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Abstract

We propose novel neural temporal models for predict-

ing and synthesizing human motion, achieving state-of-the-

art in modeling long-term motion trajectories while being

competitive with prior work in short-term prediction and

requiring significantly less computation. Key aspects of our

proposed system include: 1) a novel, two-level process-

ing architecture that aids in generating planned trajecto-

ries, 2) a simple set of easily computable features that inte-

grate derivative information, and 3) a novel multi-objective

loss function that helps the model to slowly progress from

simple next-step prediction to the harder task of multi-

step, closed-loop prediction. Our results demonstrate that

these innovations improve the modeling of long-term mo-

tion trajectories. Finally, we propose a novel metric, called

Normalized Power Spectrum Similarity (NPSS), to evaluate

the long-term predictive ability of motion synthesis mod-

els, complementing the popular mean-squared error (MSE)

measure of Euler joint angles over time. We conduct a

user study to determine if the proposed NPSS correlates

with human evaluation of long-term motion more strongly

than MSE and find that it indeed does. We release code

and additional results (visualizations) for this paper at:

https://github.com/cr7anand/neural temporal models

1. Introduction

We address the problem of building predictive models

of human movement using motion capture data. Specifi-

cally, we explore models that can successfully be used in

forecasting the 3D pose of a human subject conditioned on

a small, initial history (a set of priming frames). Current

work has focused on two separate but complementary sub-

tasks: 1) short-term motion prediction, which is generally

evaluated quantitatively by measuring mean squared error

(MSE) over a short horizon, and 2) long-term motion pre-

diction, which is evaluated qualitatively by manual, visual

inspection of samples in order to evaluate plausible trajec-

tories of human motion over long spans of time. Short-term

models are useful in applications of motion tracking while

long-term models are useful as motion generation tools for

computer graphics [24, 16, 12]. Models successful in these

sub-tasks are also valuable for human gait analysis, studies

in the kinematics of human motion, and in human-computer

interaction applications [2, 25].

Solving the above two sub-problems in motion predic-

tion is challenging given the high dimensionality of the in-

put data as well as the difficulty in capturing the nonlin-

ear dynamics and stochasticity inherent in human motion

from observations alone. Furthermore, human motion, in

strong contrast to the motion of other objects, depends on

the subject’s underlying intent and high-level semantic con-

cepts which are tremendously difficult to model computa-

tionally. Traditionally, models were built in the framework

of expert systems and made use of strong simplifying as-

sumptions, such as treating the underlying process as if it

was Markovian and smooth or using low-dimensional em-

beddings [29, 19]. These approaches often led to less-than-

satisfactory performance. With the modern successes of ar-

tificial neural networks [15] in application domains ranging

from computer vision [13] to machine translation [1] and

language modeling [18], many current models of motion

are becoming increasingly based on neural architectures.

In this paper, we attack the above two sub-problems us-

ing the following strategies. First, we augment the joint an-

gle feature vector, typically fed into predictive neural mod-

els, with motion derivative information. This can be easily

computed using a finite-difference approximation and nat-

urally contains (temporally) local information that is cru-

cial for generating smooth and consistent motion trajecto-

ries. Furthermore, our results demonstrate that the popu-

lar approach of training recurrent neural networks (RNNs)

in an open loop, i.e., where ground truth input data is fed

in at every timestep t to predict output at t + 1, is insuffi-

cient when using these models for closed-loop test scenar-

ios, i.e., where model output at timestep t is itself used as

input to model at timestep t + 1. In the case of closed-

loop generation, the model fails to make good predictions

over long time horizons due to drifting and an accumula-
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tion of next-step error. To remedy this, we introduce a sim-

ple, novel multi-objective loss function that balances the

goals of effective next-step prediction with generating good

long-term, closed-loop predictions, which we find greatly

alleviates model drifting. The neural architectures we pro-

pose, which make use of a novel, differentiable backward-

planning mechanism, are computationally less expensive

and far simpler than competing alternatives.

Finally, we address the dearth of effective quantita-

tive methods for evaluating long-term motion synthesis by

proposing a novel metric we call the Normalized Power

Spectrum Similarity (NPSS). NPSS is meant complements

MSE by addressing some its drawbacks for usage as a quan-

titative evaluation metric for long-term synthesis including:

a) a frequency-shift in a predicted sequence, e.g., walking

at a faster or slower rate, compared to ground-truth will be

heavily penalized by MSE despite being qualitatively simi-

lar, and b) a phase-shift in predicted sequence, e.g., if a few

frames of motion are missed/skipped by the model, the re-

sulting predicted motion sequence will be phase-shifted but

MSE will heavily penalize it despite qualitative similarity

with ground-truth. Our measure accounts for these issues

as it is designed to capture the difference in the power spec-

trum of the ground truth frames and the model’s predicted

joint angles. The key contributions of this work include 1) a

novel, two-stage processing architecture, 2) augmenting the

input space with easily computable features useful for the

domain of motion 3) development of a novel loss function

that can help guide the model towards generating longer-

term motion trajectories and, 4) a novel, evaluation metric

called NPSS for long-term human motion quality evalua-

tion, which we will validate with a human user study.

