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Abstract

Socially-intelligent agents are of growing interest in ar-

tificial intelligence. To this end, we need systems that can

understand social relationships in diverse social contexts.

Inferring the social context in a given visual scene not only

involves recognizing objects, but also demands a more in-

depth understanding of the relationships and attributes of

the people involved. To achieve this, one computational ap-

proach for representing human relationships and attributes

is to use an explicit knowledge graph, which allows for

high-level reasoning. We introduce a novel end-to-end-

trainable neural network that is capable of generating a So-

cial Relationship Graph – a structured, unified representa-

tion of social relationships and attributes – from a given in-

put image. Our Social Relationship Graph Generation Net-

work (SRG-GN) is the first to use memory cells like Gated

Recurrent Units (GRUs) to iteratively update the social re-

lationship states in a graph using scene and attribute con-

text. The neural network exploits the recurrent connections

among the GRUs to implement message passing between

nodes and edges in the graph, and results in significant

improvement over previous methods for social relationship

recognition.

1. Introduction

The understanding of human relationships in computer

vision research is in its nascent stage. In comparison, sig-

nificant efforts have been made by social psychologists and

other researchers to study social relationships in humans

[8, 12]. The pioneering work of Sun et al. [24] proposes

a social relationship framework based on Bugental’s Social

Domain Theory [3] to classify social relationships and do-

mains. In this paper, we take a step further in understanding

social relationships from images by generating a Social Re-

lationship Graph (SRG), as illustrated in Figure 1.

In recent computer vision research, predicting relation-

ships of the “subject-predicate-object” kind have gained

major research attention. These can be used for multiple

high-level tasks like image retrieval, image captioning, and
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Figure 1: For a given scene, our network generates a structured

representation – a Social Relationship Graph. Graph representa-

tions have shown good results on a variety of high-level vision

tasks, e.g. image retrieval and visual Q&A.

visual question answering [10, 25, 2]. The recent work for

the generation of scene graphs using an end-to-end model

[28, 13, 29] gives the best results on the Visual Genome

Dataset [11]. Since such graphs are human-interpretable,

we propose to build a Social Relationship Graph, which

encodes relationship and attribute information and captures

the rich semantic structure of a scene.

The task of understanding human relationships is a chal-

lenging problem given the wide variations that humans pose

in their environments. There is unobservable, latent infor-

mation in images which we as humans find easy to inter-

pret. For developing human-level understanding in such sit-

uations, computational models are based on the theories of

social and cognitive psychology [23]. Based on the social

psychology theories of Bugental [3], we focus on human

attributes and environments for social relationships.

Scene and global contextual cues have the best results for

social relationships [12]. Furthermore, the activity that peo-
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ple are partaking in provides crucial features for social re-

lationship classification [24]. In social psychology research

[3], it has been shown that appearance cues such as age,

gender and clothing are useful in understanding social rela-

tionships. We thus use scene context, activity and appear-

ance features for social relationship graph inference.

We formulate our problem as graph inference that en-

codes the interactions between nodes and edges in a graph.

Our problem is more challenging than scene graph genera-

tion [28, 13, 29] as our work requires understanding of high-

level semantic features (e.g. social context) and low-level

visual features (e.g. spatial arrangement of objects).

We devise a novel end-to-end model for predicting social

relationships using a Social Relationship Graph Genera-

tion Network (SRG-GN) that combines inputs from a Multi-

Network Convolutional Neural Network (MN-CNN) to iter-

atively update the hidden states of the nodes (persons) and

edges (relationships) in a Social Relationship Graph Infer-

ence Network (SRG-IN) by passing messages between two

types of Gated Recurrent Units (GRUs) [5].

The Rship GRUs (edges) have the scene and activity fea-

tures as the input, while the PPair GRUs (nodes) have the

human attribute features as input. The hidden state for each

edge gets updated by combining the updated node state and

updated edge state. Thus, the relationship (edge) state gets

updated by the fine-grained attribute features of the adjacent

nodes and the scene and activity context from nearby edges.

