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Abstract

Transfer learning, which allows a source task to affect

the inductive bias of the target task, is widely used in com-

puter vision. The typical way of conducting transfer learn-

ing with deep neural networks is to fine-tune a model pre-

trained on the source task using data from the target task.

In this paper, we propose an adaptive fine-tuning approach,

called SpotTune, which finds the optimal fine-tuning strat-

egy per instance for the target data. In SpotTune, given

an image from the target task, a policy network is used

to make routing decisions on whether to pass the image

through the fine-tuned layers or the pre-trained layers. We

conduct extensive experiments to demonstrate the effective-

ness of the proposed approach. Our method outperforms

the traditional fine-tuning approach on 12 out of 14 stan-

dard datasets. We also compare SpotTune with other state-

of-the-art fine-tuning strategies, showing superior perfor-

mance. On the Visual Decathlon datasets, our method

achieves the highest score across the board without bells

and whistles.

1. Introduction

Deep learning has shown remarkable success in many

computer vision tasks, but current methods often rely on

large amounts of labeled training data [22, 15, 16]. Trans-

fer learning, where the goal is to transfer knowledge from

a related source task, is commonly used to compensate for

the lack of sufficient training data in the target task [35, 3].

Fine-tuning is arguably the most widely used approach for

transfer learning when working with deep learning mod-

els. It starts with a pre-trained model on the source task

and trains it further on the target task. For computer vision

tasks, it is a common practice to work with ImageNet pre-

trained models for fine-tuning [20]. Compared with training

from scratch, fine-tuning a pre-trained convolutional neural

network on a target dataset can significantly improve per-

formance, while reducing the target labeled data require-

ments [14, 51, 44, 20].
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Figure 1: Given a deep neural network pre-trained on a

source task, we address the question of where to fine-tune

its parameters with examples of the target task. We propose

a novel method that decides, per training example, which

layers of the pre-trained model should have their parame-

ters fixed, i.e., shared with the source task, and which layers

should be fine-tuned to improve the accuracy of the model

in the target domain.

There are several choices when it comes to realizing the

idea of fine-tuning of deep networks in practice. A natural

approach is to optimize all the parameters of the deep net-

work using the target training data (after initializing them

with the parameters of the pre-trained model). However, if

the target dataset is small and the number of parameters is

huge, fine-tuning the whole network may result in overfit-

ting [51]. Alternatively, the last few layers of the deep net-

work can be fine-tuned while freezing the parameters of the

remaining initial layers to their pre-trained values [44, 1].

This is driven by a combination of limited training data in

the target task and the empirical evidence that initial layers

learn low-level features that can be directly shared across

various computer vision tasks. However, the number of ini-

tial layers to freeze during fine-tuning still remains a man-
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ual design choice which can be inefficient to optimize for,

especially for networks with hundreds or thousands of lay-

ers. Further, it has been empirically observed that current

successful multi-path deep architectures such as ResNets

[15] behave like ensembles of shallow networks [47]. It is

not clear if restricting the fine-tuning to the last contiguous

layers is the best option, as the ensemble effect diminishes

the assumption that early or middle layers should be shared

with common low-level or mid-level features.

Current methods also employ a global fine-tuning strat-

egy, i.e., the same decision of which parameters to freeze

vs. fine-tune is taken for all the examples in the target task.

The assumption is that such a decision is optimal for the

entire target data distribution, which may not be true, par-

ticularly in the case of insufficient target training data. For

example, certain classes in the target task might have higher

similarity with the source task, and routing these target ex-

amples through the source pre-trained parameters (during

inference) might be a better choice in terms of accuracy.

Ideally, we would like these decisions to be made individ-

ually for each layer (i.e., whether to use pre-trained param-

eters or fine-tuned parameters for that layer), per input ex-

ample, as illustrated in Figure 1.

In this paper, we propose SpotTune, an approach to learn

a decision policy for input-dependent fine-tuning. The pol-

icy is sampled from a discrete distribution parameterized by

the output of a lightweight neural network, which decides

which layers of a pre-trained model should be fine-tuned or

have their parameters frozen, on a per instance basis. As

these decision functions are discrete and non-differentiable,

we rely on a recent Gumbel Softmax sampling approach

[30, 18] to train the policy network. At test time, the policy

decides whether the features coming out of a layer go into

the next layer with the source pre-trained parameters or the

fine-tuned parameters.