2. Related Work

Research in motion synthesis has a long history, with

many models proposed over the years. Only in recent times

have neural architectures come to the forefront of this do-

main, quickly supplanting classical statistical learning ap-

proaches and hand-crafted methods. [4] proposed two ar-

chitectures: 1) the LSTM-3LR and 2) the ERD (Encoder-

Recurrent Decoder). The LSTM-3LR consists of 3 layers

of 1000 Long Short-Term Memory (LSTM) units whereas

the ERD model uses 2 layers of 1000 LSTM units and non-

linear multilayer feedforward networks for encoding and

decoding. However, the authors observed that, during in-

ference, the models would quickly diverge and produce un-

realistic motion. They alleviate this by gradually adding

noise to the input during training which helps in generat-

ing plausible motion over longer horizons. [10] proposed

Structural-RNNs (SRNN), which take a manually designed

spatio-temporal graph and convert it into a multilayer RNN

architecture with body RNNs being assigned to model spe-

cific body parts and edge-RNNs to model interactions be-

tween body parts. This work also uses the noise schedul-

ing technique employed earlier by [4] to alleviate drifting.

They show that their network outperforms previous meth-

ods in both short-term motion prediction as well as long-

term qualitative motion. Recently, [17] proposed simple

but hard-to-beat baselines on short-term motion prediction

as well as a 1-layer seq2seq model [26] with 1024 Gated

Recurrent Unit (GRU) units and a linear output decoder for

short-term and long-term motion prediction. Additionally,

they trained their long-term model using a sampling-loss as

a simpler alternative to noise scheduling in order to allevi-

ate drifting. More recently, [5] proposed a model that cou-

ples a de-noising autoencoder and a LSTM-3LR network

to alleviate drifting for long-term motion synthesis. How-

ever, a drawback of their approach is that both the autoen-

coder and LSTM-3LR networks are first pre-trained inde-

pendently followed by a fine-tuning step.

3. A Neural Motion Synthesizer

In this section, we will describe our neural system for

motion synthesis, which integrates a novel architecture with

an novel loss function and useful, easily computable fea-

tures. Since our focus is on a specific problem, i.e., that of

motion synthesis, we will start by first detailing the bench-

mark we will test our models against.

3.1. Data and Preprocessing

Staying consistent with previous work on human motion

synthesis [4, 10], we use the Human 3.6 Million (h3.6m)

dataset [9], which is currently the largest publicly available

motion capture (mocap) database. The h3.6m dataset con-

sists of 7 actors performing 15 different actions. Previous

work [4, 10, 17] has been particularly focused on 4 out of

these 15 categories, e.g., walking, eating, smoking, and dis-

cussion when evaluating model performance. To create the

test-set, we follow prior work by extracting 8 motion se-

quences per action type from subject #5, yielding the exact

same 32 test sequences as used in [4, 10]. The remaining

sequences for subject #5 are then placed into a validation

subset that is used for tuning hyper-parameters. The data of

the other six subjects is then used as a training set. We fur-

thermore adopt the pose representation and evaluation met-

rics as used previously in [4, 10] to allow for experimental

comparability. Pose is represented as an exponential map of

each joint (refer to [27] for further details). To evaluate our

models, we measure the Euclidean distance between predic-

tions and ground-truth in Euler angle-space at various time

slices along the predicted sequence.

3.2. Architecture

The architecture we propose for human motion predic-

tion and synthesis is the called the Verso-Time Label Noise-

RNN model (VTLN-RNN), which consists of a top-level
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and a bottom-level RNN. Combined, the 2 RNNs have

fewer parameters than prior motion deep learning motion

synthesis models. The top-level RNN is meant to serve as a

learnable noise process inspired by the work of [8], which

runs backwards in time, starting from a sampled initial hid-

den state (zφ) and is conditioned on the one-hot encoding

of the action label. This noise process is used to generate a

sequence of K “guide vectors” (where K is the number of

future frames we want to predict, or the prediction horizon)

that will be subsequently used by the lower-level RNN. The

lower-level RNN, or the Body-RNN, runs forward in time,

taking in as input at each time step the joint angle vector

xt as well as the corresponding guide vector pt to gener-

ate a prediction of the mocap angles for time-step t+ 1. In

essence, running the VTLN-RNN entails using the top-level

noise process RNN to generate the guide vectors and then

using the Body-RNN to integrate both the bottom-up mo-

cap input vectors and the top-down guide vectors to com-

pute the final hidden states ht and the next-step predictions

x̂t. The unrolled model is depicted in Figure 1. The loss is

computed using the Body-RNN’s predicted outputs and the

corresponding ground-truth mocap vectors.

In order to sample the initial hidden state of the top-level

noise process, we first structure it to work like a multivari-

ate Gaussian distribution, drawing inspiration from the re-

parameterization trick [11] and the adaptive noise scheme

proposed in [8]. The initial state zφ of the top-level noise

process is computed as zφ = µ+Σ⊗ ǫ, where ǫ ∼ N (0, I),
µ the mean of the random variable, and Σ is its covariance,

specifically a diagonal covariance. µ and Σ are parameters

that are learned along with the rest of the neural network

weights using back-propagated gradients during training.

