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Abstract

Current state-of-the-art convolutional architectures for

object detection are manually designed. Here we aim to

learn a better architecture of feature pyramid network for

object detection. We adopt Neural Architecture Search and

discover a new feature pyramid architecture in a novel

scalable search space covering all cross-scale connections.

The discovered architecture, named NAS-FPN, consists of

a combination of top-down and bottom-up connections to

fuse features across scales. NAS-FPN, combined with vari-

ous backbone models in the RetinaNet framework, achieves

better accuracy and latency tradeoff compared to state-of-

the-art object detection models. NAS-FPN improves mobile

detection accuracy by 2 AP compared to state-of-the-art SS-

DLite with MobileNetV2 model in [32] and achieves 48.3

AP which surpasses Mask R-CNN [10] detection accuracy

with less computation time.

1. Introduction

Learning visual feature representations is a fundamental

problem in computer vision. In the past few years, great

progress has been made on designing the model architec-

ture of deep convolutional networks (ConvNets) for image

classification [12, 15, 35] and object detection [21, 22]. Un-

like image classification which predicts class probability for

an image, object detection has its own challenge to detect

and localize multiple objects across a wide range of scales

and locations. To address this issue, the pyramidal feature

representations, which represent an image with multiscale

feature layers, are commonly used by many modern object

detectors [11, 23, 26].

Feature Pyramid Network (FPN) [22] is one of the rep-

resentative model architectures to generate pyramidal fea-

ture representations for object detection. It adopts a back-

bone model, typically designed for image classification, and

builds feature pyramid by sequentially combining two ad-

jacent layers in feature hierarchy in backbone model with

top-down and lateral connections. The high-level features,

which are semantically strong but lower resolution, are up-

[10]

[23]

[32]

Figure 1: Average Precision vs. inference time per image

across accurate models (top) and fast models (bottom) on

mobile device. The green curve highlights results of NAS-

FPN combined with RetinaNet. Please refer to Figure 9 for

details.

sampled and combined with higher resolution features to

generate feature representations that are both high reso-

lution and semantically strong. Although FPN is simple

and effective, it may not be the optimal architecture de-

sign. Recently, PANet [25] shows adding an extra bottom-

up pathway on FPN features improves feature represen-

tations for lower resolution features. Many recent works

[7, 16, 17, 34, 38, 39, 40, 43, 41] propose various cross-

scale connections or operations to combine features to gen-
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erate pyramidal feature representations.

The challenge of designing feature pyramid architecture

is in its huge design space. The number of possible con-

nections to combine features from different scales grow ex-

ponentially with the number of layers. Recently, Neural

Architecture Search algorithm [44] demonstrates promising

results on efficiently discovering top-performing architec-

tures for image classification in a huge search space. To

achieve their results, Zoph et al. [45] propose a modularized

architecture that can be repeated and stacked into a scalable

architecture. Inspired by [45], we propose the search space

of scalable architecture that generates pyramidal represen-

tations. The key contribution of our work is in designing

the search space that covers all possible cross-scale connec-

tions to generate multiscale feature representations. During

the search, we aims to discover an atomic architecture that

has identical input and output feature levels and can be ap-

plied repeatedly. The modular search space makes search-

ing pyramidal architectures manageable. Another benefit

of modular pyramidal architecture is the ability for anytime

object detection (or “early exit”). Although such early exit

approach has been attempted [14], manually designing such

architecture with this constraint in mind is quite difficult.

The discovered architecture, named NAS-FPN, offers

great flexibility in building object detection architecture.

NAS-FPN works well with various backbone model, such

as MobileNet [32], ResNet [12], and AmoebaNet [29]. It

offers better tradeoff of speed and accuracy for both fast

mobile model and accurate model. Combined with Mo-

bileNetV2 backbone in RetinaNet framework, it outper-

forms state-of-the-art mobile detection model of SSDLite

with MobilenetV2 [32] by 2 AP given the same inference

time. With strong AmoebaNet-D backbone model, NAS-

FPN achieves 48.3 AP single model accuracy with single

testing scale. The detection accuracy surpasses Mask R-

CNN reported in [10] with even less inference time. A sum-

mary of our results is shown in Figure 1.

