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structure, we analyze the gradient propagation of recursive

block and find that the gradient explosion of a recursive net-

work is caused by BN layer. Therefore, we propose Loopy

Variable Batch Normalization to stabilize the gradients and

benefit feature re-usage in a more general and easier way

than LSTM [10]. In particular, we employ different BN

layer for each looping. By applying LVBN, the recursive

network can be trained better with fewer parameters.

To incorporate the discrete decisions, we build upon re-

cent work [39] that introduces the Gumbel-Max trick [23]

and its differentiable approximations to allow for the propa-

gation of gradient through the discrete decision. Further, the

gate unit makes discrete decision deterministically by re-

moving the gumbel noise while maintains the performance.

To deal with the statistical bias, we make an improve-

ment on LVBN, which normalizes all the inputs and up-

dates the population statistics (moving averaged statistics

of means and variances across all training images) used

in testing time. Some inputs will jump out of loop in ad-

vance, while they should contribute to optimizing the gate

unit but not to population statistics. So our improved LVBN

(I-LVBN) corrects the population statistics by normalizing

inputs according to the decision made by the gate unit and

updates the population statistics across the inputs which are

allowed to pass.

DRNN, combined with the gate unit and I-LVBN,

achieves even better performance while accelerating the in-

ference of deep networks. To evaluate DRNN, we use Mo-

bileNetV2 [33] and ResNet [13] as the base models on clas-

sification and other visual tasks. We approve that, with the

progressive strategy designed for recursive network, Dy-

namic Recursive (DR) ResNet-53 outperforms ResNet-101

while reducing model parameters by 47.0% and computa-

tional cost by 35.2%. Further, we study the dynamic recur-

sive behavior of the learned model and reveal the relation

between the image saliency and the number of loop time.

Our contributions are listed as follows:

• Presenting a Dynamic Recursive Mechanism to reduce

the computational cost.

• Proposing LVBN to stabilize the gradients of recursive

networks and make full use of convolutional parame-

ters. Improving LVBN to deal with the statistical bias

caused by different loop time of a recursive block dur-

ing training.

• Model parameters and computational cost can be re-

duced while obtaining a universal improvement of ac-

curacy.

2. Related Work

Recursive network. Different from the way of shar-

ing weights along the sequence in Recurrent Neural Net-

works (RNN) [40], recursive network shares weights at ev-

ery node, which could be considered as a generalization of

RNN. [7] tries recursive layers on image recognition but

gets worse performance than a single convolution due to

overfitting. [36, 30] apply recursive blocks when the input

dimension is twice that of output. Studies, incorporating re-

current connections into CNNs, also show superiority in ob-

ject recognition [27], super-resolution [25] and some other

tasks. Recently, based on the studies about recurrent struc-

ture and iterative refinement [24, 28], densely connected

structure is widely used to obtain more efficient model like

DenseNet [18] and CliqueNet [43]. In contrast to these ap-

proaches, DRNN behaves as a strategy that can be generally

applied in networks with modern block structure. Requiring

no complicated connections from former inputs, very deep

DRNN performs well on robustness and convergence.

Adaptive computation. The main purpose of adap-

tive computation is providing “Customized Service” for

different inputs to reduce overall inference time, while

maintaining or even boosting accuracy. Cascade detec-

tors [8, 41] are early methods that exploit this idea in

computer vision, relying on extra prediction modules or

handcrafted control strategies. Early prediction models

like BranchyNet [38] and Adaptive Computation Time

(ACT) [11] adopt branches or halt units to decide whether

the model could stop early. Figurnov et al. [9] further ex-

tend this idea to the spatial domain in ResNet by apply-

ing ACT to each spatial position of multiple image blocks.

Our approach is closer to the works [39, 42] which add gate

unit on every block to determine the execution of block-

operation according to current input. Inspired by above

methods, a reusable gate unit is designed to reconstruct net-

work structure on the fly conditioned on the input during

execution. After every single forward of recursive block,

gate unit of recursive block is activated to make a routing

choice between going back to block or just passing by and

forwarding normally.

Model Compression. Besides critical need of accuracy

improvements, reducing storage and inference time also

plays an important role in deploying top-performing deep

neural networks. Related techniques focus on many fields

like distillation [3, 15], filter pruning [5, 31], low-rank fac-

torization [21], quantization [12], compression with struc-

tured matrices [4, 35] and network binarization [32]. These

works are applied after training the initial networks and usu-

ally used as post-processing. DRNN could be trained end-

to-end without well-designed training rules.