This formulation of the hidden state allows the designer to

input samples from a simple base distribution, e.g., a stan-

dard Gaussian, instead of having to tune the noise parame-

ters, such as its variance, by hand.

Figure 1. VTLN-RNN architecture

In this paper, we use the Gated Recurrent Unit (GRU)

[3] to instantiate both the top-level and bottom-level RNNs

of the VTLN-RNN due to its simplicity, competitive per-

formance, and ease of training compared to the LSTM [7].

The cell update equations for the top-level GRU remain the

same as described in [3] except that we note its non-state in-

put is the action label (which remains fixed over the length

of the sequence). However, the cell update equations for the

Body-GRU are as follows:

rj =σ
(
[Wrxt]j + [Urht−1]j + [Vrpt]j

)
(1)

zj =σ
(
[Wzxt]j + [Uzht−1]j + [Vzpt]j

)
(2)

h̃j

t
=Φ

(
[Wxt]j + [U(r ⊗ ht−1)]j + [V pt]j

)
(3)

ht
j =zjh

t−1

j + (1− zj)h̃j

t
. (4)

The motivation behind the VTLN-RNN structure was to hi-

erarchically decompose the motion synthesis problem into

a two-level process, much as has been successfully done

in neural-based dialogue modeling [23, 22]. The top-level

RNN would serve to roughly sketch out a course trajectory

that the lower-level RNN would take, further conditioned

on actual data and its own internal state. However, unlike

the hierarchical neural dialogue models that served as inspi-

ration, our top-level process runs in the opposite (temporal)

direction of the data itself, i.e., backwards. We chose to do

this considering gradient flow in the unrolled computation

graph. If the top-level process starts at time t = K and

works backward to time t = 1, the parameter updates of

the top-level model will depend more heavily on informa-

tion from the future (or from far later on in a sequence) and

this information would be encoded in the synaptic weights

related to a specific action type/label. When the top-level

process is used to generate the sequence of guide vectors,

it creates “hints” or coarsely defined states that the lower-

level Body-RNN can then refine based on actual input data

or its own closed-loop predictions.

While it is hard to prove that the top-level RNN is truly

“planning” out the ultimate trajectory of the model’s predic-

tions, our experiments will show that our two-level process

offers some useful regularization, improving model gener-

alization over mechanisms such as drop-out.

Additionally, our model used for both short-term and long-

term motion prediction has significantly less parameters

compared to [4, 10, 17] and yet achieves state-of-art results

as shown in Table 7 on long-term motion prediction and is

competitive with [17] state-of-art results on short-term mo-

tion prediction as shown in Table 6.

Models No. of parameters

ERD [4] 14,842,054

LSTM-3LR [4] 20,282,054

SRNN [10] 18,368,534

MBR-long [17] 3,425,334

GRU-d (ours) 2,735,670

VGRU-d (ours) 3,413,047

Table 1: Number of parameters of models.
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3.3. Incorporating Derivative Information

Motion derivatives contain crucial feature information

used to model local (near past) motion information. These

features are cheap to compute and do not require any ad-

ditional model parameters. Motivated by this, we extract

motion derivatives by a using a finite backward difference

approximation, calculated as follows:

∇n
h[f ](x) =

n∑

i=0

(−1)n
(
n

i

)
f(x− ih) (5)

where i indexes the order of the derivative we would like to

approximate, up to n, and h is a non-zero spacing constant.

We extract the n = {1, 2, 3} motion derivatives with h = 1
using the above equation and append these vectors to the

vector of joint angles. The linear decoder of our recurrent

model outputs only joint angles for the next timestep. Dur-

ing closed loop, iterative multi-step prediction we calculate

these motion derivatives on-the-fly.

3.4. Facilitating Closed­Loop Prediction

The standard way to train RNNs for sequence prediction

tasks is to feed the ground-truth inputs at every timestep

during training. Then, at test time, the model’s previous pre-

diction at t is fed in, treating it as it were ground-truth input,

when making a prediction at t + 1. This known as closed-

loop (or iterative) prediction. However, a key issue with

this method is that the model is unable to recover from ac-

cumulation of errors and the RNN predictions degrade sig-

nificantly over time. This is due to the significant mismatch

in the inputs it receives during train (i.e. ground-truth in-

puts) and test time (i.e. its own noisy predictions from pre-

vious timesteps). This causes synthesized long-term motion

trajectories to quickly diverge from the manifold of plausi-

ble motion trajectories. As mentioned earlier [4] and [10]

alleviate this issue by injecting gradually increasing mag-

nitudes of Gaussian noise to inputs during training. [17]

used a sampling loss where, during training, the model out-

puts are fed back to itself. Professor Forcing [14] addresses

this issue by using an adversarial training regime to ensure

the hidden states of the RNN are constrained to be similar

during train and test time. However, this method is compu-

tationally expensive, needs careful hyperparameter tuning,

and suffers from stability issues normally encountered in

the training of Generative Adversarial Networks. More re-

cently, [31] showed that their method, or auto-conditioning,

helps the RNN models produce good qualitative long-term

motion by alternating between feeding in ground-truth sam-

ples and the model’s own outputs during training.