2. Related Works

2.1. Architecture for Pyramidal Representations

Feature pyramid representations are the basis of solu-

tions for many computer vision applications required mul-

tiscale processing [1]. However, using Deep ConvNets

to generate pyramidal representations by featurizing image

pyramid imposes large computation burden. To address this

issue, recent works on human pose estimation, image seg-

mentation, and object detection [8, 11, 22, 28, 31] intro-

duce cross-scale connections in ConvNets that connect in-

ternal feature layers in different scales. Such connections

effectively enhance feature representations such that they

are not only semantically strong but also contain high res-

olution information. Many works have studied how to im-

prove mutliscale feature presentations. Liu et.al [25] pro-

pose an additional bottom-up pathway based on FPN [22].

Recently, Zhao et al. [42] extends the idea to build stronger

feature pyramid representations by employing multiple U-

shape modules after a backbone model. Kong et al. [16]

first combine features at all scales and generate features at

each scale by a global attention operation on the combined

features. Despite it is an active research area, most archi-

tecture designs of cross-scale connections remain shallow

compared to the backbone model. In addition to manually

design the cross-scale connections, [5, 27] propose to learn

the connections through gating mechanism for visual count-

ing and dense label predictions.

In our work, instead of manually designing architectures

for pyramidal representations, we use a combination of scal-

able search space and Neural Architecture Search algorithm

to overcome the large search space of pyramidal architec-

tures. We constrain the search to find an architecture that

can be applied repeatedly. The architecture can therefore

be used for anytime object detection (or “early exit”). Such

early exit idea is related to [3, 37], especially in image clas-

sification [14].

2.2. Neural Architecture Search

Our work is closely related to the work on Neural Archi-

tecture Search [44, 2, 45, 29]. Most notably, Zoph et al. [45]

use a reinforcement learning with a controller RNN to de-

sign a cell (or a layer) to obtain a network, called NASNet

which achieves state-of-the-art accuracy on ImageNet. The

efficiency of the search process is further improved by [24]

to design a network called PNASNet, with similar accuracy

to NASNet. Similarly, an evolution method [29] has also

been used to design AmoebaNets that improve upon NAS-

Net and PNASNet. Since reinforcement learning and evolu-

tion controllers perform similarly well, we only experiment

with a Reinforcement Learning controller in this paper. Our

method has two major differences compared to [44]: (1)

the outputs of our method are multiscale features whereas

output of [44] is single scale features for classification; (2)

our method specifically searches cross-scale connections,

while [44] only focuses on discovering connections within

the same feature resolution. Beyond image classification,

Neural Architecture Search has also been used to improve

image segmentation networks [4]. To the best of our knowl-

edge, our work is the first to report success of applying Neu-

ral Architecture Search for pyramidal architecture in object

detection. For a broader overview of related methods for

Neural Architecture Search, please see [6].

3. Method

Our method is based on the RetinaNet framework [23]

because it is simple and efficient. The RetinaNet framework

has two main components: a backbone network (often state-
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of-the-art image classification network) and a feature pyra-

mid network (FPN). The goal of the proposed algorithm is

to discover a better FPN architecture for RetinaNet. Fig-

ure 2 shows the RetinaNet architecture.

class+box
 subnets

class+box
 subnets

class+box
 subnets

Feature

Pyramid

Network

x N

NAS-FPN

Figure 2: RetinaNet with NAS-FPN. In our proposal, fea-

ture pyramid network is to be searched by a neural architec-

ture search algorithm. The backbone model and the subnets

for class and box predictions follow the original design in

RetinaNet [23]. The architecture of FPN can be stacked N

times for better accuracy.

To discover a better FPN, we make use of the Neural Ar-

chitecture Search framework proposed by [44]. The Neural

Architecture Search trains a controller to select best model

architectures in a given search space using reinforcement

learning. The controller uses the accuracy of a child model

in the search space as the reward signal to update its param-

eters. Thus through trial and error the controller learns to

generate better architectures over time. As it has been iden-

tified by previous works [36, 44, 45], the search space plays

a crucial role in the success of architecture search.

