
Accelerating Convolutional Neural Networks via Activation Map Compression

Georgios Georgiadis

Samsung Semiconductor, Inc.

g.geor@samsung.com

Abstract

The deep learning revolution brought us an extensive ar-

ray of neural network architectures that achieve state-of-

the-art performance in a wide variety of Computer Vision

tasks including among others, classification, detection and

segmentation. In parallel, we have also been observing an

unprecedented demand in computational and memory re-

quirements, rendering the efficient use of neural networks

in low-powered devices virtually unattainable. Towards this

end, we propose a three-stage compression and accelera-

tion pipeline that sparsifies, quantizes and entropy encodes

activation maps of Convolutional Neural Networks. Sparsi-

fication increases the representational power of activation

maps leading to both acceleration of inference and higher

model accuracy. Inception-V3 and MobileNet-V1 can be

accelerated by as much as 1.6× with an increase in accu-

racy of 0.38% and 0.54% on the ImageNet and CIFAR-10

datasets respectively. Quantizing and entropy coding the

sparser activation maps lead to higher compression over

the baseline, reducing the memory cost of the network ex-

ecution. Inception-V3 and MobileNet-V1 activation maps,

quantized to 16 bits, are compressed by as much as 6× with

an increase in accuracy of 0.36% and 0.55% respectively.

1. Introduction

With the resurgence of Deep Neural Networks occur-

ring in 2012 [33], efforts from the research community

have led to a multitude of neural network architectures

[20, 55, 59, 60] that have repeatedly demonstrated improve-

ments in model accuracy. The price paid for this improved

performance comes in terms of an increase in computational

and memory cost as well as in higher power consumption.

For example, AlexNet [33] requires 720 million multiply-

accumulate (MAC) operations and features 60 million pa-

rameters, while VGG-16 [55] requires a staggering 15 bil-

lion MAC’s and features 138 million parameters. While the

size and number of MAC operations of these networks can

be handled with modern desktop computers (mainly due

to the advent of Graphical Processing Units (GPU)), low-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline Sparse Sparse_v2

0

2

4

6

8

10

12

14

16

18

Baseline Sparse Sparse_v2

Figure 1. Percentage of non-zero activations (above) and compres-

sion gain (below) per layer of ResNet-34. Left to right order cor-

responds to first to last layer in the network. Baseline corresponds

to the original model, while sparse and sparse_v2 correspond to

our sparsified models.

powered devices such as mobile phones and autonomous

driving vehicles do not have the resources to process in-

puts at an acceptable rate (especially when the application

demands real-time processing). Therefore, there is a great

need to develop systems and algorithms that would allow us

to run these networks under a limited resource budget.

There has been a plethora of works that attempt to meet

this need via a variety of different methods. The majority

of the approaches [18, 26, 29] attempt to approximate the

weights of a neural network in order to reduce the num-

ber of parameters (model compression) and/or the number

of MAC’s (model acceleration). For example, pruning [18]

compresses and accelerates a neural network by reducing

17085

the number of non-zero weights. Sparse tensors can be

more effectively compressed leading to model compression,

while multiplication with zero weights can be skipped lead-

ing to model acceleration.

Accelerating a model can also be achieved not only by

zero-skipping of weights but also by zero-skipping input

activation maps, a fact widely used in neural network hard-

ware accelerators [2, 17, 31, 47]. Most modern Convo-

lutional Neural Networks (CNN) use the Rectified Linear

Unit (ReLU) [11, 16, 42] as an activation function. As a

result, a large percentage of activations are zero and can be

safely skipped in multiplications without any loss. How-

ever, even though the last few activation maps are typically

very sparse, the first few often contain a large percentage

of non-zero values (see Fig. 1 for an example based on

the ResNet-34 architecture [20]). It also so happens that

the first few layers process the largest sized inputs/outputs.

Hence, a network would greatly benefit in terms of mem-

ory usage and model acceleration by effectively sparsifying

even further these activation maps.

However, unlike weights that are trainable parameters

and can be easily adapted during training, it is not obvious

how one can increase the sparsity of the activations. Hence,

the first contribution of this paper is to demonstrate how this

can be done without any drop in accuracy. In addition, and

if desired, it is also possible to use our method to trade-off

accuracy for an increase in sparsity to target a variety of

different hardware specifications.

Activation map size also plays an important role in

power consumption. In low-powered neural network hard-

ware accelerators (e.g. Intel Movidius Neural Compute

Stick1, DeepPhi DPU2 and a plethora of others) on-chip

memory is extremely limited. The accelerator is bound

to access both weights and activations from the off-chip

DRAM, which requires approximately 100× more power

than on-chip access [21], unless the input/output activation

maps and weights of the layer fit in the on-chip memory.

In such cases, activation map compression is in fact dis-

proportionately much more important than weight compres-

sion. Consider the second convolutional layer of Inception-

V3, which takes as input a 149 × 149 × 32 tensor and re-

turns one of size 147 × 147 × 32, totalling 1,401,920 val-

ues. The weight tensor is of size 32 × 32 × 3 × 3 totalling

just 9,216 values. The total of input/output activations is in

fact 150× larger in size than the number of weights. Com-

pressing activations effectively can reduce dramatically the

amount of data transferred between on-chip and off-chip

memory, decreasing in turn significantly the power con-

sumed. Thus, our second contribution is to demonstrate

an effective (lossy) compression pipeline that can lead to

great reductions in the size of activation maps, while still

1https://ai.intel.com/nervana-nnp/
2http://www.deephi.com/technology/

maintaining the claim of no drop in accuracy. Following the

footsteps of weight compression in [18], where the authors

propose a three-stage pipeline consisting of pruning, quanti-

zation and Huffman coding, we adapt this pipeline to activa-

tion compression. Our pipeline also consists of three steps:

sparsification, quantization and entropy coding. Sparsifi-

cation aims to reduce the number of non-zero activations,

quantization limits the bitwidth of values and entropy cod-

ing losslessly compresses the activations.

