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Abstract

Progress on object detection is enabled by datasets that

focus the research community’s attention on open chal-

lenges. This process led us from simple images to complex

scenes and from bounding boxes to segmentation masks. In

this work, we introduce LVIS (pronounced ‘el-vis’): a new

dataset for Large Vocabulary Instance Segmentation. We

plan to collect 2.2 million high-quality instance segmenta-

tion masks for over 1000 entry-level object categories in

164k images. Due to the Zipfian distribution of categories

in natural images, LVIS naturally has a long tail of cate-

gories with few training samples. Given that state-of-the-art

deep learning methods for object detection perform poorly

in the low-sample regime, we believe that our dataset poses

an important and exciting new scientific challenge. LVIS is

available at http://www.lvisdataset.org.

1. Introduction

A central goal of computer vision is to endow algorithms

with the ability to intelligently describe images. Object

detection is a canonical image description task; it is in-

tuitively appealing, useful in applications, and straightfor-

ward to benchmark in existing settings. The accuracy of

object detectors has improved dramatically and new capa-

bilities, such as predicting segmentation masks and 3D rep-

resentations, have been developed. There are now exciting

opportunities to push these methods towards new goals.

Today, rigorous evaluation of general purpose object de-

tectors is mostly performed in the few category regime (e.g.

80) or when there are a large number of training examples

per category (e.g. 100 to 1000+). There is now an opportu-

nity to enable research in the setting where there are a large

number of categories and where per-category data is some-

times scarce. The long tail of rare categories is inescapable;

annotating more images simply uncovers previously unseen,

rare categories (see Fig. 9 and [29, 25, 24, 27]). Efficiently

learning from few examples is a significant open problem in

machine learning and computer vision, making this oppor-

tunity one of the most exciting from a scientific and practi-

cal perspective. But to open this area to empirical study, a

suitable, high-quality dataset and benchmark are required.

Figure 1. Example annotations. We present LVIS, a new dataset

for benchmarking Large Vocabulary Instance Segmentation in the

1000+ category regime with a challenging long tail of rare objects.

We aim to enable this kind of research by designing and

collecting LVIS (pronounced ‘el-vis’)—a new benchmark

dataset for research on Large Vocabulary Instance Segmen-

tation. We are collecting instance segmentation masks for

more than 1000 entry-level object categories (see Fig. 1).

When completed, we plan for our dataset to contain 164k

images and 2.2 million high-quality instance masks.1 Our

annotation pipeline starts from a set of images that were col-

lected without prior knowledge of the categories that will

be labeled in them. We engage annotators in an iterative

object spotting process that uncovers the long tail of cate-

gories that naturally appears in the images and avoids using

machine learning algorithms to automate data labeling.

We designed a crowdsourced annotation pipeline that en-

ables the collection of our large-scale dataset while also

yielding high-quality segmentation masks. Quality is im-

portant for future research because relatively coarse masks,

such as those in the COCO dataset [18], limit the ability

to differentiate algorithm-predicted mask quality beyond a

certain, coarse point. When compared to expert annotators,

our segmentation masks have higher overlap and boundary

1We plan to annotate the 164k images in COCO 2017 (we have permis-

sion to label test2017). 2.2M is a projection from current data.
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consistency than both COCO and ADE20K [28].

To build our dataset, we adopt an evaluation-first design

principle. This principle states that we should first deter-

mine exactly how to perform quantitative evaluation and

only then design and build a dataset collection pipeline to

gather the data entailed by the evaluation. We select our

benchmark task to be COCO-style instance segmentation

and we use the same COCO-style average precision (AP)

metric that averages over categories and different mask in-

tersection over union (IoU) thresholds [19]. Task and metric

continuity with COCO reduces barriers to entry.

Buried within this seemingly innocuous task choice are

immediate technical challenges: How do we fairly evaluate

detectors when one object can reasonably be labeled with

multiple categories (see Fig. 2)? How do we make the an-

notation workload feasible when labeling 164k images with

segmented objects from over 1000 categories?

The essential design choice resolving these challenges

is to build a federated dataset: a single dataset that is

formed by the union of a large number of smaller con-

stituent datasets, each of which looks exactly like a tradi-

tional object detection dataset for a single category. Each

small dataset provides the essential guarantee of exhaus-

tive annotations for a single category—all instances of that

category are annotated. Multiple constituent datasets may

overlap and thus a single object within an image can be la-

beled with multiple categories. Furthermore, since the ex-

haustive annotation guarantee only holds within each small

dataset, we do not require the entire federated dataset to be

exhaustively annotated with all categories, which dramat-

ically reduces the annotation workload. Crucially, at test

time the membership of each image with respect to the con-

stituent datasets is not known by the algorithm and thus it

must make predictions as if all categories will be evaluated.