In the next section, we design a search space for FPN to

generate feature pyramid representations. For scalability of

the FPN (i.e., so that an FPN architecture can be stacked re-

peatedly within RetinaNet), during the search, we also force

the the FPN to repeat itself N times and then concatenated

into a large architecture. We call our feature pyramid archi-

tecture NAS-FPN.

3.1. Architecture Search Space

In our search space, a feature pyramid network consists a

number of “merging cells” that combine a number of input

layers into representations for RetinaNet. In the following,

we will describe the inputs into the Feature Pyramid Net-

work, and how each merging cell is constructed.

Feature Pyramid Network. A feature pyramid network

takes multiscale feature layers as inputs and generate out-

put feature layers in the identical scales as shown in Figure

2. We follow the design by RetinaNet [23] which uses the

last layer in each group of feature layers as the inputs to the

first pyramid network. The output of the first pyramid net-

work are the input to the next pyramid network. We use as

inputs features in 5 scales {C3, C4, C5, C6, C7} with cor-

responding feature stride of {8, 16, 32, 64, 128} pixels. The

C6 and C7 are created by simply applying stride 2 and stride

4 max pooling to C5. The input features are then passed to a

pyramid network consisting of a series of merging cells (see

below) that introduce cross-scale connections. The pyramid

network then outputs augmented multiscale feature repre-

sentations {P3, P4, P5, P6, P7}. Since both inputs and out-

puts of a pyramid network are feature layers in the identical

scales, the architecture of the FPN can be stacked repeatedly

for better accuracy. In Section 4, we show controlling the

number of pyramid networks is one simple way to tradeoff

detection speed and accuracy.

Merging cell. An important observation in previous

works in object detection is that it is necessary to “merge”

features at different scales. The cross-scale connections al-

low model to combine high-level features with strong se-

mantics and low-level features with high resolution.

We propose merging cell, which is a fundamental build-

ing block of a FPN, to merge any two input feature lay-

ers into a output feature layer. In our implementation, each

merging cell takes two input feature layers (could be from

different scales), applies processing operations and then

combines them to produce one output feature layer of a de-

sired scale. A FPN consists of N different merging cells,

where N is given during search. In a merging cell, all fea-

ture layers have the same number of filters. The process of

constructing a merging cell is shown in Figure 3.

Binary
Op

3x3 
Conv

...

 feature layers

append

merging cell

1

2

4

3

Figure 3: Four prediction steps required in a merging cell.

Note the output feature layer is pushed back into the stack

of candidate feature layers and available for selection for

the next merging cell.

The decisions of how to construct the merging cell are

made by a controller RNN. The RNN controller selects any

two candidate feature layers and a binary operation to com-

bine them into a new feature layer, where all feature layers

may have different resolution. Each merging cell has 4 pre-

diction steps made by distinct softmax classifiers:

Step 1. Select a feature layer hi from candidates.

Step 2. Select another feature layer hj from candidates

without replacement.

Step 3. Select the output feature resolution.
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Step 4. Select a binary op to combine hi and hj selected

in Step 1 and Step 2 and generate a feature layer with the

resolution selected in Step 3.

In step 4, we design two binary operations, sum and

global pooling, in our search space as shown in Figure 4.

These two operations are chosen for their simplicity and ef-

ficiency. They do not add any extra trainable parameters.

The sum operation is commonly used for combining fea-

tures [22]. The design of global pooling operation is in-

spired by [20]. We follow Pyramid Attention Networks [20]

except removing convolution layers in the original design.

The input feature layers are adjusted to the output resolution

by nearest neighbor upsampling or max pooling if needed

before applying the binary operation. The merged feature

layer is always followed by a ReLU, a 3x3 convolution, and

a batch normalization layer.

x

sum
max pool

(a) Sum (b) Global pooling

+

Figure 4: Binary operations.

The input feature layers to a pyramid network form the

initial list of input candidates of a merging cell. In Step 5,

the newly-generated feature layer is appended to the list of

existing input candidates and becomes a new candidate for

the next merging cell. There can be multiple candidate fea-

tures share the same resolution during architecture search.