We summarize our contributions as follows:

• We propose an input-dependent fine-tuning approach

that automatically determines which layers to fine-tune

per target instance. This is in contrast to current fine-

tuning methods which are mostly ad-hoc in terms of

determining where to fine-tune in a deep neural net-

work (e.g., fine-tuning last k layers).

• We also propose a global variant of our approach that

constrains all the input examples to fine-tune the same

set of k layers which can be distributed anywhere in

the network. This variant results in fewer parameters in

the final model as the corresponding set of pre-trained

layers can be discarded.

• We conduct extensive empirical evaluation of the pro-

posed approach, comparing it with several competitive

baselines. The proposed approach outperforms stan-

dard fine-tuning on 12 out of 14 datasets. Moreover,

we show the effectiveness of SpotTune compared to

other state-of-the-art fine-tuning strategies. On the Vi-

sual Decathlon Challenge [37], which is a competi-

tive benchmark for testing the performance of multi-

domain learning algorithms with a total of 10 datasets,

the proposed approach achieves the highest score com-

pared with the state-of-the-art methods.

2. Related Work

Transfer Learning. There is a long history of transfer

learning and domain adaptation methods in computer vision

[8, 35]. Recently, transfer learning based on deep neural

networks has received significant attention in the commu-

nity [12, 6, 7, 24, 13]. Fine-tuning a pre-trained network

model such as ImageNet on a new dataset is the most com-

mon strategy for knowledge transfer in the context of deep

learning. Methods have been proposed to fine-tune all net-

work parameters [14], only the parameters of the last few

layers [28], or to just use the pre-trained model as a fixed

feature extractor with a classifier such as SVM on top [42].

Kornblith et al. [20] studied several of these options to ad-

dress the question of whether better ImageNet models trans-

fer better. Yosinski et al. [51] conducted a study on the im-

pact of transferability of features from the bottom, middle,

or top of the network with early models, but it is not clear

whether their conclusions hold for modern multi-path ar-

chitectures such as Residual Networks [15] or DenseNets

[16]. Yang et al. [50] have recently proposed to learn re-

lational graphs as transferable representations, instead of

unary features. Closely related to our work, Li et al. [25]

investigated several regularization schemes that explicitly

promote the similarity of the fine-tuned model with the orig-

inal pre-trained model. Different from all these methods,

our proposed approach automatically decides the optimal

set of layers to fine-tune in a pre-trained model on a new

task. In addition, we make this decision on a per-instance

basis.

Feature Sharing Across Tasks. In the multi-task set-

ting, knowing which tasks or parameters are shareable is

a longstanding challenge [19, 23, 45, 29]. Early methods

were designed for shallow classification models [52, 17,

36], while more recent approaches address the problem of

“with whom” each task should share features using deep

neural networks [29, 32]. Cross-stitching networks [33] and

Progressive Networks [40] have been recently proposed to

learn an optimal combination of shared and task-specific

representations for joint multi-task optimization and life-

long learning, respectively. These methods rely on per-layer

inter-column adapters, which requires more memory and

leads to more computational cost. In addition, they learn

global feature adapters per task, whereas SpotTune adap-

tively routes computation per input example, which is im-

portant to boost accuracy.
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Dynamic Routing. Our proposed approach is related

to conditional computation methods [4, 27, 11], which aim

to dynamically route information in neural networks with

the goal of improving computational efficiency. Bengio

et al. [2] used sparse activation policies to selectively ex-

ecute neural network units on a per-example basis. Shazeer

et al. [43] introduced a Sparsely-Gated Mixture-of-Experts

layer, where a trainable gating network determines a sparse

combination of sub-networks (experts) to use for each ex-

ample. Wu, Nagarajan et al. proposed BlockDrop [49], a

method that uses reinforcement learning to dynamically se-

lect which layers of a Residual Network to execute, exploit-

ing the fact that ResNets are resilient to layer dropping [47].

Veit and Belongie [46] investigated the same idea using

Gumbel Softmax [18] for on-the-fly selection of residual

blocks. Our work also explores dynamic routing based on

the Gumbel trick. However, unlike previous methods, our

goal is to determine the parameters in a neural network that

should be frozen or fine-tuned during learning to improve

accuracy, instead of dropping layers to improve efficiency.