Finally, it is important to note that in several applications

including, but not limited to, autonomous driving, medi-

cal imaging and other high risk operations, compromises

in terms of model accuracy might not be tolerated. As a re-

sult, these applications demand networks to be compressed

losslessly. In addition, lossless compression of activation

maps can also benefit training since it can allow increasing

the batch size or the size of the input. Therefore, our fi-

nal contribution lies in the regime of lossless compression.

We present a novel entropy coding algorithm, called sparse-

exponential-Golomb, a variant of exponential-Golomb [61],

that outperforms all other tested entropy coders in com-

pressing activation maps. Our algorithm leverages on the

sparsity and other statistical properties of the maps to effec-

tively losslessly compress them. This algorithm can stand

on its own in scenarios where lossy compression is deemed

unacceptable or it can be used as the last step of our three-

stage lossy compression pipeline.

2. Related Work

There are few works that deal with activation map com-

pression. Gudovskiy et al. [13] compress activation maps

by projecting them down to binary vectors and then apply-

ing a nonlinear dimensionality reduction (NDR) technique.

However, the method modifies the network structure (which

in certain use cases might not be acceptable) and it has only

been shown to perform slightly better over simply quan-

tizing activation maps. Dong et al. [10] attempt to predict

which output activations are zero to avoid computing them,

which can reduce the number of MAC’s performed. How-

ever, their method also modifies the network structure and

in addition, it does not increase the sparsity of the activation

maps. Alwani et al. [3] reduce the memory requirement of

the network by recomputing activation maps instead of stor-

ing them, which obviously comes at a computational cost.

In [9], the authors perform stochastic activation pruning for

adversarial defense. However, due to their sampling strat-

egy, their method achieves best results when ∼100% sam-

ples are picked, yielding no change in sparsity.

In terms of lossless activation map compression, Rhu

et al. [52] examine three approaches: run-length encoding

[53], zero-value compression (ZVC) and zlib compression

[1]. The first two are hardware-friendly, but only achieve

competitive compression when sparsity is high, while zlib

7086

cannot be used in practice due to its high computational

complexity. Lossless weight compression has appeared in

the literature in the form of Huffman coding (HC) [18] and

arithmetic coding [51].

Recently, many lightweight architectures have appeared

in the literature that attempt to strike a balance between

computational complexity and model accuracy [22, 24, 54,

68]. Typical design choices include the introduction of 1×1
point-wise convolutions and depthwise-separable convolu-

tions. These networks are trained from scratch and of-

fer an alternative to state-of-the-art solutions. When such

lightweight architectures do not achieve high enough accu-

racy, it is possible to alternatively compress and accelerate

state-of-the-art networks. Pruning of weights [14, 18, 19,

34, 36, 40, 48, 63, 69] and quantization of weights and ac-

tivations [6, 7, 12, 15, 18, 23, 50, 64, 67] are the standard

compression techniques that are currently used. Other pop-

ular approaches include the modification of pre-trained net-

works by replacing the convolutional kernels with low-rank

factorizations [25, 29, 56] or grouped convolutions [26].

One could falsely consider viewing our algorithm as a

method to perform activation pruning, an analog to weight

pruning [18] or structured weight pruning [38, 39, 43, 66].

The latter prunes weights at a coarser granularity and in do-

ing so also affects the activation map sparsity. However, our

method affects sparsity dynamically, and not statically as in

all other methods, since it does not permanently remove any

activations. Instead, it encourages a smaller percentage of

activations to fire for any given input, while still allowing

the network to fully utilize its capacity, if needed.

Finally, activation map regularization has appeared in

the literature in various forms such as dropout [57], batch

normalization [27], layer normalization [4] and L2 regu-

larization [41]. In addition, increasing the sparsity of acti-

vations has been explored in sparse autoencoders [44] us-

ing Kullback-Leibler (KL) divergence and in CNN’s using

ReLU [11]. In the seminal work of Glorot et al. [11], the

authors use ReLU as an activation function to induce spar-

sity on the activation maps and briefly discuss the use of L1

regularization to enhance it. However, the utility of the reg-

ularizer is not fully explored. In this work, we expand on

this idea and apply it on CNN’s for model acceleration and

activation map compression.

3. Learning Sparser Activation Maps

A typical cost function, E0(w), employed in CNN mod-

els is given by:

E0(w) =
1

N

N
∑

n=1

cn(w) + λwr(w), (1)

where n denotes the index of the training example, N is

the mini-batch size, λw ≥ 0, w ∈ R
d denotes the network

Figure 2. Computational graph based on Eq. 3. In red we illustrate

the two gradient contributions for xl.

weights, cn(w) is the data term (usually the cross-entropy)

and r(w) is the regularization term (usually the L2 norm).

Post-activation maps of training example n and layer

l ∈ {1, . . . , L} are denoted by xl,n ∈ R
Hl×Wl×Cl , where

Hl,Wl, Cl denote the number of rows, columns and chan-

nels of xl,n. When the context allows, we write xl rather

than xl,n to reduce clutter. x0 corresponds to the input of

the neural network. Pre-activation maps are denoted by yl,n.

Note that since ReLU can be computed in-place, in practi-

cal applications, yl,n is often only an intermediate result.

Therefore, we target to compress xl rather than yl. See Fig.

2 for an explanatory illustration of these quantities.

The overwhelming majority of modern CNN architec-

tures achieve sparsity in activation maps through the usage

of ReLU as the activation function, which imposes a hard

constraint on the intrinsic structure of the maps. We propose

to aid training of neural networks by explicitly encoding

in the cost function to be minimized, our desire to achieve

sparser activation maps. We do so by placing a sparsity-

inducing prior on xl for all layers, by modifying the cost

function as follows:

E(w) = E0(w) +
1

N

N
∑

n=1

L
∑

l=0

αl‖xl,n‖1

=
1

N

N
∑

n=1

c′n(w) + λwr(w),

(2)

where αl ≥ 0 for l = 1, , L− 1, α0 = αL = 0 and c′n
is given by:

c′n(w) = cn(w) +

L
∑

l=0

αl‖xl,n‖1. (3)

In Eq. 2 we use the L1 norm to induce sparsity on xl that

acts as a proxy to the optimal, but difficult to optimize,

L0 norm via a convex relaxation. The technique has been

widely used in a variety of different applications including

among others sparse coding [45] and LASSO [62].