To reduce computation in discovered architecture, we avoid

selecting stride 8 feature in Step 3 for intermediate merg-

ing cells. In the end, the last 5 merging cells are designed

to outputs feature pyramid {P3, P4, P5, P6, P7}. The order

of output feature levels is predicted by the controller. Each

output feature layer is then generated by repeating the step

1, 2, 4 until the output feature pyramid is fully generated.

Similar to [44], we take all feature layers that have not been

connected to any of output layer and sum them to the output

layer that has the corresponding resolution.

3.2. Deeply supervised Anytime Object Detection

One advantage of scaling NAS-FPN with stacked pyra-

mid networks is that the feature pyramid representations

can be obtained at output of any given pyramid network.

This property enables anytime detection which can gener-

ate detection results with early exit. Inspired by [19, 13],

we can attach classifier and box regression heads after all

intermediate pyramid networks and train it with deep su-

pervision [19]. During inference, the model does not need

to finish the forward pass for all pyramid networks. Instead,

it can stop at the output of any pyramid network and gener-

ate detection results. This can be a desirable property when

computation resource or latency is a concern and provides

a solution that can dynamically decide how much computa-

tion resource to allocate for generating detections. In Ap-

pendix A, we show NAS-FPN can be used for anytime de-

tection.

4. Experiments

In this section, we first describe our experiments of Neu-

ral Architecture Search to learn a RNN controller to dis-

cover the NAS-FPN architecture. Then we demonstrate the

discovered NAS-FPN works well with different backbone

models and image sizes. The capacity of NAS-FPN can be

easily adjusted by changing the number of stacking layers

and the feature dimension in pyramid network. We show

how to build accurate and fast architectures in the experi-

ments.

4.1. Implementation Details

We use the open-source implementation of RetinaNet1

for experiments. The models are trained on TPUs with 64

images in a batch. During training, we apply multiscale

training with a random scale between [0.8, 1.2] to the out-

put image size. The batch normalization layers are applied

after all convolution layers. We use α = 0.25 and γ = 1.5

for focal loss. We use a weight decay of 0.0001 and a mo-

mentum of 0.9. The model is trained using 50 epochs. The

initial learning rate 0.08 is applied for first 30 epochs and

decayed 0.1 at 30 and 40 epochs. For experiments with

DropBlock [9], we use a longer training schedule of 150

epochs with first decay at 120 and the second decay at 140

epochs. The step-wise learning rate schedule was not stable

for training our model with AmoebaNet backbone on image

size of 1280x1280 and for this case we use cosine learning

rate schedule. The model is trained on COCO train2017 and

evaluated on COCO val2017 for most experiments. In Ta-

ble 1, we report test-dev accuracy to compare with existing

methods.

4.2. Architecture Search for NAS-FPN

Proxy task. To speed up the training of the RNN con-

troller we need a proxy task [45] that has a short training

time and also correlates with the real task. The proxy task

can then be used during the search to identify a good FPN

architecture. We find that we can simply shorten the train-

ing of target task and use it as the proxy task. We only

train the proxy task for 10 epochs, instead of 50 epochs that

we use to train RetinaNet to converge. To further speed up

training proxy task, we use a small backbone architecture of

1https://github.com/tensorflow/tpu/tree/master/models/official/retinanet
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Figure 5: Left: Rewards over RL training. The reward is

computed as the AP of sampled architectures on the proxy

task. Right: The number of sampled unique architectures

to the total number of sampled architectures. As controller

converges, more identical architectures are sampled by the

controller.

ResNet-10 with input 512× 512 image size. With these re-

ductions, the training time is 1hr for a proxy task on TPUs.

We repeat the pyramid networks 3 times in our proxy task.

The initial learning rate 0.08 is applied for first 8 epochs

and decayed by the factor of 0.1 at epoch 8. We reserve a

randomly selected 7392 images from the COCO train2017

set as the validation set, which we use to obtain rewards.

Controller. Similar to [44] our controller is a recurrent

neural network (RNN) and it is trained using the Proximal

Policy Optimization (PPO) [33] algorithm. The controller

samples child networks with different architectures. These

architectures are trained on a proxy task using a pool of

workers. The workqueue in our experiments consisted of

100 Tensor Processing Units (TPUs). The resulting detec-

tion accuracy in average precision (AP) on a held-out val-

idation set is used as the reward to update the controller.