The main contributions of this paper are: 1) a novel

structured representation (Social Relationship Graph) for

social understanding in visual scenes; 2) a novel end-to-

end-trainable neural network architecture using GRUs and

semantic attributes for graph-generation; 3) new state-of-

the art results for social relationship recognition on the

PIPA-relation [24] and PISC [12] datasets. This is the first

architecture that builds on social relationships and attributes

using memory cells, and our results demonstrate the impor-

tance of message passing and scene context.

2. Related Work

2.1. Social Relationship Recognition

The area of social relationships is of growing interest to

the community, as social chatbots and personal assistants

need to understand social interactions. Many researchers

have tried to understand social relationships, roles and in-

teractions. Zhang et al. [30] have studied interpersonal re-

lationships using facial expressions with a Siamese-like ar-

chitecture. There are studies on Kinship recognition [20]

and Kinship verification [6]. Wang et al. [26] studies fam-

ily relationships in personal image collections. Jinna et al.

[16] introduced a video dataset for coarse-grained social re-

lationships between humans. Li et al. [12] predicts social

relationships in images using an Attentive-RCNN model

for 6-relationship categorization. Ramanathan et al. [19]

recognize social roles played by people in various events.

Chakraborty et al. [4] classify photos into classes such as

‘couple, family, group, or crowd’. Sun et al. [24] predict

social relationships for fine-grained relationships between

humans in everyday images. Many of the above-mentioned

works have used physical appearance or cues like activity,

proximity, emotion, expression, context etc. Our work dif-

fers by combining the essential attribute features with mem-

ory cells providing a richer framework for our problem.

2.2. Graph-Based Representations

There is a lot of recent interest in using structured graph

representations for visual grounding of images. Knowledge

graphs are being widely used for object detection and image

classification [7, 17]. Johnson et al. [10] introduced ground-

truth annotated scene graphs for the task of image retrieval

using object relationships and attributes. Since then, the

task of generating scene graphs directly from images by us-

ing intrinsic graph properties and surrounding context has

gained attention [28, 13, 29, 9]. The use of vision and

language modules together has also been explored by re-

searchers for identifying relationships between objects [15].

Graph Neural Networks [21, 14] have gained a lot of atten-

tion for learning structured knowledge in graphs. Wang et

al. [27] exploit the knowledge of surrounding objects with

graph neural networks for updating social relationships. In

our work, we present a novel framework for generating

graphs, focusing on social relationships and attributes of

people involved in a scene, unlike the focus on pair-wise

relationships or object relationships in existing work.

3. Model Definition

In this section, we provide an overview of our method for

generating Social Relationship Graphs from images using

our Social Relationship Graph Generation Network (SRG-

GN). The framework in Figure 2 gives a more detailed de-

scription of our two modules: A Multi-Network Convo-

lutional Neural Network (MN-CNN) module for Attribute

and Relationship representations followed by a Social Re-

lationship Graph Inference Network (SRG-IN) module for

generating a structured graph representation. The model is

trained end-to-end to predict relationships, domains and at-

tributes as part of a scene in the form of a structured seman-

tic directed graph representation.

3.1. Multi-Network Convolutional Neural Network
(MN-CNN) for Relationships and Attributes

We have an input image I and a set of bounding box an-

notations Bi for the people in image I where i = 1,2,...,N.

These annotations are cropped for a single-body image of a

person, Ii and resized into 227x227 pixels. For every anno-

tated relationship between two people, we define a “context
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Figure 2: SRG-GN: Our proposed end-to-end network for Social Relationship Graph generation. We take the single body images, I1
and I2, and the “context image” (smallest image that contains both single-body images), Ic as input to the SN1 and SN2 sub-modules

of the MN-CNN module and fine-tune the fully-connected layers of all the attributes. These fully-connected layers are concatenated

and fed as input to the SRG-IN module and the hidden edge state gets iteratively updated by mean-pooling the edge (relation) and node

(person/attribute) hidden states. The final updated edge state is used for predicting social relationships in the given image. For the multi-

task learning framework, age and gender attributes from the fully-connected layers of the MN-CNN module also contribute to the joint

optimization of the individual cross-entropy losses. The symbol
P

denotes summation and
L

denotes mean-pooling.

image” (smallest image that contains both single-body im-

ages) Ic, resized into 224x224 pixels.