3. Proposed Approach

Given a pre-trained network model on a source task (e.g.,

ImageNet pre-trained model), and a set of training exam-

ples with associated labels in the target domain, our goal

is to create an adaptive fine-tuning strategy that decides,

per training example, which layers of the pre-trained model

should be fine-tuned (adapted to the target task) and which

layers should have their parameters frozen (shared with the

source task) during training, in order to improve the accu-

racy of the model in the target domain. To this end, we first

present an overview of our approach in Section 3.1. Then,

we show how we learn our adaptive fine-tuning policy using

Gumbel Softmax sampling in Section 3.2. Finally, in Sec-

tion 3.3, we present a global policy variant of our proposed

image-dependent fine-tuning method, which constrains all

the images to follow a single fine-tuning policy.

3.1. SpotTune Overview

Although our approach could be applied to different deep

neural network architectures, in the following we focus

on a Residual Network model (ResNet) [15]. Recently, it

has been shown that ResNets behave as ensembles of shal-

low classifiers and are resilient to residual block swapping

[47]. This is a desirable property for our approach, as later

we show that SpotTune dynamically swaps pre-trained and

fine-tuned blocks to improve performance.

Consider the l-th residual block in a pre-trained ResNet

model:

xl = Fl(xl−1) + xl−1. (1)

In order to decide whether or not to fine-tune a residual

block during training, we freeze the original block Fl and

create a new trainable block F̂l, which is initialized with the

parameters of Fl. With the additional block F̂l, the output

of the l-th residual block in SpotTune is computed as below:

xl = Il(x)F̂l(xl−1) + (1− Il(x))Fl(xl−1) + xl−1 (2)

where Il(x) is a binary random variable that indicates

whether the residual block should be frozen or fine-tuned,

conditioned on the input image. During training, given an

input image x, the frozen block Fl trained on the source

task is left unchanged and the replicated block F̂l, which

is initialized from Fl, can be optimized towards the tar-

get dataset. Hence, the given image x can either share the

frozen block Fl, which allows the features computed on the

source task to be reused, or fine-tune the block F̂l, which

allows x to use the adapted features. Il(x) is sampled from

a discrete distribution with two categories (freeze or fine-

tune), which is parameterized by the output of a lightweight

policy network. More specifically, if Il(x) = 0, then the l-
th frozen block is re-used. Otherwise, if Il(x) = 1 the l-th
residual block is fine-tuned by optimizing F̂l.

Figure 2 illustrates the architecture of our proposed Spot-

Tune method, which allows each training image to have its

own fine-tuning policy. During training, the policy network

is jointly trained with the target classification task using

Gumbel Softmax sampling, as we will describe next. At

test time, an input image is first fed into a policy network,

whose output is sampled to produce routing decisions on

whether to pass the image through the fine-tuned or pre-

trained residual blocks. The image is then routed through

the corresponding residual blocks to produce the final clas-

sification prediction. Note that the effective number of exe-

cuted residual blocks is the same as the original pre-trained

model. The only additional computational cost is incurred

by the policy network, which is designed to be lightweight

(only a few residual blocks) in comparison to the original

pre-trained model.

3.2. Training with the Gumbel Softmax Policy

SpotTune makes decisions as to whether or not to freeze

or fine-tune each residual block per training example. How-

ever, the fact that the policy Il(x) is discrete makes the net-

work non-differentiable and therefore difficult to be opti-

mized with backpropagation. There are several ways that

allow us to “back-propagate” through the discrete nodes [4].

In this paper, we use a recently proposed Gumbel Softmax

sampling approach [30, 18] to circumvent this problem.

The Gumbel-Max trick [30] is a simple and effective way

to draw samples from a categorical distribution parameter-

ized by {α1, α2, ..., αz}, where αi are scalars not confined

to the simplex, and z is the number of categories. In our

work, we consider two categories (freeze or fine-tune), so

z = 2, and for each residual block, α1 and α2 are scalars

corresponding to the output of a policy network.
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Figure 2: Illustration of our proposed approach. The policy network is trained to output routing decisions (fine-tune or

freeze parameters) for each block in a ResNet pre-trained on the source dataset. During learning, the fine-tune vs. freeze

decisions are generated based on a Gumbel Softmax distribution, which allows us to optimize the policy network using

backpropagation. At test time, given an input image, for each residual block the computation is routed so that either the

fine-tuned path or the frozen path is activated.