Figure 5-Left shows the AP of the sampled architectures

for different iterations of training. As it can be seen the

controller generated better architectures over time. Figure

5-Right shows total number of sampled architectures and

also the total number of unique architectures generated by

the RNN controller. The number of unique architectures

converged after about 8000 steps. We use the architecture

with the highest AP from all sampled architectures during

RL training in our experiments. This architecture is first

sampled at 8000 step and sampled many times after that.

Figure 6 shows the details of this architecture.

Discovered feature pyramid architectures. What makes

a good feature pyramid architecture? We hope to shed lights

on this question by visualizing the discovered architectures.

In Figure 7(b-f), we plot NAS-FPN architectures with pro-

gressively higher reward during RL training. We find the

RNN controller can quickly pick up some important cross-

scale connections in the early learning stage. For exam-

ple, it discovers the connection between high resolution in-

put and output feature layers, which is critical to generate

high resolution features for detecting small objects. As the

controller converges, the controller discovers architectures

that have both top-down and bottom-up connections which

is different from vanilla FPN in Figure 7(a). We also find

better feature reuse as the controller converges. Instead of

randomly picking any two input layers from the candidate

pool, the controller learns to build connections on newly-

generated layers to reuse previously computed feature rep-

resentations.

4.3. Scalable Feature Pyramid Architecture

In this section, we show how to control the model ca-

pacity by adjusting (1) backbone model, (2) the number of

repeated pyramid networks, and (3) the number of dimen-

sion in pyramid network. We discuss how these adjustments

tradeoff computational time and speed. We define a simple

notation to indicate backbone model and NAS-FPN capac-

ity. For example, R-50, 5 @ 256 indicate a model using

ResNet-50 backbone model, 5 stacked NAS-FPN pyramid

networks, and 256 feature dimension.

Stacking pyramid networks. Our pyramid network has a

nice property that it can be scaled into a larger architecture

by stacking multiple repeated architectures. In Figure 8a,

we show that stacking the vanilla FPN architecture does not

always improve performance whereas stacking NAS-FPN

improves accuracy significantly. This result highlights our

search algorithm can find scalable architectures, which may

be hard to design manually. Interestingly, although we only

apply 3 pyramid networks for the proxy task during the ar-

chitecture search phase, the performance still improves with

up to 7 pyramid networks applied.

Adopting different backbone architectures. One com-

mon way to tradeoff accuracy and speed for object detec-

tion architectures is altering the backbone architecture. Al-

though the pyramid network in NAS-FPN was discovered

by using a light-weight ResNet-10 backbone architecture,

we show that it can be transferred well across different

backbone architectures. Figure 8b shows the performance

of NAS-FPN on top of different backbones, from a lighter

weight architecture such as MobilenetV2 to a very high ca-

pacity architecture such as AmoebaNet-D [29]. When we

apply NAS-FPN with MobilenetV2 on the image size of

640× 640, we get 36.6 AP with 160B FLOPs. Using state-

of-the-art image classification architecture of AmoebaNet-

D [29] as the backbone increases the FLOPs to 390B but

also adds about 5 AP. NAS-FPN with both light and heavy

backbone architectures benefits from stacking more pyra-

mid networks.

Adjusting feature dimension of feature pyramid net-

works. Another way to increase the capacity of a model is
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Figure 6: Architecture of the discovered 7-merging-cell pyramid network in NAS-FPN with 5 input layers (yellow) and 5

output feature layers (blue). GP and R-C-B are stands for Global Pooling and ReLU-Conv-BatchNorm, respectively.

(a) FPN (b) NAS-FPN / 7.5 AP (c) NAS-FPN / 9.9 AP

(f) NAS-FPN / 16.8 AP
(e) NAS-FPN / 16.0 AP

(d) NAS-FPN / 15.0 AP

Figure 7: Architecture graph of NAS-FPN. Each dot represents a feature layer. Feature layers in the same row have identical

resolution. The resolution decreases in the bottom-up direction. The arrows indicate the connections between internal layers.

