ues where computed using Zhang and Scaramuzza’s open

sourced utility [54].

Segment

Length

Baseline

VIO

Baseline

SLAM
SEVIS

VINS-

Mono

123m 0.383 0.102 0.111 0.184

247m 0.645 0.099 0.108 0.238

370m 0.874 0.104 0.123 0.325

494m 1.023 0.095 0.121 0.381

618m 1.173 0.107 0.139 0.425

ATE 0.779 0.121 0.128 0.323

tion, while full 6DOF groundtruth is captured using a Vicon

motion tracking system at 200 Hz. The maximum number

of map features was set to 600 points to ensure real-time

performance over the entire trajectory with images inserted

into the query keyframe database at 0.5 Hz and a max of

5 SLAM features in the active state at a time. The results

presented show three different configurations: (i) the base-

line VIO augmented with 5 SLAM features, (ii) the base-
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Figure 4: Boxplot of the relative trajectory error statistics.

The middle box spans the first and third quartiles, while the

whiskers are the upper and lower limits. Plot best seen in

color.
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Figure 5: The wall clock execution time in seconds compar-

ing the three methods can be seen. Plot best seen in color.

line VI-SLAM with 600 SLAM/map features, and (iii) the

proposed SEVIS with 600 map features that leverages the

Schmidt formulation for computational gains.

We evaluated the proposed method using two different

error metrics: Absolute Trajectory Error (ATE) and Rel-

ative Error (RE). We point the reader to [54] for detailed

definitions of these error metrics. Alongside our baseline

and proposed methods, we additionally evaluated VINS-

Mono [40, 39] to provide a comparison to a current state-

of-the-art method that leverages loop closure information.

Shown in Table 2 and Fig. 4, the proposed SEVIS is able

to localize with high accuracy and perform on the level of

the full baseline VI-SLAM system. Looking at the RE it is

clear that the inclusion of map features prevents long-term

drift and offers a greater accuracy shown by the almost con-

stant RE as the trajectory segment length grows. The pro-

posed SEVIS provides a computationally feasible filter that

has similar accuracy as full baseline VI-SLAM with com-

petitive performance to that of VINS-Mono (although the

VINS-Mono leverages batch optimization).

The primary advantage of the proposed SEVIS algorithm

over full-covariance SLAM is a decrease in computational

complexity. The practical utility of this is evident in the

run-times of the different algorithms. As shown in Fig. 5,

we evaluated the three systems and collected timing statis-

tics of our implementation.2 The proposed SEVIS is able

2Single thread on an Intel(R) Xeon(R) E3-1505Mv6 @ 3.00GHz
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to remain real-time (20 Hz camera means we need to be

under 0.05 seconds total computation), while the full VI-

SLAM method with 600 map features, has update spikes

that reach magnitudes greater then four times the computa-

tional limit. This is due to the full covariance update being

of order O(n2). Note that there is an additional overhead in

the propagation stage as symmetry of the covariance matrix

needs to be enforced for the entire matrix instead of just the

active elements to ensure numerical stability.

6.2. Nighttime Multi­Floor Dataset

We further challenged the proposed system on a diffi-

cult indoor nighttime multi-floor dataset, which has multi-

ple challenges including low light environments, long ex-

posure times, and low contrast images with motion blur un-

suitable for proper feature extraction (see Fig. 6). If features

can be extracted, the resulting descriptor matching is poor

due to the high noise and small gradients, and as compared

to the Vicon Loops Dataset, more outliers are used during

update, causing large estimator jumps and incorrect correc-

tions. We stress that the proposed SEVIS can recover in

these scenarios due to keyframe-aided 2D-to-2D matches

which are invariant to poor estimator performance or drift

and map feature updates correct and prevent incorrect drift.

A Realsense ZR300 sensor3 was used to collect 20 min-

utes of grayscaled monocular fisheye images with inertial

readings, with the 1.5km trajectory spanning two floors.

We additionally performed online calibration of the cam-

era to IMU extrinsic to further refine the transform pro-

vided by the manufacture’s driver. A max of 700 map-

points allowed for sufficient coverage of the mapping area,

keyframes where inserted into the query database at 4Hz to

ensure sufficient coverage of all map features, and 2 SLAM

features in the active state at a time. The trajectory gen-

erated by the baseline VIO and the proposed SEVIS are

shown in Fig. 7. Clearly, the inclusion of map features

prevent long-term drift experienced by the baseline VIO

which exhibits large errors in both the yaw and z-axis di-

rection. Since no groundtruth was available for this dataset,

as a common practice, we computed the start-end error of

the trajectory which should ideally be equal to zero as the

sensor platform was returned to the starting location. The

baseline VIO had an error of 4.67m (0.31% of trajectory

distance) while the proposed SEVIS had an error of only

0.37m (0.02% of trajectory distance).

7. Conclusions and Future Work

In this paper, we have developed the high-precision, ef-

ficient SEVIS algorithm that adapts the SKF formulation

for long-term visual-inertial SLAM. In particular, the prob-

abilistic inclusion of map features within SEVIS allows for

3https://software.intel.com/en-us/realsense/zr300

Figure 6: Selected views during the night multi-floor tra-

jectory show the high noise, poor lighting conditions, and

motion blur that greatly challenge visual feature tracking.
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Figure 7: Estimated trajectories of the baseline VIO (blue)

and SEVIS (black) show the improved performance due to

inclusion of map features. The start-end positions are de-

noted with a green square and red diamond respectively.

bounded navigation drifts while retaining linear computa-

tional complexity. To achieves this, the keyframe-aided

2D-to-2D feature matching of current visual measurements

to 3D map features greatly facilitates the full utilization of

the map information. We then performed extensive Monte-

Carlo simulations and real-world experiments whose results

showed that the inclusion of map features greatly impact the

long-term accuracy while the proposed SEVIS still allows

for real-time performance without effecting estimator per-

formance. In the future, we will investigate how to refine the

quality of map features added for long-term localization and

further evaluate our system on resource-constrained mobile

sensor systems.
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