A random variable G is said to have a standard Gumbel

distribution if G = − log(− log(U)) with U sampled from

a uniform distribution, i.e. U ∼ Unif [0, 1]. Based on the

Gumbel-Max trick [30], we can draw samples from a dis-

crete distribution parameterized by αi in the following way:

we first draw i.i.d samples Gi, ..., Gz from Gumbel(0, 1)
and then generate the discrete sample as follows:

X = argmax
i

[logαi +Gi]. (3)

The argmax operation in Equation 3 is non-differentiable.

However, we can use the Gumbel Softmax distribution

[30, 18], which adopts softmax as a continuous relaxation

to argmax. We represent X as a one-hot vector where the

index of the non-zero entry of the vector is equal to X , and

relax the one-hot encoding of X to a z-dimensional real-

valued vector Y using softmax:

Yi =
exp((logαi +Gi)/τ)∑z

j=1
exp((logαj +Gj)/τ)

for i = 1, .., z (4)

where τ is a temperature parameter, which controls the dis-

creteness of the output vector Y . When τ becomes closer

to 0, the samples from the Gumbel Softmax distribution be-

come indistinguishable from the discrete distribution (i.e,

almost the same as the one-hot vector).

Sampling our fine-tuning policy Il(x) from a Gumbel

Softmax distribution parameterized by the output of a pol-

icy network allows us to backpropagate from the discrete

freeze/fine-tune decision samples to the policy network, as

the Gumbel Softmax distribution is smooth for τ > 0 and

therefore has well-defined gradients with respect to the pa-

rameters αi. By using a standard classification loss lc for

the target task, the policy network is jointly trained with the

pre-trained model to find the optimal fine-tuning strategy

that maximizes the accuracy of the target task.

Similar to [49], we generate all freeze/fine-tune deci-

sions for all residual blocks at once, instead of relying

on features of intermediate layers of the pre-trained model

to obtain the fine-tuning policy. More specifically, sup-

pose there are L residual blocks in the pre-trained model.

The output of the policy network is a two-dimensional ma-

trix β ∈ R
L×2. Each row of β represents the logits of

a Gumbel-Softmax Distribution with two categories, i.e,

βl,0 = logα1 and βl,1 = logα2. After obtaining β, we

use the straight-through version of the Gumbel-Softmax es-

timator [18]. During the forward pass, we sample the fine-

tuning policy Il(x) using Equation 3 for the l-th residual

block. During the backward pass, we approximate the gra-

dient of the discrete samples by computing the gradient of

the continuous softmax relaxation in Equation 4. This pro-

cess is illustrated in Figure 2.

3.3. Compact Global Policy Variant

In this section, we consider a simple extension of the

image-specific fine-tuning policy, which constrains all the

images to fine-tune the same k blocks that can be distributed

anywhere in the ResNet. This variant reduces both the

memory footprint and computational costs, as k can be set

to a small number so most blocks are shared with the source

task, and at test time the policy network is not needed.

Consider a pre-trained ResNet model with L residual

blocks. For the l-th block, we can obtain the number of im-

ages that use the fine-tuned block and the pre-trained block
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based on the image-specific policy. We compute the frac-

tion of images in the target dataset that uses the fine-tuned

block and denote it as vl ∈ [0, 1]. In order to constrain our

method to fine-tune k blocks, we introduce the following

loss:

lk = ((

L∑

l=1

vl)− k)2. (5)

Moreover, in order to achieve a deterministic policy, we add

another loss le:

le =

L∑

l=1

−vl log vl. (6)

The additional loss le pushes vl to be exactly 0 or 1, so that

a global policy can be obtained for all the images. The final

loss is defined below:

l = lc + λ1lk + λ2le, (7)

where lc is the classification loss, λ1 is the balance param-

eter for lk, and λ2 is the the balance parameter for le. The

additional losses push the policy network to learn a global

policy for all the images. As opposed to manually select-

ing k blocks to fine-tune, the global-k variant learns the

k blocks that can achieve the best accuracy on the target

dataset. We leave for future work the task of finding the op-

timal k, which could be achieved e.g., by using reinforce-

ment learning with a reward proportional to accuracy and

inversely proportional to the number of fine-tuned blocks.