The graph is constructed such that an input layer is on the left side. The inputs to a pyramid network are marked with green

circles and outputs are marked with red circles. (a) The baseline FPN architecture. (b-f) The 7-cell NAS-FPN architectures

discovered by Neural Architecture Search over training of the RNN controller. The discovered architectures converged as the

reward (AP) of the proxy task progressively improves. (f) The final NAS-FPN that we used in our experiments.

to increase the feature dimension of feature layers in NAS-

FPN. Figure 8c shows results of 128, 256, and 384 feature

dimension in NAS-FPN with a ResNet-50 backbone archi-

tecture. Not surprisingly, increasing the feature dimension

improves detection performance but it may not be an effi-

cient way to improve the performance. In Figure 8c, R-50

7 @ 256, with much less FLOPs, achieves similar AP com-

pared to R-50 3 @ 384. Increasing feature dimension would

require model regularization technique. In Section 4.4, we

discuss using DropBlock [9] to regularize the model.

Architectures for high detection accuracy. With the

scalable NAS-FPN architecture, we discuss how to build an

accurate model while remaining efficient. In Figure 9a, we

first show that NAS-FPN R-50 5 @256 model has compara-

ble FLOPs to the R-101 FPN baseline but with 2.5 AP gain.

This shows using NA S-FPN is more effective than replac-

ing the backbone with a higher capacity model. Going for

a higher accuracy model, one can use a heavier backbone

model or higher feature dimensions. Figure 9a shows that

NAS-FPN architectures are in the upper left part in the accu-

racy to inference time figure compared to existing methods.

The NAS-FPN is as accurate as to the state-of-the-art Mask

R-CNN model with less computation time.

Architectures for fast inference. Designing object de-

tector with low latency and limited computation budget is

an active research topic. Here, we introduce NAS-FPNLite
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(a) Number of pyramid networks (b) Backbone architectures (c) Feature dimension

Figure 8: The model capacity of NAS-FPN can be controlled with (a) stacking pyramid networks, (b) changing the backbone

architecture, and (c) increasing feature dimension in pyramid networks. All models are trained/tested on the image size of

640x640. Number above the marker indicates number of pyramid networks in NAS-FPN.

(a) Accurate models

(b) Fast models

Figure 9: Detection accuracy to inference time (left), FLOPs (middle), and parameters (right). (a) We compare to other high

accuracy models. The inference time of all models are computed on a machine with P100 GPU. The green curves highlights

results for NAS-FPN with different backbone architectures. The number above the marker indicates the number of repeats of

pyramid networks in NAS-FPN. The feature dimension of NAS-FPN/FPN and input image size are mentioned next to each

data point. (b) We compare to other fast models. The input image size of all models is 320x320 and the inference times are

computed on Pixel 1 CPU. Our model are trained with light-weight model of MobileNetV2.

for mobile object detection. The major difference of NAS-

FPNLite and NAS-FPN is that we search a pyramid net-

work that has outputs from P3 to P6. Also we follow SS-

DLite [32] and replace convolution with depth-wise sepa-

rable convolution in NAS-FPN. We discover a 15-cell ar-

chitecture which yields good performance and use it in

our experiments. We combine NAS-FPNLite and Mo-

bileNetV2 [32] in RetinaNet framework. For a fair com-

parison, we create a FPNLite baseline, which follows the

original FPN structure and replaces all convolution layers
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model image size # FLOPs # params inference time (ms) test-dev AP