The MN-CNN module has two sub-modules (SN1 and

SN2) with the inputs Ii and Ic respectively. Ii is passed

through the sub-module, SN1, which is an Attribute Con-

vNet architecture with 5 conv layers and 2 fully-connected

layers (fc6 and fc7), each for the 3 attributes – age, gen-

der and clothing. The weights for these 3 ConvNet layers

are the pre-trained weights as discussed later in Section 4.3.

We fine-tune the fully-connected layers for each attribute

and then the features from the fc7 layers are concatenated

into a single feature vector, which we assign to PPairAtt.

PPairAtt = [fcage|4096d, fcgender|4096d, fcclothing|4096d]
(1)

The sub-module SN2 is a network of pairwise-relationship

ConvNet architectures. There are two VGG-16 architec-

tures [22] to compute activity and scene features from the

context images of people. Activity has an important corre-

lation to identifying relationships between people, say, two

people “marrying” are more likely to be lovers. Scene con-

text information can also be leveraged for improving the

model efficacy to predict relationships. As humans too, we

understand images by looking at the whole image scene and

not only the objects under consideration. This gives more

coarse-grained information to comprehend the given task.

We fine-tune the fully-connected layers for both of these

sub-architectures, then concatenate the fc7 layers to form a

high-dimensional vector, which we assign to RshipAtt.

RshipAtt = [fcactivity|1024d, fcscene|4096d] (2)

3.2. Social Relationship Graph Inference Network
(SRG-IN)

We formulate the task of classifying social relationships

between people in the form of a social graph inference prob-

lem, where we predict the relationships in an image by con-

sidering relationship triplets <person1, relation, person2>.

Consider a pair of people in the given image I with some

social relationship between them. In our network, each rela-

tionship in an image gets information from its nearby nodes

(person attributes) and also its nearby edges (relationships).

This is achieved by using Gated Recurrent Units (GRUs)

to aggregate messages from the adjacent nodes and rela-

tionships and iteratively update those messages to improve

the predicted edge states (relationships) between the given

nodes (persons). Thus, we are able to exploit the informa-

tion in the scene context and the individual attributes to im-

prove the relationships in the Social Relationship Graph.

3.2.1 Inference using GRUs and Message Passing

Scheme

Mathematically, we formulate our inference task as a proba-

bility function: given an input image I, bounding box values
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Bi and x as the representation of the SRG:

x = {xage
i , x

gender
i , xrelation

i−>j , I|i = 1, 2, ...N, j = 1, 2, ...N}
(3)

where x
age
i and x

gender
i are the age and gender attributes

of the person and xrelation
i−>j is the social relationship between

the persons i and j, and N is the total number of people in

an image. We have to find an optimal value of x,

x∗ = argmaxxPr(x|I, Bi) (4)

where,

Pr(x|I, Bi) =

NY

i=1

NY

j=1

Pr(xage
i , x

gender
i , xrelation

i−>j |I, Bi)

(5)

We perform this inference using an end-to-end network of

Social Relationship Graph Generation where the MN-CNN

module provides the initial inputs for the nodes and the

edges in the SRG-IN module.

Gated Recurrent Units (GRUs) are the most reliable and

lightweight RNN memory units. The GRUs operate using

a reset gate and an update gate and have the ability to keep

memory from previous activations allowing them to remem-

ber features for a long time. Let us briefly revisit the func-

tioning of a single GRU cell. The reset gate r is defined

as

rt = σ(Wr.[ht−1, xt]) (6)

where σ is the sigmoid function, Wr is the learnable weight

matrix, ht−1 is the previous hidden state, xt is the input to

the GRU cell and [,] denotes concatenation. The update gate

z is given by

zt = σ(Wz.[ht−1, xt]) (7)

The actual activation in the memory unit is given by

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (8)

where,

h̃t = tanh(Wxt + U(rt ∗ ht−1)) (9)

W and U are weight matrices that are learned and * is the

element-wise multiplication. As empirically evaluated [5],

the reset gate r sits between the previous activation and the

next candidate activation to forget the previous state, and the

update gate z decides how much of the candidate activation

to use in updating the cell state.