We view this problem of using the RNN for multi-step it-

erative prediction at test time from the perspective of multi-

task and curriculum learning. We ultimately require the

RNNs to achieve good performance on the hard-task of

multi-step iterative prediction starting from the simple task

of one-step prediction. An intuitive way to achieve this

would be to gradually make the RNN progress from the sim-

ple task of one-step prediction (ground truth fed in at every

timestep) to the final goal of multi-step iterative prediction.

Defining a composite loss function with separate terms for

measuring one-step prediction and multi-step iterative pre-

diction losses, and weighting these terms, would ensure that

the network slowly adapts from being able to only predict

one-step ahead to becoming capable of multi-step iterative

prediction during the course of the training cycle. This in-

tuition forms the basis of our multi-objective loss function

defined as follows,

L(ŷ, y) =
1

T

T∑

t=0

(ŷo
t − yt)2 +

λ

T ′

T ′∑

t1=0

(ŷc
t1 − yt1)2 (6)

where yt = ground-truth output at t, ŷo
t

= model output in

open-loop mode at t, ŷc
t1 = model output in closed-loop

mode at t1. Open-loop mode refers to feeding ground-truth

inputs at every timestep to the RNN in order to produce

outputs and closed-loop mode refers to feeding the model’s

own output at t as input to it at t + 1. For every input se-

quence of data this loss requires us to run the forward pass

twice, i.e., i) to compute ŷo
t

in open-loop mode and ii) to

compute ŷc
t

in closed-loop mode. We gradually increase

λ using a step schedule over the training cycle starting

with a zero value at the beginning. This schedule therefore

gradually places greater importance to the loss-term con-

tributed by making closed-loop predictions as the network

has learned to make better one-step predictions. From our

long-term motion synthesis experiments, we show that our

multi-objective loss function outperforms noise scheduling

[4, 10], auto-conditioning [31], and the sampling loss of

[17].

3.5. A Complementary Long­Term Motion Metric

The use of mean-squared error (MSE) as an evaluation

metric for models has been the standard practice [4, 10, 17]

on both the short-term motion prediction and long-term mo-

tion synthesis tasks. In short-term motion prediction the

evaluation metric needs to capture how well various mod-

els are able to mimic the ground-truth data over short-term

horizons (i.e 0-500 milliseconds) as these models are used

for motion tracking applications.

However in the long-term motion synthesis task, mod-

els need to be evaluated on how well they generate plau-

sible future motion over long-term horizons given some

seed frames of motion. Since human motion is inherently

stochastic over long time horizons, models can significantly

deviate from the ground-truth trajectories and have a large

MSE despite producing qualitatively good human motion.

This problem has been noted in prior work [4, 10, 17].
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There are a variety of causes. For example: if the pre-

dictions correspond to walking at a slower pace, the joint

angles will be misaligned (frequency-shift) and MSE com-

puted will diverge over time. In the short term, the joint

angles may still be similar enough for MSE to meaning-

fully capture similarity, but in the long term they will be-

come significantly different. Similarly, if a few extra frames

of motion are added or removed (phase-shift) compared to

ground-truth sequence will result in high MSE values be-

cause frames are again misaligned. Therefore, as noted in

prior work [4, 10, 17], the use of MSE as an evaluation met-

ric is not appropriate in the long-term task. However, no

attempt had previously been made to suggest another quan-

titative metric for evaluation of long-term motion synthesis

models.

In this paper, we propose such a metric, backed by a user

study, based on the following intuition. We can say that the

qualitative essence of any action such as walking, eating,

running etc. can be captured through the frequency signa-

ture of joint angles of the body while performing that action.

For walking at a slower pace example, the power spectrum

(obtained from a discrete Fourier transform) would show

spikes at a slightly lower frequency and the addition or re-

moval of few frames would show up as a phase-shift in the

frequency domain. The examples of slow/fast or phase-

shifted walking involve periodic sub-actions, whereas ape-

riodic actions such as discussion will show a more uniform

spread of power in the frequency domain (this indicates a

lack of periodicity in the action which is also being picked

up by the power spectrum). Measuring similarity of power

spectrum between between ground truth sequence and cor-

responding generated sequence for the same motion type

would account for these phenomena and correlate better

with the visual quality (see user study results in Section 4.2)

of samples compared to MSE. The field of content-based

image retrieval have used EMD [21, 6] to quantify percep-

tual similarity of images using the EMD distance between

their color histograms. Using the intuitions from above ex-

amples and inspired by this success, we propose an EMD-

based metric over the power spectrum that overcomes many

of the shortcomings of MSE as an evaluation metric on the

long-term task.