YOLOv3 DarkNet-53 [30] 320× 320 38.97 B - 22 (Titan X) 28.2

MobileNetV2 + SSDLite [36] 320× 320 1.6B 4.3M 200 (Pixel 1 CPU) 22.1

MnasNet + SSDLite [36] 320× 320 1.4B 4.3M 190 (Pixel 1 CPU) 22.3

MnasNet-92 + SSDLite [36] 320× 320 2.0B 5.3M 227 (Pixel 1 CPU) 22.9

FPNLite MobileNetV2 @ 64 320× 320 1.51B 2.02M 192 (Pixel 1 CPU) 22.7

FPNLite MobileNetV2 @ 128 320× 320 2.03B 2.20M 264 (Pixel 1 CPU) 24.3

NAS-FPNLite MobileNetV2 (3 @ 48) 320× 320 1.52 B 2.16 M 210 (Pixel 1 CPU) 24.2

NAS-FPNLite MobileNetV2 (7 @ 64) 320× 320 1.96 B 2.62 M 285 (Pixel 1 CPU) 25.7

YOLOv3 DarkNet-53 [30] 608× 608 140.69 B - 51 (Titan X) 33.0

CornerNet Hourglass [18] 512× 512 - - 244 (Titan X) 40.5

Mask R-CNN X-152-32x8d [11] 1280× 800 - - 325 (P100) 45.2

RefineDet R-101 [41] 832× 500 - - 90 (Titan X) 34.4

FPN R-50 @256 [23] 640× 640 193.6B 34.0M 37.5 (P100) 37.0

FPN R-101 @256 [23] 640× 640 254.2B 53.0M 51.1 (P100) 37.8

FPN R-50 @256 [23] 1024× 1024 495.8B 34.0M 73.0 (P100) 40.1

FPN R-101 @256 [23] 1024× 1024 651.1B 53.0M 83.7 (P100) 41.1

FPN AmoebaNet @256 [23] 1280× 1280 1311 B 114.4 M 210.4 (P100) 43.4

NAS-FPN R-50 (7 @ 256) 640× 640 281.3B 60.3M 56.1 (P100) 39.9

NAS-FPN R-50 (7 @ 256) 1024× 1024 720.4B 60.3M 92.1 (P100) 44.2

NAS-FPN R-50 (7 @ 256) 1280× 1280 1125.5B 60.3M 131.9 (P100) 44.8

NAS-FPN R-50 (7 @ 384) 1280× 1280 2086.3B 103.9 M 192.3 (P100) 45.4

NAS-FPN R-50 (7 @ 384) + DropBlock 1280× 1280 2086.3B 103.9M 192.3 (P100) 46.6

NAS-FPN AmoebaNet (7 @ 384) 1280× 1280 2633 B 166.5 M 278.9 (P100) 48.0

NAS-FPN AmoebaNet (7 @ 384) + DropBlock 1280× 1280 2633 B 166.5 M 278.9 (P100) 48.3

Table 1: Performance of RetinaNet with NAS-FPN and other state-of-the-art detectors on test-dev set of COCO.

with depth-wise separable convolution. Following [36, 32],

we train NAS-FPNLite and FPNLite using an open-source

object detection API.2 In Figure 9b, we control the fea-

ture dimension of NAS-FPN to be 48 or 64 so that it has

similar FLOPs and CPU runtime on Pixel 1 as baseline

methods and show that NAS-FPNLite outperforms both SS-

DLite [32] and FPNLite.

4.4. Further Improvements with DropBlock

Due to the increased number of new layers introduced

in NAS-FPN architecture, a proper model regularization is

needed to prevent overfitting. Following the technique in

[9], we apply DropBlock with block size 3x3 after batch

normalization layers in the the NAS-FPN layers. Figure 10

shows DropBlock improves the performance of NAS-FPN.

Especially, it improves more for architecture that has more

newly introduced filters. Note that by default we do not

apply DropBlock in previous experiments for the fair com-

parison to existing works.

5. Conclusion

In this paper, we proposed to use Neural Architecture

Search to further optimize the process of designing Fea-

ture Pyramid Networks for Object Detection. Our experi-

2https://github.com/tensorflow/models/tree/master/research/object detection

Figure 10: Performance comparison of NAS-FPN with fea-

ture dimension of 256 or 384 when it is trained with and

without DropBlock (DB). Models are trained with back-

bone of ResNet-50 on image size of 1024x1024. Adding

DropBlock is more important when we increase feature di-

mension in pyramid networks.

ments on the COCO dataset showed that the discovered ar-

chitecture, named NAS-FPN, is flexible and performant for

building accurate detection model. On a wide range of ac-

curacy and speed tradeoff, NAS-FPN produces significant

improvements upon many backbone architectures.
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