The evaluation oracle evaluates each category fairly on its

constituent dataset.

In the remainder of this paper, we summarize how our

dataset and benchmark relate to prior work, provide details

on the evaluation protocol, describe how we collected data,

and then discuss results of the analysis of this data.

Dataset Timeline. We report detailed analysis on a 5000

image subset that we have annotated twice. We are working

with challenge organizers from the COCO dataset commit-

tee and hope to run the first LVIS challenge at the 2019

COCO workshop, likely at ICCV. We anticipate that LVIS

annotation collection will be completed by this time.

1.1. Related Datasets

Datasets shape the technical problems researchers study

and consequently the path of scientific discovery [17]. We

owe much of our current success in image recognition

to pioneering datasets such as MNIST [16], BSDS [20],

Caltech 101 [6], PASCAL VOC [5], ImageNet [23], and

Toy

Deer

Backpack,
Rucksack

Vehicle
Car

Truck

Figure 2. Category relationships from left to right: non-disjoint

category pairs may be in partially overlapping, parent-child, or

equivalent (synonym) relationships. Fair evaluation of object de-

tectors must take into account these relationships and the fact that

a single object may have multiple valid category labels.

COCO [18]. These datasets enabled the development of al-

gorithms that detect edges, perform large-scale image clas-

sification, and localize objects by bounding boxes and seg-

mentation masks. They were also used in the discovery of

important ideas, such as Convolutional Networks [15, 13],

Residual Networks [10], and Batch Normalization [11].

LVIS is inspired by these and other related datasets, in-

cluding those focused on street scenes (Cityscapes [3] and

Mapillary [22]) and pedestrians (Caltech Pedestrians [4]).

We review the most closely related datasets below.

COCO [18] is the most popular instance segmentation

benchmark for common objects. It contains 80 categories

that are pairwise distinct. There are a total of 118k train-

ing images, 5k validation images, and 41k test images. All

80 categories are exhaustively annotated in all images (ig-

noring annotation errors), leading to approximately 1.2 mil-

lion instance segmentation masks. To establish continuity

with COCO, we adopt the same instance segmentation task

and AP metric, and we are also annotating all images from

the COCO 2017 dataset. All 80 COCO categories can be

mapped into our dataset. In addition to representing an or-

der of magnitude more categories than COCO, our anno-

tation pipeline leads to higher-quality segmentation masks

that more closely follow object boundaries (see §4).

ADE20K [28] is an ambitious effort to annotate almost ev-

ery pixel in 25k images with object instance, ‘stuff’, and

part segmentations. The dataset includes approximately

3000 named objects, stuff regions, and parts. Notably,

ADE20K was annotated by a single expert annotator, which

increases consistency but also limits dataset size. Due to the

relatively small number of annotated images, most of the

categories do not have enough data to allow for both train-

ing and evaluation. Consequently, the instance segmenta-

tion benchmark associated with ADE20K evaluates algo-

rithms on the 100 most frequent categories. In contrast, our

goal is to enable benchmarking of large vocabulary instance

segmentation methods.

iNaturalist [26] contains nearly 900k images annotated

with bounding boxes for an astonishing 5000 plant and an-

imal species. Similar to our goals, iNaturalist emphasizes
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Shoulder bag (3) Motor Scooter (4) Table (1) Hairbrush (3) Bear (2)

Peanut (29) Bed (2) Printer (2) Pineapple (12) Banana (80)

Pool Table (1) Beer Bottle (3) Zebra (8)

Umbrella (24) Hand Towel (2) Goose (2)

Teacup (12) Donut (195)

Figure 3. Example annotations from our dataset. For clarity, we show one category per image.

the importance of benchmarking classification and detec-

tion in the few example regime. Unlike our effort, iNatu-

ralist does not include segmentation masks and is focussed

on a different image and fine-grained category distribution;

our category distribution emphasizes entry-level categories.

Open Images v4 [14] is a large dataset of 1.9M images.

The detection portion of the dataset includes 15M bounding

boxes labeled with 600 object categories. The associated

benchmark evaluates the 500 most frequent categories, all

of which have over 100 training samples (>70% of them

have over 1000 training samples). Thus, unlike our bench-

mark, low-shot learning is not integral to Open Images.

Also different from our dataset is a reliance on machine

learning algorithms to select which images will be anno-

tated by using classifiers for the target categories. Our data

collection process, in contrast, involves no machine learn-

ing algorithms (see §4.1 and Fig. 5). With release v4, devel-

oped concurrently with our work, Open Images has used a

federated dataset design for their object detection task.