4. Experiments

4.1. Experimental Setup

Datasets and metrics. We compare our SpotTune method

with other fine-tuning and regularization techniques on 5

public datasets, including three fine-grained classification

benchmarks: CUBS [48], Stanford Cars [21] and Flowers

[34], and two datasets with a large domain mismatch from

ImageNet: Sketches [10] and WikiArt [41]. The statistics

of these datasets are listed in Table 1. Performance is mea-

sured by classification accuracy on the evaluation set.

We also report results on the datasets of the Visual

Decathlon Challenge [37], which aims at evaluating vi-

sual recognition algorithms on images from multiple vi-

sual domains. There are a total of 10 datasets as part of

this challenge: (1) ImageNet, (2) Aircraft, (3) CIFAR-100,

(4) Describable textures, (5) Daimler pedestrian classifica-

tion, (6) German traffic signs, (7) UCF-101 Dynamic Im-

ages, (8) SVHN, (9) Omniglot, and (10) Flowers. The im-

ages of the Visual Decathlon datasets are resized isotropi-

cally to have a shorter side of 72 pixels, in order to alle-

viate the computational burden for evaluation. Following

[37], the performance is measured by a single scalar score

Dataset Training Evaluation Classes

CUBS 5,994 5,794 200

Stanford Cars 8,144 8,041 196

Flowers 2,040 6,149 102

Sketch 16,000 4,000 250

WikiArt 42,129 10,628 195

Table 1: Datasets used to evaluate SpotTune against other

fine-tuning baselines.

S =
∑

10

i=1
αimax{0, Emax

i − Ei}
2, where Ei is the test

error on domain Di, and Emax
i is the error of a reasonable

baseline algorithm. The coefficient αi is 1000(Emax
i )−2,

so a perfect classifier receives score 1000. The maximum

score achieved across 10 domains is 10000. Compared with

average accuracy across all the 10 domains, the score S is

a more reasonable measurement for comparing different al-

gorithms, since it considers the difficulty of different do-

mains, which is not captured by the average accuracy [37].

In total, our experiments comprise 14 datasets, as the

Flowers dataset is listed in both sets described above. We

note that for the experiments in Table 2, we use the full

resolution of the images, while those are resized in the Vi-

sual Decathlon experiments to be consistent with other ap-

proaches.

Baselines. We compare SpotTune with the following fine-

tuning and regularization techniques:

• Standard Fine-tuning: This baseline fine-tunes all

the parameters of the pre-trained network on the tar-

get dataset [14, 51].

• Feature Extractor: We use the pre-trained network as

a feature extractor [42, 9] and only add the classifica-

tion layer for each newly added dataset.

• Stochastic Fine-tuning: We randomly sample 50% of

the blocks of the pre-trained network to fine-tune.

• Fine-tuning last-k (k = 1, 2, 3): This baseline fine-

tunes the last k residual blocks of the pre-trained net-

work on the target dataset [28, 44, 1]. In our experi-

ments, we consider fine-tuning the last one (k = 1), last

two (k = 2) and the last three (k = 3) residual blocks.

• Fine-tuning ResNet-101: We fine-tune all the param-

eters of a pre-trained ResNet-101 model on the target

dataset. SpotTune uses ResNet-50 instead (for the ex-

periments in Table 2), so this baseline is more compu-

tationally expensive and can fine-tune twice as many

residual blocks. We include it as the total number of

parameters during training is similar to SpotTune, so

it will verify any advantage is not merely due to our

having 2x residual blocks available.
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Model CUBS Stanford Cars Flowers WikiArt Sketches

Feature Extractor 74.07% 70.81% 85.67% 61.60% 75.50%

Standard Fine-tuning 81.86% 89.74% 93.67% 75.60% 79.58%

Stochastic Fine-tuning 81.03% 88.94% 92.95% 73.06% 78.30%

Fine-tuning last-3 81.54% 88.21% 89.03% 72.68 % 77.72%

Fine-tuning last-2 80.34% 85.36% 91.81% 70.82% 78.37%

Fine-tuning last-1 78.68% 81.73% 89.99% 68.96% 77.20%

Random Policy 81.63 % 88.57% 93.44% 73.82% 78.30%

Fine-tuning ResNet-101 82.13% 90.32% 94.21% 76.52% 78.92%

L
2-SP 83.69% 91.08% 95.21% 75.38% 79.60%

Progressive Neural Nets 83.08 % 91.59% 95.55% 75.41% 79.71%

SpotTune (running fine-tuned blocks) 82.36% 92.04% 93.49% 67.27% 78.88%

SpotTune (Global-k) 83.48% 90.51% 96.60% 75.63% 80.02%

SpotTune 84.03 % 92.40% 96.34% 75.77% 80.20%

Table 2: Results of SpotTune and baselines on CUBS, Stanford Cars, Flowers, WikiArt and Sketches.