While it is possible to train a neural network from scratch

using the above cost function, our aim is to sparsify activa-

tion maps of existing state-of-the-art networks. Therefore,

we modify the cost function from Eq. 1 to Eq. 2 during

only the fine-tuning process of pre-trained networks. Dur-

ing fine-tuning, we backpropagate the gradients by comput-

ing the following quantities:

7087

(a) Conv2d_1a_3x3 (b) Conv2d_2b_3x3 (c) 6b_branch7x7dbl_2 (d) 7a_branch7x7x3_3 (e) 7b_branch3x3dbl_3a

Figure 3. Inception-V3 histograms of activation maps, before (above) and after (below) sparsification, in log-space from early

(Conv2d_1a_3x3, Conv2d_2b_3x3), middle (6b_branch7x7dbl_2) and late (7a_branch7x7x3_3, 7b_branch3x3dbl_3a) layers, extracted

from 1000 input images from the ImageNet (ILSVRC2012) [8] training set. Activation maps are quantized to 8 bits (256 bins). The his-

tograms show two important facts that sparse-exponential-Golomb takes advantage of: (1) Sparsity: Zero values are approximately one to

two orders of magnitude more likely than any other value and (2) Long tail: Large values have a non-trivial probability. Sparsified activation

maps not only have a higher percentage of zero values (enabling acceleration), but also have lower entropy (enabling compression).

∂c′n
∂wl

=
∂c′n
∂xl,n

·
∂xl,n

∂wl

=

[

∂c′n
∂xl+1,n

·
∂xl+1,n

∂xl,n

+
∂c′n
∂xl,n

]

·
∂xl,n

∂wl

, (4)

where wl corresponds to the weights of layer l,
∂c′n/∂xl+1,n is the gradient backpropagated from layer

l + 1, ∂xl+1,n/∂xl,n is the output gradient of layer l + 1
with respect to the input and the j-th element of ∂c′n/∂xl,n

is given by:

∂c′n

∂xj
l,n

= αl

∂‖xl,n‖1

∂xj
l,n

=











+αl, if xj
l,n > 0

−αl, if xj
l,n < 0

0, if xj
l,n = 0

, (5)

where xj
l,n corresponds to the j-th element of (vectorized)

xl,n. Fig. 2 illustrates the computational graph and the flow

of gradients for an example layer l. Note that xl can affect

c′ both through xl+1 and directly, so we need to sum up

both contributions during backpropagation.

4. A Sparse Coding Interpretation

Recently, connections between CNN’s and Convolu-

tional Sparse Coding (CSC) have been drawn [46, 58]. In a

similar manner, it is also possible to interpret our proposed

solution in Eq. 2 through the lens of sparse coding. Let

us assume that for any given layer l, there exists an opti-

mal underlying mapping ŷl that we attempt to learn. Col-

lectively {ŷl}l=1,...,L define an optimal mapping from the

input of the network to its output, while the network com-

putes {yl = fl(xl−1;wl)}l=1,...,L. We can then think of

training a neural network as an attempt to learn the opti-

mal mappings ŷl by minimizing the difference of the layer

outputs:

minimize
wl

1

N

N
∑

n=1

L
∑

l=1

‖ŷl,n − yl,n‖
2
2

subject to r(wl) ≤ C, l = 1, . . . , L.

(6)

In Eq. 6 we have also explicitly added the regularization

term r(wl). C ≥ 0 is a pre-defined constant that controls

the amount of regularization. In the following, we restrict

r(wl) to the L2 norm, r(wl) = ‖wl‖
2
2, as it is by far the

most common regularizer used and add the L1 prior on xl:

minimize
wl

1

N

N
∑

n=1

[

L
∑

l=1

‖ŷl,n − yl,n‖
2
2 +

L
∑

l=0

αl‖xl,n‖1

]

subject to ‖wl‖
2
2 ≤ C, l = 1, . . . , L.

(7)

We can re-arrange the terms in Eq. 7 (and make use of the

fact that αL = 0) as follows:

minimize
wl

1

N

N
∑

n=1

L
∑

l=1

Pl,n

subject to ‖wl‖
2
2 ≤ C, l = 1, . . . , L

(8)

where:

Pl,n = ‖ŷl,n − yl,n‖
2
2 + αl−1‖xl−1,n‖1. (9)

For mappings fl(xl−1;wl) that are linear, such as those

computed by the convolutional and fully-connected layers,

fl(xl−1;wl) can also be written as a matrix-vector multipli-

cation, by some matrix Wl, yl = Wlxl−1. Pl can then be

re-written as Pl = ‖ŷl −Wlxl−1‖
2
2 + αl−1‖xl−1‖1, which

7088

can be interpreted as a sparse coding of the optimal map-

ping ŷ. Therefore, Eq. 8 amounts to computing the sparse

coding representations of the pre-activation feature maps.

5. Quantization

We quantize floating point activation maps, xl, to q bits

using linear (uniform) quantization:

xquant

l =
xl − xmin

l

xmax
l − xmin

l

× (2q − 1), (10)

where xmin
l = 0 and xmax

l corresponds to the maximum

value of xl in layer l in the training set. Values above xmax
l

in the testing set are clipped. While we do not retrain our

models after quantization, it has been shown by the liter-

ature to improve model accuracy [5, 37]. We also believe

that a joint optimization scheme where we simultaneously

perform quantization and sparsification can further improve

our results and leave it for future work.

6. Entropy Coding

A number of different schemes have been devised to

store sparse matrices effectively. Compressed sparse row

(CSR) and compressed sparse column (CCS) are two rep-

resentations that strike a balance between compression and

efficiency of arithmetic operation execution. However, such

methods assume that the entire matrix is available prior to

storage, which is not necessarily true in all of our use cases.

For example, in neural network hardware accelerators data

are often streamed as they are computed and there is a great

need to compress in an on-line fashion. Hence, we shift

our focus to algorithms that can encode one element at a

time. We present a new entropy coding algorithm, sparse-

exponential-Golomb (SEG) (Alg. 1) that is based on the

effective exponential-Golomb (EG) [61, 65]. SEG lever-

ages on two facts: (1) Most activation maps are sparse and,

(2) The first-order probability distribution of the activation

maps has a long tail.