Our network has two sets of GRUs (Relationship(Rship)

and Person-Pair(PPair)). The initial state of the GRUs can

be set to zero or some random vector, and the input to the

unit is a sequence of features or symbols. To compute ac-

tivations from the PPair GRU, we take the feature vector,

PPairAtt, from the SN1 sub-module of the MN-CNN mod-

ule as the initial state and input to the PPair GRU. We con-

catenate the features from the two nodes (persons) with a

relationship and take this integrated message as input. To

compute activations from the Rship GRU, we take the fea-

ture vector, RshipAtt, from the SN2 sub-module of the MN-

CNN as the initial state and input to the Rship GRU. When

the state of the PPair GRU is updated, we update the state of

the Rship GRU by including the node state information into

the edge state information to provide context to the edges

from its adjacent nodes.

Each of the two GRUs receives incoming messages and

we concatenate these messages using a standard pooling op-

eration, mean pooling. Mean pooling aggregates messages

in a more meaningful representation as shown in Section

5.2. The PPair GRU receives [fi,fj] as input, xn where,

fi and fj are the attribute features (PPairAtt) of the nodes

i and j respectively and [,] denotes concatenation. The pre-

vious node state hn
t−1

is also initialized using [fi,fj] and

updates the node state to hn
t using xn as input. The Rship

GRU receives fi−>j as input, xe where, fi−>j are the rela-

tionship features from the MN-CNN module. The previous

edge state he
t−1

is initialized using fi−>j and the edge state

is updated to the ”mean-pooled” edge state, h
mpe
t , given by:

h
mpe
t =

he
t + hn

t

2
(10)

This includes the semantic node information into the

edge context for updating the edge state with meaningful

information from the adjacent nodes and edges. In the next

iteration of the GRU, the input to the GRUs are messages

from the previous time step. The updated edge representa-

tions are used to predict the relationships between nodes.

3.3. Multi-Task Learning (MTL) Framework

In Multi-Task Learning, we simultaneously learn mul-

tiple tasks with some shared layers except for one task-

specific layer. This can be achieved if the same dataset

has multiple labels for learning. For our problem, we have

four task labels (age, gender, domain and relationship) that

can be learned using the same network. We jointly op-

timize the loss function by combining the individual loss

functions for all these four tasks. We learn the domain la-

bels together with the relationship labels, so that the net-

work can share some relevant information between these

two tasks to improve the overall loss function. For instance,

the “Reciprocity Domain” refers to relationships that have a

reciprocal nature, such as, “friends”, “siblings” and “class-

mates”. The output from the Rship GRUs are used to predict

the domain and relationship labels, whereas the fcage and

the fcgender feature vectors from the MN-CNN module are

used to predict the age and gender attribute labels respec-

tively using a cross-entropy loss function. We only consider

age and gender attribute predictions because the dataset is

limited to only these two attributes. Figure 2 shows how we

incorporate the MTL framework in our SRG-GN model.
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4. Empirical Evaluation

4.1. Dataset Preparation

The PIPA-relation dataset [24] has 16 fine-grained rela-

tionship categories 1. We extend their dataset to a PIPA-

relation graph dataset. We expand the ground-truth anno-

tations for faces in PIPA into full human body annotations

by following the body proportion measurements; 3 x face

width and 6 x face height. This gives us ground-truth an-

notations for single-body images. The context images are

cropped from the full images using bounding box values

of the people with relationship annotations. We construct

our PIPA-relation graph dataset using two attributes (age

and gender) from the attribute annotations published on the

PIPA dataset [18]. The train/val/test set has 6289 images

with 13,672 relationships and 16,145 attributes, 270 images

with 706 relationships and 753 attributes, 2649 images with

5075 relationships and 6655 attributes.

We further validate the performance of our model on

the large–scale People in Social Context (PISC) dataset re-

leased by Li et al. [12]. The PISC dataset has 22,670 images

where the person pairs are annotated for 3 coarse-grained

relationships (intimate, not-intimate and no relation) and

6 fine-grained relationships (commercial, couple, family,

friends, professional and no-relation). The train/val/test set

consist of 16,828 images with 55,400 relationship instances,

500 images and 1,505 instances, 1,250 images and 3,961 in-

stances, respectively.

4.2. Baselines

Comparison models for PIPA-relation dataset: Our

baselines are the two end-to-end models trained on the

PIPA-relation dataset by Sun et al. [24] and the end-to-end

model for Scene Graph Generation by Xu et al. [28] as be-

low:

Double-Stream (DS) CaffeNet: Trained from scratch on

the entire dataset using a two stream network for each single

body of a person to predict relationships between them.