• Random Policy: This baseline method adopts a ran-

dom policy network that always finetunes the last three

layers and randomly decides whether to fine-tune or

not for each training sample for other layers.

• L2-SP [25]: This is a recently proposed state-of-the-

art regularization method for fine-tuning. The authors

recommend using an L2 penalty to allow the fine-tuned

network to have an explicit inductive bias towards the

pre-trained model, sharing similar motivation with our

approach.

• Progressive Neural Networks [40]: This is a recent

method which learns an optimal combination of shared

and task-specific representations for life-long learning.

Different form the original work, which uses a random

weight initialization, we use an ImageNet pre-trained

model as the frozen source network, since the former

leads to much worse performance for classification.

Regarding the methods that have reported results on the

Visual Decathlon datasets, the most related to our work

are models trained from Scratch, Standard Fine-tuning, the

Feature Extractor baseline as described above, and Learn-

ing without Forgetting (LwF) [26], which is a recently pro-

posed technique that encourages the fine-tuned network

to retain the performance on ImageNet or previous tasks,

while learning consecutive tasks. Other methods include

Piggyback [31], Residual Adapters and its variants [37, 38],

Deep Adaptation Networks (DAN) [39], and Batch Norm

Adaptation (BN Adapt) [5], which are explicitly designed

to minimize the number of model parameters, while our

method sits at the other end of the spectrum, with a focus

on accuracy instead of parameter reduction. We also com-

pare with training from scratch using Residual Adapters

(Scratch+), as well as the high-capacity version of Residual

Adapters described in [37], which have a similar number of

parameters as SpotTune.

Pre-trained model. For comparing SpotTune with fine-

tuning baselines in Table 2, we use ResNet-50 pre-trained

on ImageNet, which starts with a convolutional layer fol-

lowed by 16 residual blocks. The residual blocks contain

three convolutional layers and are distributed into 4 seg-

ments (i.e, [3, 4, 6, 3]) with downsampling layers in be-

tween. We use the pre-trained model from Pytorch which

has a classification accuracy of 75.15% on ImageNet. For

the Visual Decathlon Challenge, we use a ResNet-26 as de-

scribed in [38].

Policy network architecture. For the experiments with

ResNet-50 (Table 2), we use a ResNet with 4 blocks for the

policy network. The channel size of each block is 64, 128,

256, 512, respectively. For the Visual Decathlon Challenge

with ResNet-26, the policy network consists of a ResNet

with 3 blocks. The channel size of each block is 64, 128,

256, respectively.

Implementations details. We use SGD with momentum

as the optimizer. For the Visual Decathlon Challenge, we

freeze the first macro blocks (4 residual blocks) of the

ResNet-26 and only apply the adaptive fine-tuning for the

rest of the residual blocks. This choice reduces the number

of parameters and has a regularization effect.

4.2. Results and Analysis

4.2.1 SpotTune vs. Fine-tuning Baselines

The results of SpotTune and the fine-tuning baselines are

listed in Table 2. Clearly, SpotTune yields consistently

better results than other methods. Using the pre-trained

model on ImageNet as a feature extractor (with all parame-

ters frozen) can reduce the number of parameters when the

model is applied to a new dataset, but it leads to bad perfor-

mance due to the domain shift. All the fine-tuning variants

(Standard Fine-tuning, Stochastic Fine-tuning, Fine-tuning

last-k) achieve higher accuracy than the Feature Extractor

baseline, as expected. Note that the results of Fine-tuning

last-k show that manually deciding the number of layers
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to fine-tune may lead to worse results than standard fine-

tuning. The Fine-tuned ResNet-101 has higher capacity and

thus performs better than the other fine-tuning variants. Al-

though it has twice as many fine-tuned blocks and is sig-

nificantly more computationally expensive than SpotTune,

it still performs worse than our method in all datasets, ex-

cept in WikiArt. We conjecture this is because WikiArt

has more training examples than the other datasets. To test

this hypothesis, we evaluated both models when 25% of

the WikiArt training data is used. In this setting, SpotTune

achieves 61.24% accuracy compared to 60.20% of the fine-

tuned ResNet-101. This gap increases even more when 10%

of the data is considered (49.59% vs. 47.05%).