Exponential-Golomb is most commonly used in H.264

[28] and HEVC [30] video compression standards with

k = 0 as a standard parameter. k = 0 is a particularly ef-

fective parameter value when data is sparse since it assigns

a code word of length 1 for the value x = 0. However,

it also requires that the probability distribution of values

falls-off rapidly. Activation maps have a non-trivial num-

ber of large values (especially for q = 8, 12, 16), rendering

k = 0 ineffective. Fig. 3 demonstrates this fact by showing

histograms of activation maps for a sample of layers from

Inception-V3. While this issue could be solved by using

larger values of k, the consequence is that the value x = 0
is no longer encoded with a 1 bit code word (see Table 1).

SEG solves this problem by dedicating the code word ‘1’

for x = 0 and by pre-appending the code word generated

Algorithm 1 Sparse-exponential-Golomb

Input: Non-negative integer x, Order k
Output: Bitstream y
function encode_sparse_exp_Golomb (x, k)
{

If k == 0:

y = encode_exp_Golomb(x, k)
Else:

If x == 0:

Let y = ‘1’

Else:

Let y = ‘0’ + encode_exp_Golomb(x− 1, k)
Return y

}

Input: Bitstream x, Order k
Output: Non-negative integer y
function decode_sparse_exp_Golomb (x, k)
{

If k == 0:

y = decode_exp_Golomb(x, k)
Else:

If x[0] == ‘1’:

Let y = 0
Else:

Let y = 1 + decode_exp_Golomb(x[1 :], k)
Return y

}

Algorithm k = 0 k = 4 k = 8 k = 12

EG 1 5 9 13

SEG 1 1 1 1

Table 1. Code word length comparison of x = 0 between EG and

SEG for different values of k.

by EG with a ‘0’ for x > 0. Sparse-exponential golomb

can be found in Alg. 1 while exponential-Golomb [61] is

provided in the supplementary material3.

7. Experiments

In the experimental section, we investigate two important

applications: (1) acceleration of computation and (2) com-

pression of activation maps. We carry our experiments on

three different datasets, MNIST [35], CIFAR-10 [32] and

ImageNet ILSVRC2012 [8] and five different networks, a

LeNet-5 [35] variant4, MobileNet-V1 [22], Inception-V3

[60], ResNet-18 [20] and ResNet-34 [20]. These networks

cover a wide variety of network sizes, complexity in design

and efficiency in computation. For example, unlike AlexNet

[33] and VGG-16 [55] that are over-parameterized and easy

3https://georgios0.github.io/cvpr2019/
4https://github.com/pytorch/examples/

7089

Dataset Model Variant Top-1 Acc. Top-5 Acc. Acts. (%) Speed-up

MNIST LeNet-5
Baseline 98.45% - 53.73% 1.0×
Sparse 98.48% (+0.03%) - 23.16% 2.32×

CIFAR-10 MobileNet-V1
Baseline 89.17% - 47.44% 1.0×
Sparse 89.71% (+0.54%) - 29.54% 1.61×

ImageNet

Inception-V3

Baseline 75.76% 92.74% 53.78% 1.0×
Sparse 76.14% (+0.38%) 92.83% (+0.09%) 33.66% 1.60×

Sparse_v2 68.94% (-6.82%) 88.52% (-4.22%) 25.34% 2.12×

ResNet-18

Baseline 69.64% 88.99% 60.64% 1.0×
Sparse 69.85% (+0.21%) 89.27% (+0.28%) 49.51% 1.22×

Sparse_v2 68.62% (-1.02%) 88.41% (-0.58%) 34.29% 1.77×

ResNet-34

Baseline 73.26% 91.43% 57.44% 1.0×
Sparse 73.95%(+0.69%) 91.61% (+0.18%) 46.85% 1.23×

Sparse_v2 67.73% (-5.53%) 87.93% (-3.50%) 29.62% 1.94×

Table 2. Accelerating neural networks via sparsification. Numbers in brackets indicate change in accuracy. Acts. (%) shows the percentage

of non-zero activations.

Network Algorithm Top-1 Acc. Change Top-5 Acc. Change Speed-up

ResNet-18

Ours (Sparse) +0.21% +0.28% 18.4%

Ours (Sparse_v2) -1.02% -0.58% 43.5%

LCCL [10] -3.65% -2.30% 34.6%

BWN [50] -8.50% -6.20% 50.0%

XNOR [50] -18.10% -16.00% 98.3%

ResNet-34

Ours (Sparse) +0.69% +0.18% 18.4%

Ours (Sparse_v2) -5.53% -3.50% 48.4%

LCCL [10] -0.43% -0.17% 24.8%

PFEC [36] -1.06% - 24.2%

LeNet-5

Ours (Sparse) +0.03% - 56.9%

[18] (p = 70%) -0.12% - 7.3%

[18] (p = 80%) -0.57% - 14.7%

Table 3. Comparison between various state-of-the-art acceleration

methods on ResNet-18/34 and LeNet-5. For ResNet-18/34, we

emphasized in bold Sparse_v2 as a good compromise between ac-

celeration and accuracy. p = 70% indicates that the pruned net-

work has 30% non-zero weights. Speed-up calculation follows the

convention from [10], where it is reported as 1 - (non-zero activa-

tions of sparse model) / (non-zero activations of baseline).

to compress, MobileNet-V1 is an architecture that is already

designed to reduce computation and memory consumption

and as a result, it presents a challenge for achieving fur-

ther savings. Furthermore, compressing and accelerating

Inception-V3 and the ResNet architectures has tremendous

usefulness in practical applications since they are among the

state-of-the-art image classification networks.