Other Compact deep nets like SqueezeNet [20] and Mo-

bileNet [17, 33] are also end-to-end trainable, but they ap-

ply the same computation to all images. Thanks to the loop

structure controlled by gate units, DRNN could reuse one

block dynamically. In experiments, we prove even com-

pact model like MobileNetV2 could be further improved

by applying the dynamic recursive block. Theoretically, re-

cursively used blocks could be further pruned or quantized
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Model Error Params(106) FLOPs(109)

SD-ResNet 110 [19] 5.25 1.7 0.255

Pre-ResNet 110 [14] 6.37 1.7 0.255

AIG-ResNet 110 [39] 5.76 1.78 0.215

RCNN-160 [27] 7.09 1.86 -

ResNet-110 [13] 6.61 1.7 0.255

DR-Res 74 (l = 2) 5.21 0.92 0.220

DR-Res 66 (l = 3) 5.66 0.73 0.214

DR-Res 58 (l = 4) 5.79 0.55 0.197

DR-Res 54 (l = 5) 5.97 0.45 0.192

ResNet-56 [13] 6.97 0.85 0.127

DR-Res 40 (l = 2) 6.51 0.50 0.110

DR-Res 32 (l = 4) 6.73 0.310 0.099

ResNet-20 [13] 8.75 0.27 0.041

DR-Res 16 (l = 2) 8.14 0.18 0.032

Table 1: Error rate (%) on CIFAR-10. All of the DR-ResNets out-

perform their counterpart while using less parameters and com-

putation cost. Our proposed approach for dynamic recursive net-

works is applicable to both deep network architectures and shal-

lower ones.

of sizes {32, 16, 8} respectively, with n blocks for each fea-

ture map size. Our DR-ResNet has ⌊ (n−1)
l

⌋ + 1 blocks for

each feature map size where l is the number of loop. An ad-

ditional block is for downsampling. Such a design ensures

that the maximum computational cost of our network does

not exceed its counterpart.

We fix the early blocks up to the first downsampling be-

cause the low-level feature maps are not yet distinguish. For

the gates, we set the size of hidden state d to 16 and the tar-

get executed rate to 0.7.

We follow a similar training scheme as [13] with a

weight decay of 0.0005 and momentum of 0.9. The models

are trained with a mini-batch size of 256 for 350 epochs.

We start with learning rate of 0.1 and divide it by 10 after

150 and 250 epochs. All the images for training are padded

with 4 pixels on each side and a 32 × 32 crop is randomly

sampled from the padded image or its horizontal flip.

Results Tab. 1 shows test error, the number of model

parameters and floating point operations(multiply-adds) on

CIFAR-10 [26]. The first part in the table includes some

variant methods based on ResNet and a study that also in-

corporates recursive structure. The other parts compare our

DR-ResNets with ResNets. From the results, we observe

that all of the DR-ResNets outperform their counterpart.

The more times block loops, the less parameters and com-

putation are need. Whereas, the performances are similar.

Overall, DR-ResNet 54 is able to reduce parameters and

computation by 73.53% and 24.71% while outperform-

ing the ResNet-110. Since the ResNet-110 is overfitted

for CIFAR-10, stochastic depth ResNet-110 regularizes by

dropping layers and AIG-ResNet 110 applies adaptive infer-

ence graph. DR-ResNet 110 outperforms them by reusing

the convolutional layer conditioned on the input example.

Our proposed method can be applied not only to deep net-

works, but also to shallower networks like ResNet-20. DR-

ResNet 16 can also reduce parameters and computation by

33.3% and 22.0% while outperforming its counterpart.

4.2. Results on ImageNet

In experiments on ImageNet [6], we analyze the effec-

tiveness of our LVBN, dynamic recursive mechanism and

Improved LVBN based on ResNet-101 and evaluate a se-

ries of network on ImageNet.

Model configurations and training details We build

DR-ResNet and DR-MobileNetV2 by inheriting the resid-

ual bottleneck and inverted residual block.

Blocks in early stage or not repetitive are fixed. The dy-

namic recursive block groups are marked bold in Tab. 2,

while the downsampling layers stay unchanged. The num-

ber of blocks is designed to ensure the maximum compu-

tational cost of our network does not exceed its counter-

part. The blocks in last group loop twice in DR-ResNets

because the last group comprises only three blocks. In DR-

MobileNetV2, the loop time of the fourth group is three and

the other dynamic recursive blocks loop twice.

For our counterparts of ResNet-101, ResNet-50 and Mo-

bileNetV2, the target rate is set to 0.7, 0.8, 0.9. All the

gates are initialized at a executed rate of 85% at the begin-

ning of training. The size of the hidden state is 16 for gates

in DR-ResNets. Moreover, each gate unit comprises only

one fully-connected layer for more compact structure.