By inducing the fine-tuned models to be close to the pre-

trained model, L2-SP achieves better results than other fine-

tuning variants, but it is inferior to SpotTune in all datasets.

However, we note that L2-SP is complementary to Spot-

Tune and can be combined with it to further improve results.

Compared with Progressive Neural Networks, SpotTune is

faster, requires less memory, and achieves more accuracy

by adaptively routing computation per input example.

SpotTune is different from all the baselines in two as-

pects. On one hand, the fine-tuning policy in SpotTune is

specialized for each instance in the target dataset. This im-

plicitly takes the similarities between the images in the tar-

get dataset and the source dataset into account. On the other

hand, sharing layers with the source task without parameter

refinement reduces overfitting and promotes better re-use

of features extracted from the source task. We also con-

sider three variants of SpotTune in the experiments. The

first one is SpotTune (running fine-tuned blocks) in which

during testing all the images are routed through the fine-

Figure 3: Visualization of policies on CUBS, Flowers,

WikiArt, Sketches and Stanford Cars. Note that different

datasets have very different policies. SpotTune automati-

cally identifies the right fine-tuning policy for each dataset,

for each training example.

tuned blocks. With this setting, the accuracy drops on all

the datasets. This suggests that certain images in the target

data can benefit from reusing some of the layers of the pre-

trained network. The second variant is SpotTune (global-

k) in which we set k to 3 in the experiments. Generally,

SpotTune (global-3) performs worse than SpotTune, but is

around 3 times more compact and, interestingly, is better

than Fine-tuning last-3. This suggests that it is beneficial

to have an image-specific fine-tuning strategy, and manu-

ally selecting the last k layers is not as effective as choosing

the optimal non-contiguous set of k layers for fine-tuning.

The third variant is Random Policy where we always fine-

tune the last three layers and use a random policy network

for other layers. The results show that an optimized policy

outperforms a random policy.

4.2.2 Visualization of Policies

To better understand the fine-tuning policies learned by

the policy network, we visualize them on CUBS, Flowers,

WikiArt, Sketches, and Stanford Cars in Figure 3. The po-

lices are learned on a ResNet-50 which has 16 blocks. The

tone of red of a block indicates the number of images that

were routed through the fine-tuned path of that block. For

example, a block with a dark tone of red and a 75% level

of fine-tuning (as shown in the scale depicted in the right

of Figure 3) means 75% of the images in the test set use

the fine-tuned block and the remaining 25% images share

the pre-trained ImageNet block. The illustration shows that

different datasets have very different fine-tuning policies.

SpotTune allows us to automatically identify the right pol-

icy for each dataset, as well as for each training example,

which would be infeasible through a manual approach.

4.2.3 Visualization of Block Usage

Besides the learned policies for each residual block, we are

also interested in the number of fine-tuned blocks used by

each dataset during testing. This can reveal the difference of

the distribution of each target dataset and can also shed light

on how the policy network works. In Figure 4, we show the

distribution of the number of fine-tuned blocks used by each

target dataset. During testing, for each dataset we categorize

the test examples based on the number of fine-tuned blocks

they use. For example, from Figure 4, we can see around

1000 images in the test set of the CUBS dataset use 7 fine-

tuned blocks.

We have the following two observations based on the

results. First, for a specific dataset, different images tend

to use a different number of fine-tuned blocks. This again

validates our hypothesis that it is more accurate to have an

image-specific fine-tuning policy rather than a global fine-

tuning policy for all images. Second, the distribution of

fine-tuned blocks usage differs significantly across different

target datasets. This demonstrates that based on the char-
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#par ImNet Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF Score

Scratch 10x 59.87 57.10 75.73 91.20 37.77 96.55 56.30 88.74 96.63 43.27 1625

Scratch+ [37] 11x 59.67 59.59 76.08 92.45 39.63 96.90 56.66 88.74 96.78 44.17 1826

Feature Extractor 1x 59.67 23.31 63.11 80.33 55.53 68.18 73.69 58.79 43.54 26.80 544