Acceleration. In Table 2, we summarize our speed-up

results. Baselines were obtained as follows: LeNet-5 and

MobileNet-V15 were trained from scratch, while Inception-

V3 and ResNet-18/34 were obtained from the PyTorch [49]

repository6. The results reported were computed on the val-

idation sets of the corresponding datasets. The speed-up

factor is calculated by dividing the number of non-zero ac-

tivations of the baseline by the number of non-zero activa-

5https://github.com/kuangliu/pytorch-cifar/
6https://pytorch.org/docs/stable/torchvision/

(a) MobileNet-V1 (b) Inception-V3

Figure 4. Evolution of Top-1 accuracy and activation map sparsity

of MobileNet-V1 and Inception-V3 during training on the vali-

dation sets of CIFAR-10 and ILSVRC2012 respectively. The red

arrow indicates the checkpoint selected for the sparse model.

tions of the sparse models. For Inception-V3 and ResNet-

18/34, we present two sparse variants, one targeting mini-

mum reduction in accuracy (sparse) and the other targeting

high sparsity (sparse_v2).

Many of our sparse models not only have an increased

sparsity in their activation maps, but also demonstrate in-

creased accuracy. This alludes to the well-known fact that

sparse activation maps have strong representational power

[11] and the addition of the sparsity-inducing prior does not

necessarily trade-off accuracy for sparsity. When the regu-

larization parameter is carefully chosen, the data term and

the prior can work together to improve both the Top-1 ac-

curacy and the sparsity of the activation maps. Inception-

V3 can be accelerated by as much as 1.6× with an in-

crease in accuracy of 0.38%, while ResNet-18 achieves a

speed-up of 1.8× with a modest 1% accuracy drop. LeNet-

5 can be accelerated by 2.3×, MobileNet-V1 by 1.6× and

finally ResNet-34 by 1.2×, with all networks exhibiting ac-

curacy increase. The regularization parameters, αl, can be

adapted for each layer independently or set to a common

constant. We experimented with various configurations and

7090

0%

20%

40%

60%

80%

100%

Baseline Sparse

0%

20%

40%

60%

80%

100%

Baseline Sparse

0%

20%

40%

60%

80%

100%

Baseline Sparse Sparse_v2

0%

20%

40%

60%

80%

100%

Baseline Sparse Sparse_v2

0%

20%

40%

60%

80%

100%

Baseline Sparse Sparse_v2

0

2

4

6

8

10

Baseline Sparse

(a) LeNet-5

0

5

10

15

20

25

Baseline Sparse

(b) MobileNet-V1

0

10

20

30

Baseline Sparse Sparse_v2

(c) Inception-V3

0

5

10

15

Baseline Sparse Sparse_v2

(d) ResNet-18

0

5

10

15

20

Baseline Sparse Sparse_v2

(e) ResNet-34

Figure 5. Percentage of non-zero activations (above) and compression gain (below) per layer for various network architectures before and

after sparsification.

Dataset Model Algorithm t = 1, 000 t = 10, 000 t = 30, 000 t = 60, 000

MNIST LeNet-5
SEG 1.700× 1.700× 1.701× 1.701×

ZVC[52] 1.665× 1.666× 1.666× 1.667×

Dataset Model Algorithm t = 500 t = 1, 000 t = 2, 000 t = 5, 000

ImageNet Inception-V3
SEG 1.763× 1.769× 1.774× 1.779×

ZVC[52] 1.652× 1.655× 1.661× 1.667×

Table 4. Effect of evaluation set size on compression performance.

Varying the size yields minor compression gain changes, indicat-

ing that a smaller dataset can serve as a good benchmark for eval-

uation purposes.

the selected parameters are shared in the supplementary ma-

terial. To determine the selected αl, we used grid-based

hyper-parameter optimization. The number of epochs re-

quired for fine-tuning varied for each network as Fig. 4

illustrates. We chose to typically train up to 90-100 epochs

and then selected the most appropriate result. In Fig. 3,

we show the histograms of a selected number of Inception-

V3 layers before and after sparsification. Histograms of the

sparse model have a greater proportion of zero-values, lead-

ing to model acceleration as well as lower entropy, leading

to higher activation map compression.

In Fig. 4, we show how the accuracy and activation map

sparsity of MobiletNet-V1 and Inception-V3 changes dur-

ing training evaluated on the validation sets of CIFAR-10

and ILSVRC2012 respectively. On the same figure, we

show the checkpoint selected to report results in Table 2.

Selecting a checkpoint trades-off accuracy with sparsity and

which point is chosen depends on the application at hand.

In the top row of Fig. 5 we show the percentage of non-zero

activations per layer for the five networks. While some lay-

ers (e.g. last few layers in MobileNet-V1) exhibit tremen-

dous decrease in non-zero activations, most of the accelera-

tion comes by effectively sparsifying the first few layers of

a network. Finally, in Table 3 we compare our approach to

other state-of-the-art methods as well as to a weight prun-

ing algorithm [18]. In particular, note that [18] is not effec-

tive in increasing the sparsity of activations. Overall, our

approach can achieve both high acceleration (with a slight

accuracy drop) and high accuracy (with lower acceleration).

Model Variant Measurement float32 uint16 uint12 uint8

LeNet-5

(MNIST)

Baseline
Top-1 Acc. 98.45% 98.44% (-0.01%) 98.44% (-0.01%) 98.39% (-0.06%)

Compression - 3.40× (1.70×) 4.40× (1.64×) 6.32× (1.58×)

Sparse
Top-1 Acc. 98.48% (+0.03%) 98.48% (+0.03%) 98.49% (+0.04%) 98.46% (+0.01%)

Compression - 6.76× (3.38×) 8.43× (3.16×) 11.16× (2.79×)

MobiletNet-V1

(CIFAR-10)

Baseline
Top-1 Acc. 89.17% 89.18% (+0.01%) 89.15% (-0.02%) 89.16% (-0.01%)

Compression - 5.52× (2.76×) 7.09× (2.66×) 9.76× (2.44×)

Sparse
Top-1 Acc. 89.71% (+0.54%) 89.72% (+0.55%) 87.72 (+0.55%) 89.62% (+0.45%)

Compression - 5.84× (2.92×) 7.33× (2.79×) 10.24× (2.56×)

Table 5. Effect of quantization on compression on SEG. LeNet-5

is compressed by 11× and MobileNet-V1 by 10×. In brackets, we

report change in accuracy and compression gain over the float32

baseline.