For a given action class in the test set, let there be k se-

quences each of T length and output vector of joint angles at

each time-step be D dimensional. We define xi,j [t] to be the

ground-truth value at time t for jth feature dimension for ith

sequence and yi,j [t] to be the corresponding model predic-

tion. Also, let Xi,j [f ] and Yi,j [f ] be the squared magnitude

spectrum of Discrete Fourier Transform coefficients (per se-

quence i per feature dimension j ) of xi,j [t] and yi.j [t] re-

spectively. First we normalize Xi,j [f ] and Yi,j [f ] w.r.t f

as,

Xnorm
i,j [f ] =

Xi,j [f ]∑
f Xi,j [f ]

;Y norm
i,j [f ] =

Yi,j [f ]∑
f Yi,j [f ]

(7)

emdi,j =‖Xnorm
i,j [f ]− Y norm

i,j [f ])‖1 (8)

where, ‖.‖1 is the L1-norm. Finally, we use a power

weighted average over all i and j of 1-D EMD distances

computed in (8) as shown below,

NPSS =

∑
i

∑
j pi,j ∗ emdi,j∑
i

∑
j pi,j

pi,j =
∑

f

Xnorm
i,j [f ]

(9)

where pi,j = total power of ith feature in jth sequence

to arrive at our scalar evaluation metric for an evaluation set

of sequences for a given action class. We refer to our metric

as normalized power spectrum similarity (NPSS).

Another interpretation is that we can view long-term motion

synthesis as a generative modeling task. By this interpreta-

tion, the evaluation metric must capture differences in the

distributions of the ground-truth and predicted motion sam-

ples. NPSS captures distributional differences in the power

spectrum of joint angles of the ground-truth and predicted

sequences. As a result, it is better equipped to model differ-

ences in visual quality of motion trajectories.

4. Experiments

4.1. Training Setup

For our short-term model, the VGRU-r1 (MA), we

trained on all action classes using our proposed multi-

objective cost, calculating gradients over mini-batches of

32 samples (clipping gradient norms to 5) and optimizing

parameters over 100, 000 iterations RMSprop [28] with ini-

tial learning rate λ = 0.0001 and decayed by 0.8 every

5000 iterations until 60,000 iterations. Drop-out [30, 20],

with probability of 0.3, was applied only to the Body-RNN,

which was further modified to use skip connections that

connect input units to output units, as in [17]. The model

was given 50 seed frames and tasked with predicting the

next 10 subsequent frames (400 milliseconds). When train-

ing for this, the VTLN-RNN is unrolled backwards while

the Body-RNN is unrolled forwards, in time, over 60 steps.

(Note: MA stands for multi-action, SA for single-action.)

For our long-term models, which were trained on single-

action data, parameter optimization was carried out with

RMSprop (λ = 0.0002, decayed by 0.6 every 2000 itera-

tions) over 10, 000 iterations with mini-batches of 32, us-

ing, again, our proposed cost function. Models were fed in

50 seed frames and made to predict the next 100 frames (4
sec), which meant that the VTLN-RNN was unrolled back-

wards and the Body-RNN forwards 150 steps. The input

vector to the Body-RNN consisted of joint angles appended
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with motion derivatives. VGRU-d refers to our proposed

VTLN-RNN architecture where the VTLN-RNN and Body-

RNN both contain only a single layer of 512 GRU cells.

GRU-d refers to a 2-layer GRU model (512 units in each).

Both VGRU-d and GRU-d models are trained with our pro-

posed loss and make use of inputs augmented with motion

derivatives. VGRU-ac refers to our VTLN-RNN architec-

ture trained with auto-conditioning [31], using the recom-

mended length of 5, serving as a baseline. For all models

(short and long-term), hyper-parameters were tuned on a

separate validation set.
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Figure 2. Long-term motion synthesis on walking activity on test

sequence. Snapshots are shown at 160, 560, 1000, 2000 and 4000

milliseconds (from top-to-bottom) along the prediction time-axis.

We see that GRU-d and VTLN-GRU-d are qualitatively closer to

the ground-truth sequence than MBR-long and VTLN-GRU-ac.

4.2. User Study: Long­Term Motion Synthesis

We conducted a user study to understand how human

judgment of long-term motion correlates with MSE as well

as our proposed NPSS. A desirable quantitative evalua-

tion metric for long-term human motion would be one that

strongly agrees with human judgment. In order to conduct

this study, we considered the 6 models from Table 4 (i.e.

VGRU-r1(SA), MBR-unsup (SA), MBR-long, VGRU-ac,

GRU-d and VGRU-d). In each trial, a user was presented

videos of the ground-truth motion and corresponding model

predictions from a randomly chosen pair of models (from

the list above) for a given test-set action sequence (the or-

dering of the models was random with identities were hid-

den from the users). Users were asked to compare model

predicted motion trajectories with the ground truth, based

on which one possessed better “motion quality”. The users

were informed that the phrase “motion quality” referred

to similarity/closeness in overall skeletal pose (i.e. over-

all posture) and joint motion dynamics over the entire se-

quence, rather than simple point-to-point matches in time,

and made their decisions based on this criteria. Please refer

to the supplementary material for a sample screenshot of the

user survey video.

For each of the 4 action classes (i.e. walking, eating,

smoking, and discussion) we presented 20 video sequences

of the ground-truth with the A versus B comparison (refer

to supplementary for sample user study screenshot). Video

samples were selected uniformly and randomly (without re-

placement) from all possible, pairwise combinations of the

6 models. We then selected a test sequence for an action

class, via uniform random sampling with replacement, and

presented the ground-truth motion sequence and previously

picked paired model predictions for that sequence. This

process is repeated to generate 20 videos (i.e. 20 questions)

for each of the 4 actions. The study involved 20 participants

for each of the 4 action class surveys.