Finetuned model from pre-trained on Imagenet: Uses

fixed weights of the conv layers from the Imagenet pre-

trained weights and fine-tuned the fully-connected layers on

the PIPA-relation dataset.

Primal-Dual graph model: Trained the primal-dual

graph model [28] on the PIPA-relation graph dataset.

Comparison models for PISC dataset: We compare

our models with the models proposed by Li et al. [12]. An

overview of the baseline models by [12] is given below:

Pair–CNN+BBox: Two CNNs for each cropped person

image with geometry bounding box features.

1father-child, mother-child, grandpa-grandchild, grandma-grandchild,

friends, siblings, classmates, lovers/spouses, presenter-audience, teacher-

student, trainer-trainee, leader-subordinate, band members, dance team

members, sport team members and colleagues

MODEL Accuracy

Double-Stream Caffenet 34.40%

Primal-Dual model (Our trained) 44.91%

Fine-tuned pre-trained on Imagenet 46.20%

Our MN-CNN module only 49.75%

Our SRG-GN without Scene 51.79%

Our SRG-GN (final model) 53.56%

Table 1: Accuracy for the task of Social Relationship Recognition

(SRRec on PIPA-relation graph dataset). Chance-level accuracy is

6.25% (1 in 16).

Pair–CNN+BBox+Union: Pair–CNN+BBox with a sin-

gle CNN for union region of interest features.

Pair–CNN+BBox+Global: Pair–CNN+BBox with the

whole image as context.

Pair–CNN+BBox+Scene: Pair–CNN+BBox with scene

features as context.

Dual-Glance: Combines Pair–CNN+BBox+Union with

attention from contextual information to refine predictions.

4.3. Implementation Details

The pre-trained weights for age, gender, clothing and ac-

tivity models are publicly available [24]. The pre-trained

weights for the Scene ConvNet architecture are from the

models published by Zhou et al. [31]. We freeze the weights

for all the layers and only fine-tune the fully-connected lay-

ers of the MN-CNN module, and the GRUs. The output of

both the GRUs have a dimension of 512. A softmax layer

computes the final scores for age and gender attributes, do-

mains and relationship labels. In case of PISC dataset, we

only get scores for domain and relationships as there are

no labels for attributes. We sum all the losses and jointly

optimize the total weighted loss, as part of the MTL frame-

work. A learning rate of 10−6 and 2 time-steps for the GRU

are used to train the model. To prevent over-fitting, meth-

ods like early-stopping, dropout and regularization are em-

ployed. Our model is implemented using Tensorflow [1].

4.4. Results

We evaluate the performance of our model on the PIPA-

relation graph dataset and the PISC dataset. The PIPA-

relation graph dataset additionally has 6 age labels (infant,

child, young adult, middle age, senior and unknown) and 2

gender labels (male and female).

4.4.1 Quantitative Results

We evaluate our model for two setups:

Social Relationship Recognition (SRRec): To evalu-

ate this, we only consider the triplet predictions of person-

relationship-person and calculate the accuracy score for so-

cial relationship recognition.

Social Relationship Graph Generation (SRGGen):

We consider two triplet predictions (person-relationship-
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Figure 3: Example Social Relationship Graph generation results from our final model on PIPA-relation graph dataset, and comparison

with ground-truth social relationship graphs. Each person (blue ovals) has related age and gender attributes (green ovals) with social

relationships between each pair of persons (orange ovals). We only visualize relationships that have the corresponding ground–truth.

person; person-age-gender) to measure the accuracy of

generating a full SRG with correct age and gender nodes

and relationship edges. The directed edges of the graph de-

pends on the direction of the relationship, say, from father

to child. For bi-directional relationships like colleagues, we

show only one edge for better visualization.

We report results for different variations of our model

and compare with the baselines. Our MN-CNN module

only, is a variation of our model without the GRUs by using

concatenated PPairAtt and RshipAtt as input to the relation-

ship and domain prediction task specific layers and fcage
and fcgender to the age and gender prediction task layers

respectively. Our SRG-GN without scene, is our final model

without the scene context features fcscene, in the RshipAtt.