We follow the ResNet training procedure, with learning

rate starting at 0.1 and decaying by 0.1 every 30 epochs.

The weight decay is 0.0001 and momentum is 0.9. All the

models are trained for 100 epochs. One exception is that for

DR-MobileNetV2 and its counterpart, we start the learning

rate at 0.01 and decay it by 0.1 at 200 and 300 epochs. Both

are optimized by stochastic gradient descent (SGD) for 400

epochs.

We apply the scale and aspect ratio augmenta-

tion as GoogleNet [37] and the photometric distortions

method [16]. During test time, the images are rescaled to

256× 256 follwed by a 224× 224 center crop.

Quantitative comparison Tab. 2 shows top-1 accuracy

rate and models’ details on ImageNet. From the results

we can make the following key observations. DR-ResNet

with 65 and 53 layers have better performance than ResNet-

101 while using less computational resources. Shallower

DRNNs also outperform their counterpart. In particular,

DR-ResNet 53 saves 35.2% of computation and 47.0% of

parameters. Similarly, DR-ResNet 35 outperforms ResNet-

50 while using 33.7% less parameters and 17.8% less av-

erage computational cost. For DR-ResNet, increasing loop
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Model Top 1 Top 5 Params(106) FLOPs(109) Blocks

ResNet-101 [13] 77.95 93.86 44.54 7.6 (3,4,23,3)

Stochastic Depth ResNet-101 [19] 77.20 93.56 44.54 7.6 (3,4,23,3)

AIG-ResNet-101 [39] 77.93 93.85 46.23 5.11 (3,4,23,3)

DR-ResNet 65 (l = 2) 78.12 93.90 28.12 5.49 (3,4,12,2)

DR-ResNet 53 (l = 3, t = 0.7) 77.96 93.86 23.60 4.92 (3,4,8,2)

DR-ResNet 53 (l = 3, t = 0.65) 77.14 93.52 23.60 4.62 (3,4,8,2)

DR-ResNet 53 (l = 3, t = 0.6) 76.91 93.51 23.60 4.35 (3,4,8,2)

DR-ResNet 47 (l = 4) 77.41 93.54 21.34 4.56 (3,4,6,2)

DR-ResNet 44 (l = 5) 77.27 93.53 20.21 4.25 (3,4,5,2)

ResNet-50 [13] 76.45 92.90 25.56 3.8 (3,4,6,3)

Stochastic Depth ResNet-50 [19] 72.25 90.86 25.56 3.8 (3,4,6,3)

AIG-ResNet 50 [39] 76.42 93.17 26.56 3.15 (3,4,6,3)

DR-ResNet 35 (l = 2) 76.48 92.92 17.61 3.12 (3,3,3,2)

MobileNetV2 [33] 71.8 90.27 3.40 0.300 (1,2,3,4,3,3,1)

DR-MobileNetV2 71.8 90.28 2.96 0.275 (1,2,2,2,2,2,1)

Table 2: Top 1 and Top 5 accuracy rate (%) on ImageNet. Dynamic recursive block groups are bold in table. All the downsampling blocks

are not recursive in block groups. The last group blocks loop twice for computational equality in DR-ResNets. The result demonstrates

that DR-ResNet is more efficient and also improves overall classification quality. All the MobileNetV2, ResNets and AIG-ResNets are

reimplemented with the training procedure in Sec. 4.2.

Model L G I Top 1
Params FLOPs

(106) (109)

ResNet-101 [13] 77.95 44.54 7.6

R-ResNet 53 Fail 23.39 7.6

R-ResNet 53
√

77.22 23.39 7.6

R-ResNet 53
√ √

77.52 23.60 4.92

R-ResNet 53
√ √ √

77.96 23.60 4.92

R-ResNet 53*
√

78.38 23.39 7.6

Table 3: The comparative and ablative result of our dynamic re-

cursive network on ImageNet validation set. When Recursive

ResNet-53 is trained with smaller learning rate for more epochs,

it(R-ResNet 53*) also outperforms ResNet-101.

time performs better than reducing the execution rate. In

particular, DR-ResNet 53 with a target rate of 0.65 has a

larger expected total loop time than DR-ResNet 47.

For the deeper network, reusing the parameters of convo-

lutional layer first improve accuracy, before increasing the

loop time further decrease accuracy insignificantly. This

demonstrates that reusing the parameters of convolutional

layer is efficient to improve the capacity of network by dy-

namic recursive mechanism. Further, reusing blocks adap-

tively is often more effective to save computational resoures

compared to reducing blocks of identical structure directly.