Now for the 2 evaluation metrics (i.e. MSE and NPSS)

we derive rankings of the models used in the user study. For

the MSE metric ranking, we compute the sum of MSE over

all timeslices for the long-term window (i.e. 80, 160, 320,

400, 560, 1000 milliseconds which is consistent with prior

work [10]). For NPSS, we use the results in Table 4 to ar-

rive at ranking of the models for all 4 actions. Then, we

use these rankings (MSE and NPSS) for each action class

to make predictions for each question in the user survey. As

shown in Table 3, we compute the probabilities of agree-

ment and disagreement with users for MSE and NPSS.

Metrics Walking Eating Smoking Discussion

MSE rankings

1. VGRU-r1(SA) 1. VGRU-r1(SA) 1. VGRU-r1(SA) 1. VGRU-r1(SA)

2. MBR-unsup (SA) 2. VGRU-d 2. MBR-unsup (SA) 2. VGRU-d

3. VGRU-d 3. MBR-unsup (SA) 3. VGRU-d 3. GRU-d

4. MBR-long 4. VGRU-ac 4. VGRU-ac 4. VGRU-ac

5. VGRU-ac 5. GRU-d 5. GRU-d 5. MBR-unsup (SA)

6. GRU-d 6. MBR-long 6. MBR-long 6. MBR-long

NPSS rankings

1. VGRU-d 1. GRU-d 1. VGRU-d 1. VGRU-ac

2. GRU-d 2. VGRU-ac 2. GRU-d (SA) 2. GRU-d

3. VGRU-ac 3. VGRU-d (SA) 3. VGRU-ac 3. VGRU-d

4. VGRU-r1 (SA) 4. VGRU-r1 (SA) 4. VGRU-r1 (SA) 4. MBR-unsup (SA)

5. MBR-long 5. MBR-unsup (SA) 5. MBR-unsup (SA) 5. MBR-long

6. MBR-unsup (SA) 6. MBR-long 6. MBR-long 6. VGRU-r1 (SA)

Table 2: Long-term motion model MSE & NPSS rankings.

MSE NPSS

Agree 0.4875 (39/80) 0.8125 (65/80)

Disagree 0.5125 (41/80) 0.1875 (15/80)

Table 3: User agreement ratios for MSE & NPSS aggre-

gated across all actions taking majority user vote as ground-

truth. a/b = number of times user answers agrees with met-

ric’s answer/ total equences in user survey across 4 actions.
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Further, we conducted a Binomial test of proportions to

test the claim that NPSS agrees better with user judgment

than MSE. In this test, p1 is defined to be the probability

that, on a random sample, NPSS will agree with human

ordering/choice while p2 is the probability that MSE will

agree with human ordering/choice. We take the null hy-

pothesis to be H0 : p1 ≤ p2 and the alternative hypothesis

to be HA : p1 > p2 and seek to test the null against the

alternative hypothesis. Scientific studies typically set the

threshold of statistical significance for p-values to be be-

low 0.01 (smaller p-values would better support the claim

that NPSS is a better metric, confirming that p1 is statisti-

cally larger than p2). The value we obtained is significantly

lower than this threshold, i.e., a p-value of 1.7× 10−5.

5. Results and Discussion

Given the results of our user study, we argue that NPSS

should be preferred (over MSE) for measuring model gen-

eration quality over long sequences (for predictions made

over longer horizons). However, to holistically evaluate

a motion synthesis model, we recommend using NPSS in

tandem with MSE when evaluating a model’s ability to

make both short-term and long-term predictions. The re-

sults of our user study for NPSS is promising, however,

further studies should be conducted to further validate and

strengthen our findings.

For compatibility with prior work, Table 7 compares the

MSE of Euler angles, measured at particular time slices on

test sequences, with competing methods such as LSTM-

3LR and ERD [4], SRNN by [10], and MBR-long [17].

Although our short-term model, VGRU-r1 (SA), displays

the best performance (lowest mse) until the 1 second mark,

it has been noted by [10, 17] and further corroborated by

the results of our user study that MSE is not appropriate for

the task of long-term motion synthesis. Table 4 shows the

NPSS metric results for models evaluated on the test set.

Models Walking Eating Smoking Discussion

VGRU-r1(SA) (ours) 1.217 1.312 1.736 4.884

MBR-unsup (SA) [17] 1.809 1.481 2.794 2.258

MBR-long [17] 1.499 1.621 4.741 2.882

VGRU-ac 1.032 0.842 1.426 1.651

GRU-d (ours) 0.931 0.836 1.274 1.688

VGRU-d (ours) 0.887 0.846 1.235 1.777

Table 4: Test-set NPSS scores (lower is better). Above

the double line: short-term models, i.e., MBR-unsup (SA),

MBR-unsup. (MA) [17] (re-trained on single-action), and

ours, sampled for long-term durations. Below the line:

long-term models, i.e., MBR-long (SA) [17], and ours, such

as GRU-d, VGRU-d, & VGRU-ac.