Our SRG-GN, is the final model as shown in Figure 2.

Results on PIPA-relation dataset: In Table 1, we pro-

vide the accuracy for our first setup, SRRec. Our MN-CNN

module improves on the Fine-tuned model by 3.5% for the

task of social relationship recognition. This clearly indi-

cates the importance of using the semantic attributes, scene

and activity features over the visual features pre-trained on

Imagenet. Our final model, SRG-GN, outperforms only

MN-CNN by 3.81%, which explains the capability of our

message passing scheme for generating social relationship

graphs. This technique helps to retain significant informa-

tion from the nearby nodes and edges in a social relationship

graph and thus gives better results. SRG-GN performs bet-

ter than the primal-dual graph baseline as the latter localizes

objects using visual cues with an exchange of information

between multiple classes of objects unlike our problem.

Table 3 shows the performance of our model on the

second setup of Social Relationship Graph Generation,

SRGGen. We achieve an accuracy of 27.64% using our final

model. The accuracy for the Our SRG-GN without scene is

7.4% lower than Our SRG-GN, which empirically proves

that context information plays a major role in generating a

coherent social relationship graph.

Results on PISC dataset: Table 4 compares the mean-

average precision evaluated on the PISC dataset for Social

Relationship Recognition (SRRec). Our final model with

mean pooling and 2 time steps notably outperforms the

state-of-the-art model on PISC dataset by ∼8.5%. Our final

model improves only slightly in precision over our SRG-

GN model without scene. One possible reason is that the

scene context in PISC dataset has similar contextual infor-

mation for relationships unlike in the PIPA-relation dataset.

We report the precision of each of the 6 relationship la-

bels in Table 2. Our SRG-GN model improves in precision

over the MN-CNN-only model for the classes couple and

commercial. The class friends has lower precision, indicat-

ing that other classes are sometimes wrongly classified as

“friends”. Due to imbalance in the training dataset, we in-
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MODEL mAP Family Couple Commercial No-Relation Professional Friends

Our MN-CNN module only 60.2 75.0 57.1 62.5 59.9 80.6 26.0

Our SRG-GN without Scene 69.2 80.0 77.7 88.8 61.7 81.8 24.5

Our SRG-GN (final model) 71.6 80.0 100.0 83.3 62.5 78.4 25.2

Table 2: Detection results for 6-relationship labels on PISC dataset.

MODEL Accuracy

Our SRG-GN without Scene 20.24%

Our SRG-GN (final model) 27.64%

Table 3: Accuracy for the task of Social Relationship Graph Gen-

eration (SRGGen) on PIPA-relation graph dataset. Chance- level

accuracy is 0.52% = (1/16 * 1/6 * 1/2)

friends
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person

commercial person

prof
essi

onal

no-relation
no-relation

personperson

family

friends

friendsperson

person

person

friends

person

professional

no-r
elati

on
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Figure 4: Wrong relationship predictions from the SRG-GN model

on the PISC dataset. The relationships in yellow are the ground-

truth, the relationships in red are the incorrect predictions. Only

the relationships marked as red in an image are incorrectly pre-

dicted by our model.

troduce a weighted cross entropy loss to penalize the classes

with few samples; this improves performance significantly.

4.4.2 Qualitative Results

The Social Relationship graph (SRG) is a rich semantic

graph with attribute and relationship information for the

people in a given scene. Our SRG contains ground-truth

information about the class and bounding-box labels of the

objects in the image. Through our SRG-GN, we predict the

social relationships, age and gender attributes of the people

in a given scene.

Figure 3 shows qualitative results on PIPA-relation graph

dataset to compare the SRG generated from our model and

the ground truth. In the first example, the SRG-GN cor-

rectly predicts the relationships between the given people.

As shown in the graph, all nodes (persons) have “friends”

relationship between them which are correctly predicted

MODEL mAP

Pair–CNN+BBox 54.3%

Pair–CNN+BBox+Union 56.9%

Pair–CNN+BBox+Global 54.6%

Pair–CNN+BBox+Scene 51.7%

Dual-Glance 63.2%

Our MN–CNN module only 60.2%

Our SRG–GN without Scene 69.2%

Our SRG–GN (final model) 71.6%

Table 4: Mean–Average Precision (mAP) for the task of Social

Relationship Recognition (SRRec) on PISC dataset.

by our model. Gender attributes also correspond to the

ground-truth, but the age attributes are incorrectly predicted

as “middle-age” instead of “young-adult”. The model cor-

rectly predicts more complex relationships like “sports-

team members” which has a lot more contextual infor-

mation than other relationships like “grandma-grandchild”

which it falsely predicts as “mother-child” due to ambiguity

in such relationships.