Compression. We carry our compression experiments

on a subset of each network’s activation maps, since caching

activation maps of the entire training and testing sets is pro-

hibitive due to storage constraints. In Table 4 we show the

effect of testing size on the compression performance of two

algorithms, SEG and zero-value compression (ZVC) [52]

on MNIST and ImageNet. Evaluating compression yields

minor differences as a function of size. Similar observa-

tions can be made on all investigated networks and datasets.

In subsequent experiments, we use the entire testing set

of MNIST to evaluate LeNet-5, the entire testing set of

CIFAR-10 to evaluate MobileNet-V1 and 5,000 randomly

selected images from the validation set of ILSVRC2012 to

evaluate Inception-V3 and ResNet-18/34. The Top-1/Top-5

accuracy, however, is measured on the entire validation sets.

In Table 6, we summarize the compression results. Com-

pression gain is defined as the ratio of activation size be-

fore and after compression. We evaluate our method (SEG)

against exponential-Golomb (EG) [61], Huffman Coding

(HC) used in [18], zero-value compression (ZVC) [52] and

ZLIB [1]. We report the Top-1/Top-5 accuracy of the quan-

tized models at 16 bits. Parameter choice for SEG and EG is

provided in Table 7. SEG outperforms all methods in both

the baseline and sparse models validating the claim that it is

a very effective encoder for distributions with high sparsity

and long tail. SEG achieves almost 7× compression gain on

LeNet-5, almost 6× on MobileNet-V1 and Inception-V3 and

more than 4× compression gain in the ResNet architectures

while also featuring an increase in accuracy.

It is also clear that our sparsification step leads to greater

7091

Dataset Model Variant Bits Top-1 Acc. Top-5 Acc. SEG EG [61] HC [18] ZVC [52] ZLIB [1]

MNIST LeNet-5

Baseline float32 98.45% - - - - - -

Baseline
uint16

98.44% (-0.01%) - 3.40× (1.70×) 2.30× (1.15×) 2.10× (1.05×) 3.34× (1.67×) 2.42× (1.21×)

Sparse 98.48% (+0.03%) - 6.76× (3.38×) 4.54× (2.27×) 3.76× (1.88×) 6.74× (3.37×) 3.54× (1.77×)

CIFAR-10 MobileNet-V1

Baseline float32 89.17% - - - - - -

Baseline
uint16

89.18% (+0.01%) - 5.52× (2.76×) 3.70× (1.85×) 2.90× (1.45×) 5.32× (2.66×) 3.76× (1.88×)

Sparse 89.72% (+0.55%) - 5.84× (2.92×) 3.90× (1.95×) 3.00× (1.50×) 5.58× (2.79×) 3.90× (1.95×)

ImageNet

Inception-V3

Baseline float32 75.76% 92.74% - - - - -

Baseline

uint16

75.75% (-0.01%) 92.74% (+0.00%) 3.56× (1.78×) 2.42×(1.21×) 2.66× (1.33×) 3.34× (1.67×) 2.66× (1.33×)

Sparse 76.12% (+0.36%) 92.83% (+0.09%) 5.80× (2.90×) 4.10× (2.05×) 4.22× (2.11×) 5.02× (2.51×) 3.98× (1.99×)

Sparse_v2 68.96% (-6.80%) 88.54% (-4.20%) 6.86× (3.43×) 5.12× (2.56×) 5.12× (2.56×) 6.36× (3.18×) 4.90× (2.45×)

ResNet-18

Baseline float32 69.64% 88.99% - - - - -

Baseline

uint16

69.64% (+0.00%) 88.99% (+0.00%) 3.22× (1.61×) 2.32× (1.16×) 2.54× (1.27×) 3.00× (1.50×) 2.32× (1.16×)

Sparse 69.85% (+0.21%) 89.27% (+0.28%) 4.00× (2.00×) 2.70× (1.35×) 3.04× (1.52×) 3.60× (1.80×) 2.68× (1.34×)

Sparse_v2 68.62% (-1.02%) 88.41% (-0.58%) 5.54× (2.77×) 3.80× (1.90×) 4.02× (2.01×) 4.94× (2.47×) 3.54× (1.77×)

ResNet-34

Baseline float32 73.26% 91.43% - - - - -

Baseline

uint16

73.27% (+0.01%) 91.43% (+0.00%) 3.38× (1.69×) 2.38× (1.19×) 2.56× (1.28×) 3.14× (1.57×) 2.46× (1.23×)

Sparse 73.96% (+0.70%) 91.61% (+0.18%) 4.18× (2.09×) 2.84× (1.42×) 3.04× (1.52×) 3.78× (1.89×) 2.84× (1.42×)

Sparse_v2 67.74% (-5.52%) 87.90% (-3.53%) 6.26× (3.13×) 4.38× (2.19×) 4.32× (2.16×) 5.58× (2.79×) 4.02× (2.01×)

Table 6. Compressing activation maps. We report the Top-1/Top-5 accuracy, with the numbers in brackets indicating the change in accuracy.

The total compression gain is reported for various state-of-the-art algorithms (in brackets we also report the compression gain without

including gains from quantization). SEG outperforms other state-of-the-art algorithms in all models and datasets.

Dataset Model Variant SEG EG [61]

MNIST LeNet-5
Baseline k = 12 k = 9
Sparse k = 14 k = 0

CIFAR-10 MobileNet-V1
Baseline k = 13 k = 0
Sparse k = 13 k = 0

ImageNet

Inception-V3

Baseline k = 12 k = 7
Sparse k = 10 k = 0

Sparse_v2 k = 13 k = 0

ResNet-18

Baseline k = 12 k = 10
Sparse k = 12 k = 0

Sparse_v2 k = 11 k = 0

ResNet-34

Baseline k = 12 k = 9
Sparse k = 12 k = 0

Sparse_v2 k = 11 k = 0

Table 7. SEG and EG parameter values. Parameters were selected

on a separate training set composed of 1, 000 randomly selected

images from each dataset. SEG fits the data distribution better

by splitting the values into two sets: zero and non-zero. When

searching for the optimal parameter value, we fit the parameter to

the non-zero value distribution. EG fits the parameter to both sets

simultaneously resulting in a sub-optimal solution.

compression gains, as can be seen by comparing the base-

line and sparse models of each network. When compared

to the baseline, the sparse models of LeNet-5, MobileNet-

V1, Inception-V3, ResNet-18 and ResNet-34 can be com-

pressed by 2.0×, 1.1×, 1.6×, 1.2×, 1.2× respectively more

than the compressed baseline, while also featuring an in-

crease in accuracy and an accelerated computation of

2.3×, 1.6×, 1.6×, 1.2×, 1.2× respectively. Table 6 also

demonstrates that our pipeline can achieve even greater

compression gains if slight accuracy drops are acceptable.