We can see that the short-term models, VGRU-r1 (SA)

and MBR-unsup (SA), despite having the lowest MSE val-

Models Short-Term

Walking Eating Smoking Discussion

VGRU-r1 (SA) (ours) 0.120 0.091 0.052 0.258

MBR-unsup (SA) [17] 0.238 0.249 0.183 0.416

MBR-long [17] 0.161 0.214 0.265 0.703

VGRU-ac 0.118 0.113 0.075 0.256

GRU-d (ours) 0.127 0.095 0.126 0.185

VGRU-d (ours) 0.117 0.121 0.084 0.194

Medium-Term

VGRU-r1 (ours)(SA) 0.194 0.093 0.079 0.375

MBR-unsup (SA) [17] 0.206 0.178 0.237 0.439

MBR-long [17] 0.237 0.160 0.405 0.477

VGRU-ac 0.188 0.103 0.097 0.298

GRU-d (ours) 0.170 0.096 0.083 0.258

VGRU-d (ours) 0.179 0.080 0.067 0.331

Long-Term

VGRU-r1 (SA) (ours) 0.544 0.764 0.948 2.72

MBR-unsup (SA) [17] 0.884 0.684 1.077 0.943

MBR-long [17] 0.549 0.754 1.403 1.245

VGRU-ac 0.460 0.459 1.051 0.811

GRU-d (ours) 0.406 0.332 0.723 0.785

VGRU-d (ours) 0.359 0.288 0.577 1.001

Table 5: NPSS at 3 different time scales i.e 1) short-term:

0-1 second 2) medium-term: 1-2 seconds 3) long-term: 2-4

seconds window prediction on test set

ues (until 1 second, as in Table 7), achieve worse scores in

terms of NPSS when compared to long-term models. This

result is in accordance with the visual quality of samples

produced by these models and illustrates how NPSS is bet-

ter equipped to capture differences in sample quality than

MSE. Based on the NPSS metric, VGRU-d and GRU-d

produce better long-term motion trajectories, outperform-

ing MBR-long and VGRU-ac across all 4 action classes.

In order to discern the strengths and weaknesses of short-

term and long-term models, we computed the NPSS metric

on test sequences at 3 different timescales, i.e., 1) short-

term: 0-1 s, 2) medium-term: 1-2 s, 3) long-term: 2-4 s

along the prediction timeline for test sequences shown in

Table 5. Observe that the short-term models (above double

line) VGRU-r1 (SA) and MBR-unsup (SA) perform com-

petitively with long-term models (below double line) in the

short-term timescale. In the medium-term prediction hori-

zon, the short-term models degrade slightly more than the

long-term models, as evidenced by a small gap in the mea-

sured NPSS values. However, in the long-term prediction

horizon (of 2-4 s), the short-term models degrade signifi-

cantly relative to the long-term models. This is evidenced

by wider gaps in NPSS values. GRU-d and VGRU-d mod-

els perform best across all actions and time-horizons, effec-

tively outperforming MBR-long and VGRU-ac.

Finally, Table 6 shows MSE results for short-term motion

prediction experiments on multi-action data on test set se-

quences. Zero-velocity is a simple, yet hard-to-beat base-

line, introduced in [17], which uses the previous frame as
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Walking Eating Smoking Discussion

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Zero-velocity [17] 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04

MBR-unsup (MA) [17] 0.27 0.47 0.70 0.78 0.25 0.43 0.71 0.87 0.33 0.61 1.04 1.19 0.31 0.69 1.03 1.12

MBR-sup (MA) 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09

VGRU-r1 (MA) (ours) 0.34 0.47 0.64 0.72 0.27 0.40 0.64 0.79 0.36 0.61 0.85 0.92 0.46 0.82 0.95 1.21

± 1e-3 ± 1e-3 ± 2e-3 ± 2e-3 ± 2e-3 ± 1e-3 ± 2e-3 ± 2e-3 ± 6e-4 ± 1e-3 ± 1e-3 ± 1e-3 ± 2e-3 ± 1e-3 ± 3e-3 ± 5e-3

Table 6: Short-term results: MSE on test sequences for short-term motion prediction. All models are trained on multiple

actions. VGRU-r1 (MA) refers to our VTLN-RNN with 1 layer (512 GRU unit) and a Body-RNN with 1 layer 512 GRU

cells, where Body-RNN has residual input-to-output connections as in [17]. For the VGRU-r1, model we compute mean and

standard error over 30 trials.