Fine-tuning [38] 10x 60.32 61.87 82.12 92.82 55.53 99.42 81.41 89.12 96.55 51.20 3096

BN Adapt. [5] 1x 59.87 43.05 78.62 92.07 51.60 95.82 74.14 84.83 94.10 43.51 1353

LwF [26] 10x 59.87 61.15 82.23 92.34 58.83 97.57 83.05 88.08 96.10 50.04 2515

Series Res. adapt. [37] 2x 60.32 61.87 81.22 93.88 57.13 99.27 81.67 89.62 96.57 50.12 3159

Parallel Res. adapt. [38] 2x 60.32 64.21 81.92 94.73 58.83 99.38 84.68 89.21 96.54 50.94 3412

Res. adapt. (large) [37] 12x 67.00 67.69 84.69 94.28 59.41 97.43 84.86 89.92 96.59 52.39 3131

Res. adapt. decay [37] 2x 59.67 61.87 81.20 93.88 57.13 97.57 81.67 89.62 96.13 50.12 2621

Res. adapt. finetune all [37] 2x 59.23 63.73 81.31 93.30 57.02 97.47 83.43 89.82 96.17 50.28 2643

DAN [39] 2x 57.74 64.12 80.07 91.30 56.54 98.46 86.05 89.67 96.77 49.48 2851

PiggyBack [31] 1.28x 57.69 65.29 79.87 96.99 57.45 97.27 79.09 87.63 97.24 47.48 2838

SpotTune (Global-k) 4x 60.32 61.57 80.30 95.78 55.80 99.48 85.38 88.41 96.47 51.05 3401

SpotTune 11x 60.32 63.91 80.48 96.49 57.13 99.52 85.22 88.84 96.72 52.34 3612

Table 3: Results of SpotTune and baselines on the Visual Decathlon Challenge. The number of parameters is specified with

respect to a ResNet-26 model as in [37].

acteristics of the target dataset, standard fine-tuning (which

optimizes all the parameters of the pre-trained network to-

wards the target task) may not be the ideal choice when con-

ducting transfer learning with convolutional networks.

Figure 4: Distribution of the number of fine-tuned blocks

used by the test examples. Different tasks and images re-

quire substantially different fine-tuning for best results, and

this can be automatically inferred by SpotTune.

4.2.4 Visual Decathlon Challenge

We show the results of SpotTune and the baselines on the

Visual Decathlon Challenge in Table 3. Among all the

baselines, SpotTune achieves the highest Visual Decathlon

score. Compared to standard fine-tuning, SpotTune has al-

most the same amount of parameters and improves the score

by a large margin (3612 vs 3096). Considering the Visual

Decathlon datasets, and the 5 datasets from our previous ex-

periments, SpotTune shows superior performance on 12 out

of 14 datasets over standard fine-tuning. Compared with

other recently proposed methods on the Visual Decathlon

Challenge [31, 39, 37, 38, 26], SpotTune sets the new state

of the art for the challenge by only exploiting the trans-

ferability of the features extracted from ImageNet, without

changing the network architecture. This is achieved with-

out bells and whistles, i.e., we believe the results could be

even further improved with more careful parameter tuning,

and the use of other techniques such as data augmentation,

including jittering images at test time and averaging their

predictions. Compared to standard fine-tuning, our method

uses 1.47x time in training (tested with 4 Titan Xp GPUs,

batch size 96). At test time, the additional cost is negligible

(0.013s vs 0.015s per image).

In SpotTune (Global-k), we fine-tune 3 blocks of the

pre-trained model for each task which greatly reduces the

number of parameters and still preserves a very competitive

score. Although we focus on accuracy instead of parame-

ter reduction in our work, we note that training our global-

k variant with a multi-task loss on all 10 datasets, as well

as model compression techniques, could further reduce the

number of parameters in our method. We leave this research

thread for future work.

5. Conclusion

We proposed an adaptive fine-tuning algorithm called

SpotTune which specializes the fine-tuning strategy for each

training example of the target dataset. We showed that our

method outperforms the key most popular and widely used

protocols for fine-tuning on a variety of public benchmarks.

We also evaluated SpotTune on the Visual Decathlon chal-

lenge, achieving the new state of the art, as measured by the

overall score across the 10 datasets.
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