The sparsification step induces higher sparsity and lower en-

tropy in the distribution of values, which both lead to these

additional gains (Fig. 3). While all compression algorithms

benefit from the sparsification step, SEG is the most effec-

tive in exploiting the resulting distribution of values.

In the bottom row of Fig. 5 we show the compression

gain per layer for various networks. Finally, we study the

effect of quantization on compression for SEG in Table 5.

We evaluate the baseline and sparse models of LeNet-5 and

MobileNet-V1 at q = 16, 12, 8 bits and report compres-

sion gain and accuracy. We report the accuracy change and

compression gain compared to the floating-point baseline

model. LeNet-5 can be compressed by as much as 11× with

a 0.01% accuracy gain, while MobileNet-V1 can be com-

pressed by 10× with a 0.45% accuracy gain.

8. Conclusion

We have presented a three-stage compression and accel-

eration pipeline that sparsifies, quantizes and encodes ac-

tivation maps of CNN’s. The sparsification step increases

the number of zero values leading to model acceleration

on specialized hardware, while the quantization and encod-

ing stages lead to compression by effectively utilizing the

lower entropy of the sparser activation maps. The pipeline

demonstrates an effective strategy in reducing the computa-

tional and memory requirements of modern neural network

architectures, taking a step closer to realizing the execu-

tion of state-of-the-art neural networks on low-powered de-

vices. At the same time, we have demonstrated that adding a

sparsity-inducing prior on the activation maps does not nec-

essarily come at odds with the accuracy of the model, allud-

ing to the well-known fact that sparse activation maps have

a strong representational power. Furthermore, we motivated

our proposed solution by drawing connections between our

approach and sparse coding. Finally, we believe that an op-

timization scheme in which we jointly sparsify and quantize

neural networks can lead to further improvements in accel-

eration, compression and accuracy of the models.

Acknowledgments. We would like to thank Hui Chen,

Weiran Deng and Ilia Ovsiannikov for valuable discussions.

7092

References

[1] Zlib compressed data format specification version 3.3.

https://tools.ietf.org/html/rfc1950. Ac-

cessed: 2018-05-17. 2, 7, 8

[2] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E.

Jerger, and A. Moshovos. Cnvlutin: Ineffectual-neuron-free

deep neural network computing. In 2016 ACM/IEEE 43rd

Annual International Symposium on Computer Architecture,

2016. 2

[3] M. Alwani, H. Chen, M. Ferdman, and P. Milder. Fused-

layer cnn accelerators. In IEEE/ACM International Sympo-

sium on Microarchitecture, 2016. 2

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016. 3

[5] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-

los. Deep learning with low precision by half-wave gaussian

quantization. arXiv preprint arXiv:1702.00953, 2017. 5

[6] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Training deep neural networks with low precision

multiplications. arXiv preprint arXiv:1412.7024, 2014. 3

[7] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Binaryconnect: Training deep neural networks with

binary weights during propagations. In Advances in Neural

Information Processing Systems, 2015. 3

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In IEEE Conference on Computer Vision and Pat-

tern Recognition. IEEE, 2009. 4, 5

[9] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lip-

ton, Jeremy Bernstein, Jean Kossaifi, Aran Khanna, and An-

ima Anandkumar. Stochastic activation pruning for robust

adversarial defense. arXiv preprint arXiv:1803.01442, 2018.

2

[10] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan.

More is less: A more complicated network with less infer-

ence complexity. In The IEEE International Conference on

Computer Vision, 2017. 2, 6

[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep

sparse rectifier neural networks. In International Conference

on Artificial Intelligence and Statistics, 2011. 2, 3, 6

[12] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D. Bour-

dev. Compressing deep convolutional networks using vector

quantization. arXiv preprint arXiv:1412.6115, 2014. 3

[13] D. A. Gudovskiy, A. Hodgkinson, and L. Rigazio. DNN Fea-

ture Map Compression using Learned Representation over

GF(2). arXiv preprint arXiv:1808.05285, 2018. 2

[14] Yiwen Guo, Anbang Yao, and Yurong Chen. Dy-

namic network surgery for efficient dnns. arXiv preprint

arXiv:1608.04493, 2016. 3

[15] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and

Pritish Narayanan. Deep learning with limited numerical

precision. In International Conference on Machine Learn-

ing, 2015. 3

[16] Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Ma-

howald, Rodney J Douglas, and H Sebastian Seung. Digi-

tal selection and analogue amplification coexist in a cortex-

inspired silicon circuit. Nature, 2000. 2

[17] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-

dram, Mark A. Horowitz, and William J. Dally. Eie: Effi-

cient inference engine on compressed deep neural network.

SIGARCH Computer Architecture News, 2016. 2

[18] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015. 1, 2, 3, 6, 7, 8

[19] Babak Hassibi and David G Stork. Second order derivatives

for network pruning: Optimal brain surgeo. In Advances in

Neural Information Processing Systems, 1993. 3

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016. 1, 2, 5

[21] M. Horowitz. Computing’s energy problem (and what we

can do about it). In IEEE International Solid-State Circuits

Conference Digest of Technical Papers, 2014. 2

[22] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 3, 5

[23] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Quantized neural networks:

Training neural networks with low precision weights and ac-

tivations. arXiv preprint arXiv:1609.07061, 2016. 3

[24] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf,

Song Han, William J. Dally, and Kurt Keutzer. Squeezenet:

Alexnet-level accuracy with 50x fewer parameters and <1mb

model size. arXiv preprint arXiv:1602.07360, 2016. 3

[25] Yani Ioannou, Duncan Robertson, Jamie Shotton, Roberto

Cipolla, and Antonio Criminisi. Training cnns with low-

rank filters for efficient image classification. arXiv preprint

arXiv:1705.08665, 2015. 3

[26] Yani Ioannou, Duncan P. Robertson, Roberto Cipolla, and

Antonio Criminisi. Deep roots: Improving CNN ef-

ficiency with hierarchical filter groups. arXiv preprint

arXiv:1605.06489, 2016. 1, 3

[27] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015. 3

[28] ITU-T. Itu-t recommendation h. 264: Advanced video cod-

ing for generic audiovisual services. 5

[29] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.