Walking Eating Smoking Discussion

models 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

MBR-unsup (SA) [17] 0.37 0.655 0.987 1.095 1.286 1.476 0.411 0.781 1.375 1.630 1.926 2.106 0.472 0.891 1.497 1.726 2.077 2.581 0.701 1.326 2.134 2.433 2.996 2.950

VGRU-r1 (SA) (ours) 0.410 0.570 0.807 0.868 1.026 1.231 0.285 0.441 0.668 0.829 0.995 1.531 0.378 0.656 0.916 0.994 1.147 1.837 0.504 0.909 1.074 1.282 1.653 2.168

± 1e-3 ± 1e-3 ± 2e-3 ± 3e-3 ± 3e-3 ± 3e-3 ± 2e-3 ± 2e-3 ± 2e-3 ± 3e-3 ± 3e-3 ± 3e-3 ± 1e-3 ± 1e-3 ± 1e-3 ± 2e-3 ± 2e-3 ± 2e-3 ± 1e-3 ± 2e-3 ± 4e-3 ± 5e-3 ± 6e-3 ± 7e-3

ERD [4] 1.30 1.56 1.84 - 2.00 2.38 1.66 1.93 2.28 - 2.36 2.41 2.34 2.74 3.73 - 3.68 3.82 2.67 2.97 3.23 - 3.47 2.92

LSTM-3LR [4] 1.18 1.50 1.67 - 1.81 2.20 1.36 1.79 2.29 - 2.49 2.82 2.05 2.34 3.10 - 3.24 3.42 2.25 2.33 2.45 - 2.48 2.93

SRNN [10] 1.08 1.34 1.60 - 1.90 2.13 1.35 1.71 2.12 - 2.28 2.58 1.90 2.30 2.90 - 3.21 3.23 1.67 2.03 2.20 - 2.39 2.43

VGRU-ac 1.180 1.210 1.247 1.236 1.291 1.363 1.150 1.210 1.310 1.400 1.490 1.700 1.81 1.950 2.080 2.140 2.240 2.440 1.720 1.970 1.930 1.870 2.050 2.147

± 3e-4 ± 3e-4 ± 2e-4 ± 3e-4 ± 6e-4 ± 7e-4 ± 2e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4

MBR-long [17] 0.93 1.05 1.24 1.29 1.43 1.56 1.13 1.35 1.75 1.91 2.07 2.28 1.29 2.07 2.53 2.56 2.76 3.39 1.63 2.03 2.57 2.72 2.96 2.94

GRU-d (ours) 1.311 1.333 1.369 1.364 1.350 1.370 1.275 1.305 1.386 1.466 1.530 1.702 1.943 2.062 2.201 2.255 2.342 2.486 1.744 1.980 2.026 1.994 2.214 2.172

VGRU-d (ours) 1.108 1.146 1.211 1.200 1.220 1.280 1.090 1.160 1.240 1.330 1.370 1.560 1.670 1.800 1.940 1.980 2.060 2.320 1.749 2.037 2.011 1.868 2.088 2.318

± 1e-4 ± 1e-4 ± 2e-4 ± 2e-4 ± 3e-4 ± 2e-4 ± 2e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4 ± 1e-4

Table 7: Long-term motion results: All models are trained on single-action data (SA = single-action). Top set show short-term

models including the (MBR-unsup(SA) = Residual unsup. (MA) from [17] re-trained on SA) and ours sampled for longer

duration to match long-term duration. Bottom set shows long-term models by MBR-long = sampling-based loss (SA) from

[17], ERD and LSTM-3LR from [4], SRNN from [10]), our GRU-d and VGRU-d and VGRU-ac. Since the VTLN-RNN

architecture samples from a noise distribution for each forward pass, table shows mean and standard deviation over 30 trials.

the prediction for current one. We can see that VGRU-r1

model is competitive with the state-of-art short-term MBR

model as well the quite powerful, zero-velocity baseline.

These results show that our proposed VTLN-RNN archi-

tecture, augmented with motion-derivative features and our

novel multi-objective loss function, can serve as useful pre-

dictors of short-term motion prediction as well as powerful

long-term motion synthesizers. Since our models, particu-

larly the long-term ones, contain multiple innovations, we

conducted an ablation study to test the utility of each of pro-

posed components: 1) the 2-level processing VTLN-RNN

architecture itself (i.e., the backward and forward process-

ing layers), 2) appending a vector of approximate deriva-

tives of joint angles as features, and 3) the multi-objective

cost function for parameter optimization. Our ablative study

examined multiple variants including: 1) a full VTLN-RNN

architecture with derivative features and the multi-objective

cost, 2) a full VTLN-RNN architecture with derivative fea-

tures without the new cost, 3) a regular RNN model (with-

out 2-level processing component) with derivative features,

and 4) a regular RNN (without the 2-level processing and

without appending derivatives as features or use of the pro-

posed cost). Details of this study are provided in the sup-

plementary. In short, our study revealed that each of these

innovations were necessary in improving the performance

of the long-term synthesis model, with the cost playing the

most important role.

6. Conclusions and Future Work

For human motion prediction and synthesis, we intro-

duced the VTLN-RNN architecture, which uses motion

derivative features as well as novel multi-objective loss

function to achieve state-of-art performance on long-term

motion synthesis. The proposed framework also achieves

competitive performance on short-term motion prediction

thereby demonstrating general applicability. Furthermore,

we proposed a new metric, the Normalized Power Spec-

trum Similarity (NPSS), and demonstrated that the metric

addresses and alleviates key drawbacks of the mean square

error, typically used as an evaluation metric for long-term

motion synthesis. Future research directions include incor-

porating the NPSS metric into the parameter optimization

process and developing better models that can effectively

train on multi-action data across all situations, particularly

for long-term motion synthesis.
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