As expected, decreasing the target rate reduces computa-

tion time. Interestingly, increasing loop times leads to bet-

ter result than reducing the execution rate. More loop time

means that more high-level information is used to refine the

low-level filters to get a stronger ability for representation.

The recursive structure benefits feature re-usage.

Due to our proposed approach for dynamic recursive net-

works is general, we also apply dynamic recursive block

on MobileNetV2. The result show that the training of dy-

namic recursive models can be applied to convolution and

depthwise-sparable convolution layers in different building

blocks.

These results indicate that the parameters of convolu-

tional layer is underused and DRNN is an effective means

to adaptively assemble network graph on the fly.

Analysis of dynamic recursive network To understand

dynamic recursive network, we conduct ablation experi-

ments to examine how each proposed component affects

the final performance. We use R- to indicate naive recur-

sive models. L indicates that we replace BN with LVBN,

G stands for gate units and I is the improved LVBN. Each

component is an improvement based on the previous one.

From results in Tab. 3, some promising conclusions can

be summed up as follows:

• LVBN is crucial to reuse convolution layers. Naive

recursive network (R-ResNet 53) fails to converge to

a good solution and becomes divergent after a few

epochs, as illustrated in Fig. 6. LVBN can not only

get correct population statistics for each loop but also

solve gradient explosion. Utilizing LVBN, we can

get a result similar to baseline without changing any

hyper-parameters of optimization algorithm. We train

a recursive network with LVBN starting with a lower

learning rate of 0.01 and weight decay of 0.0005 for

180 epochs. The learning rate is divided by 10 after
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Figure 6: Testing accuracy on validation

set of naive R-ResNet 53 and R-RseNet

53 with LVBN. For the naive network, we

start with a smaller learning rate of 0.01.
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cuted feature maps in DR-ResNet 53. Both

shallow and deep blocks are shown. X-axis

represents channel index.
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11.74 out of 23 loops are executed on av-

erage. According to the target 0.7, the total

loop time has an expect of 11.921.

Figure 9: Visualization of easy and hard examples in ImageNet validation set with DR-ResNet 53. The images on the top are easy example

(loop less than 9 times) and the bottom ones are hard examples (loop more than 15 times).

100, 130 and 160 epochs. This trick leads to a better

top-1 accuracy of 78.38%, the last row of Tab. 3, with-

out adding FLOPs compared to ResNet-101. It shows

a trade-off between the size of model and the difficulty

of optimizing.
• Dynamic recursive mechanism is efficient. Since

reusing lots of parameters in network poses extra opti-

mization contrast to unrolled networks, a dynamic re-

cursive network with LVBN is expected to have lower

performance. Howerer, the comparison between third

and fourth rows in Tab. 3 shows that our dynamic

recursive mechanism effectively improves the perfor-

mance. The prediction cost is reduced by 35.2% while

accuracy is increased by 0.4%. The main reason is that

our gate unit is efficient and reduces the difficulty of

optimizing recursive network by jumping out of loop

in advance. The result also indicates that shallower

network is easy to optimize and able to tackle most

easy examples.
• Improved LVBN is essential. It deals with the devia-

tion of population statistics caused by the feature maps

which the gates forbid to pass. Each channel of the

features maps has different mean and variance. Fig. 7

shows the diverse mean and variance of the different

feature maps according to outputs of gates. The results

shows that the value discrepancy increases in the deep

layer, which indicates that the gate is more confident

in deeper layers.

Visualization of loop time Our primary interest lies in

understanding the learned gated pattern. Due to the dy-

namic recursive mechanism, loop time varies across im-

ages. Fig. 8 shows the distribution over the total loop times

in DR-ResNet 53 are executed on ImageNet validation set.

On average 11.74 loops are executed with a standard devia-

tion of 1.50. We collect the easy examples which skip most

loops and the hard examples which execute most loops in

Fig. 9 for ImageNet validation set. Images in the same col-

umn are in the same category. Interestingly, the easy exam-

ples are clear and iconic while the hard examples are blurry

and occluded, which are even hard for humans to recongize.

5. Conclusion

In this work, we introduce Dynamic Recursive Neu-
ral Network that reuses the identical blocks on the fly
in a neat way. The usual gradient problem in recursive
networks is solved by our LVBN. DRNN also learns to
adaptively skip redundant loop based on the input. Fur-
ther, we correct the population statistics of LVBN which
is combined with dynamic recursive mechanism. Experi-
ments on ImageNet and CIFAR show that DRNNs reduce
model size and computational cost substantially while out-
performing. The proposed DRNN could be further ex-
tended to densely-connected or inception-based networks
and may help to optimize the learning of long-term depen-
dencies.
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