Figure 5 gives examples of the correct predictions on

PISC dataset. Our model predicts multiple relationship in-

stances in an image, such as a group of players are correctly

labeled as “professional”. Figure 4 shows examples for

misclassified relationships. For instance, the model falsely

detects the relationship in bottom-left image as “family”,

when they are more likely to be friends due to information

from adjacent nodes and edges. There is ambiguity between

“professional” and “commercial” in some cases due to sim-

ilar global and scene context for these classes.

5. Ablative Analysis

In this section, we examine the performance of our SRG-

GN model variations on the PIPA-Relation graph dataset.

5.1. Model Variations

We evaluate the importance of scene context in predict-

ing relationships in our final graph inference framework.

As shown in Section 4.4, adding scene context signifi-

cantly improves the performance on both tasks of SRRec

and SRGGen. Intuitively, we can infer that scene informa-

tion can be important in many different situations. For in-

stance, given a party scene, the group of people are more

likely to be friends than colleagues, and a group of athletes

running on a track are much more likely to be sports team

members than band members. In Figure 6(a), we present
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Figure 5: Correct predictions from our final model on the PISC dataset.

(b). SRG results from the SRG-GN model and only MN-CNN model

(a).  SRG results from the SRG-GN model and SRG-GN model without scene
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person
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Figure 6: Qualitative analysis of our model variations on PIPA-

Relation. The left results are from our final model, SRG-GN. The

top-right result is from SRG-GN without Scene, while the bottom-

right result is from the only MN-CNN model.

an example to highlight the importance of using whole im-

age scene context for accurate predictions. Our SRG-GN

without scene incorrectly predicts the two people as sports

team members, but if we look at the whole scene together

it increases the chances of them being colleagues and not

related to sports. Without scene context, identifying the re-

lationships between two people can be sometimes ambigu-

ous. This clearly explains the motivation behind using scene

context as an important feature in the SRG-IN module.

We also examine how predicting relationships in isola-

tion from the only MN-CNN module has lower accuracy

than the combined model with the SRG-IN module. For

example, a group of people performing on the stage should

all very likely be band members, and our model exploits

this information for overall inference, whereas the only MN-

CNN module predicts the triplets in the social relationship

graph independently. In Figure 6(b), our final model cor-

rectly predicts the relationships as band-members due to the

message information from the adjacent group of relation-

ships in an image. Without this message passing network,

the MN-CNN module only considers information from the

pair of people between whom relationship has to be pre-

Pooling # time steps Accuracy

max 1 50.41%

max 2 52.16%

max 3 51.27%

mean 1 50.89%

mean 2 53.56%

mean 3 52.08%

Table 5: Ablation study for different time–steps and pooling tech-

niques on the PIPA-relation graph dataset.

dicted. Thus, the SRG-IN module uses contextual informa-

tion from the nearby nodes and edges in a graph to improve

individual predictions.

5.2. Pooling and Time–Step variations

We evaluate our SRG-GN model on the PIPA-relation

with different number of time steps and pooling techniques.

From Table 5, it can be observed that mean-pooling is

more effective in passing useful information between hid-

den states than max-pooling. Also, there is a ∼1.5% de-

crease in accuracy on increasing the time steps as it starts

passing noisy information between states with more false

detections in the social relationship graph.

6. Conclusion

We introduced a novel end-to-end-trainable network for

generating social relationship graphs from images using

GRUs. Previous work on generating graphs dealt with re-

lationships between objects, whereas our work tackles the

more challenging problem of inferring social relationships.

Experimental results show the importance of using attribute

and contextual features with message passing in a graph.

Our model outperforms the state-of-the-art for recognizing

social relationships, and performs well for generating social

relationship graphs. This work can be extended for more

complex tasks, such as predicting social intentions.
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