Speeding up convolutional neural networks with low rank

expansions. arXiv preprint arXiv:1405.3866, 2014. 1, 3

[30] JCT-VC. Itu-t recommendation h. 265 and iso. 5

[31] D. Kim, J. Ahn, and S. Yoo. Zena: Zero-aware neural net-

work accelerator. IEEE Design Test, 2018. 2

[32] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, University of Toronto, 2009.

5

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

7093

works. In Advances in Neural Information Processing Sys-

tems, 2012. 1, 5

[34] Vadim Lebedev and Victor Lempitsky. Fast convnets using

group-wise brain damage. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2016.

3

[35] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 1998. 5

[36] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. arXiv

preprint arXiv:1608.08710, 2016. 3, 6

[37] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy.

Fixed point quantization of deep convolutional networks. In

International Conference on Machine Learning, 2016. 5

[38] Christos Louizos, Karen Ullrich, and Max Welling.

Bayesian compression for deep learning. arXiv preprint

arXiv:1705.08665, 2017. 3

[39] Christos Louizos, Max Welling, and Diederik P. Kingma.

Learning sparse neural networks through l0 regularization.

arXiv preprint arXiv:1712.01312, 2017. 3

[40] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

arXiv preprint arXiv:1707.06342, 2017. 3

[41] Stephen Merity, Bryan McCann, and Richard Socher. Re-

visiting activation regularization for language rnns. arXiv

preprint arXiv:1708.01009, 2017. 3

[42] Vinod Nair and Geoffrey E Hinton. Rectified linear units im-

prove restricted boltzmann machines. In Proceedings of the

27th International Conference on Machine Learning, 2010.

2

[43] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and

Dmitry Vetrov. Structured bayesian pruning via log-normal

multiplicative noise. arXiv preprint arXiv:1705.07283,

2017. 3

[44] Andrew Ng. Cs294a lecture notes, 2011. https:

//web.stanford.edu/class/cs294a/

sparseAutoencoder.pdf. 3

[45] Bruno A Olshausen and David J Field. Sparse coding with an

overcomplete basis set: A strategy employed by v1? Vision

research, 1997. 3

[46] Vardan Papyan, Yaniv Romano, and Michael Elad. Convo-

lutional neural networks analyzed via convolutional sparse

coding. The Journal of Machine Learning Research,

18(1):2887–2938, 2017. 4

[47] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkate-

san, B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally.

Scnn: An accelerator for compressed-sparse convolutional

neural networks. In 2017 ACM/IEEE 44th Annual Interna-

tional Symposium on Computer Architecture, 2017. 2

[48] Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai

Li, Yiran Chen, and Pradeep Dubey. Faster cnns with di-

rect sparse convolutions and guided pruning. arXiv preprint

arXiv:1608.01409, 2016. 3

[49] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017. 6

[50] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In European Conference

on Computer Vision, 2016. 3, 6

[51] Brandon Reagen, Udit Gupta, Robert Adolf, Michael M.

Mitzenmacher, Alexander M. Rush, Gu-Yeon Wei, and

David Brooks. Weightless: Lossy weight encoding

for deep neural network compression. arXiv preprint

arXiv:1711.04686. 3

[52] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff

Pool, and Stephen W. Keckler. Compressing DMA engine:

Leveraging activation sparsity for training deep neural net-

works. arXiv preprint arXiv:1705.01626, 2017. 2, 7, 8

[53] AH Robinson and Colin Cherry. Results of a prototype tele-

vision bandwidth compression scheme. Proceedings of the

IEEE, 1967. 2

[54] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. Inverted residuals and

linear bottlenecks: Mobile networks for classification, de-

tection and segmentation. arXiv preprint arXiv:1801.04381,

2018. 3

[55] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1, 5

[56] A. Sironi, B. Tekin, R. Rigamonti, V. Lepetit, and P. Fua.

Learning separable filters. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2015. 3

[57] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way

to prevent neural networks from overfitting. The Journal of

Machine Learning Research, 2014. 3

[58] Jeremias Sulam, Vardan Papyan, Yaniv Romano, and

Michael Elad. Multi-layer convolutional sparse model-

ing: Pursuit and dictionary learning. arXiv preprint

arXiv:1708.08705, 2017. 4

[59] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke.

Inception-v4, inception-resnet and the impact of residual

connections on learning. arXiv preprint arXiv:1602.07261,

2016. 1

[60] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2016.

1, 5

[61] Jukka Teuhola. A compression method for clustered bit-

vectors. Information processing letters, 1978. 2, 5, 7, 8

[62] Robert Tibshirani. Regression shrinkage and selection via

the lasso. Journal of the Royal Statistical Society. Series B

(Methodological), 1996. 3

[63] Karen Ullrich, Edward Meeds, and Max Welling. Soft

weight-sharing for neural network compression. arXiv

preprint arXiv:1702.04008, 2017. 3

[64] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Im-

proving the speed of neural networks on cpus. In Pro-

ceedings Deep Learning and Unsupervised Feature Learn-

ing NIPS Workshop, 2011. 3

7094

[65] Jiangtao Wen and John D Villasenor. Reversible variable

length codes for efficient and robust image and video coding.

In Data Compression Conference, 1998. 5

[66] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, Hai

Li, Christos Louizos, Max Welling, and Diederik P. Kingma.

Learning structured sparsity in deep neural networks. arXiv

preprint arXiv:1608.03665, 2016. 3

[67] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and

Jian Cheng. Quantized convolutional neural networks for

mobile devices. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016. 3

[68] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. arXiv preprint arXiv:1707.01083,

2017. 3

[69] Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more:

Towards compact cnns. In European Conference on Com-

puter Vision, 2016. 3

7095