2. Dataset Design

We followed an evaluation-first design principle: prior

to any data collection, we precisely defined what task would

be performed and how it would be evaluated. This principle

is important because there are technical challenges that arise

when evaluating detectors on a large vocabulary dataset that

do not occur when there are few categories. These must be

resolved first, because they have profound implications for

the structure of the dataset, as we discuss next.

2.1. Task and Evaluation Overview

Task and Metric. Our dataset benchmark is the instance

segmentation task: given a fixed, known set of categories,

design an algorithm that when presented with a previously

unseen image will output a segmentation mask for each in-

stance of each category that appears in the image along with

the category label and a confidence score. Given the output

of an algorithm over a set of images, we compute mask aver-

age precision (AP) using the definition and implementation

from the COCO dataset [19] (for more detail see §2.3).

Evaluation Challenges. Datasets like PASCAL VOC and

COCO use manually selected categories that are pairwise

disjoint: when annotating a car, there’s never any question

if the object is instead a potted plant or a sofa. When in-

creasing the number of categories, it is inevitable that other

types of pairwise relationships will occur: (1) partially over-

lapping visual concepts; (2) parent-child relationships; and

(3) perfect synonyms. See Fig. 2 for examples.

If these relations are not properly addressed, then the

evaluation protocol will be unfair. For example, most toys

are not deer and most deer are not toys, but a toy deer is

both—if a detector outputs deer and the object is only la-

beled toy, the detection will be marked as wrong. Likewise,
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if a car is only labeled vehicle, and the algorithm outputs

car, it will be incorrectly judged to be wrong. Or, if an ob-

ject is only labeled backpack and the algorithm outputs the

synonym rucksack, it will be incorrectly penalized. Provid-

ing a fair benchmark is important for accurately reflecting

algorithm performance.

These problems occur when the ground-truth annota-

tions are missing one or more true labels for an object. If

an algorithm happens to predict one of these correct, but

missing labels, it will be unfairly penalized. Now, if all

objects are exhaustively and correctly labeled with all cat-

egories, then the problem is trivially solved. But correctly

and exhaustively labeling 164k images each with 1000 cate-

gories is undesirable: it forces a binary judgement deciding

if each category should be applied to each object; there will

be many cases of genuine ambiguity, inter-annotator dis-

agreement, and the annotation workload will be very large.

Given these drawbacks, we describe our solution next.

2.2. Federated Datasets

Our key observation is that the desired evaluation pro-

tocol does not require us to exhaustively annotate all im-

ages with all categories. What is required instead is that

for each category c there must exist disjoint subsets of the

entire dataset D for which the following guarantees hold:

Positive set: there exists a subset of images Pc ⊆ D
such that all instances of c in these images are segmented.

In other words, Pc is exhaustively annotated for category c.
Negative set: there exists a subset of images Nc ⊆ D

such that no instance of c appears in any of these images.

Given these two subsets for a category c, Pc ∪Nc can be

used to perform standard COCO-style AP evaluation for c.
We only judge the algorithm on a category c in the subset

of images in which c has been exhaustively annotated; if a

detector reports a detection of category c on an image i /∈
Pc ∪Nc, the detection is not evaluated.

By collecting the per-category sets into a single dataset,

D = ∪c(Pc ∪ Nc), we arrive at the concept of a feder-

ated dataset. A federated dataset is a dataset that is formed

by the union of smaller constituent datasets, each of which

looks exactly like a traditional object detection dataset for a

single category. By not annotating all images with all cate-

gories, freedom is created to design an annotation process

that avoids ambiguous cases and collects annotations only

if there is sufficient inter-annotator agreement. At the same

time, the workload can be dramatically reduced.

Finally, we note that positive set and negative set mem-

bership on the test split is not disclosed and therefore algo-

rithms have no side information about what categories will

be evaluated in each image. An algorithm thus must make

its best prediction for all categories in each test image.

Reduced Workload. Federated dataset design allows us to

make |Pc ∪ Nc| ≪ |D|, ∀c. This choice dramatically re-

duces the workload and allows us to undersample the most

frequent categories in order to avoid wasting annotation re-

sources on them (e.g. person accounts for 30% of COCO).

Of our estimated 2.2 million instances, likely no single cat-

egory will account for more than ∼3% of the total instances.

2.3. Evaluation Details

The evaluation API only returns the overall category-

averaged AP, not per-category APs. We do this because:

(1) it avoids leaking which categories are present in the test

set;2 (2) given that tail categories are rare, there will be few

examples for evaluation in some cases, which makes per-

category AP unstable; (3) by averaging over a large number

of categories, the overall category-averaged AP has lower

variance, making it a robust metric for ranking algorithms.

Non-Exhaustive Annotations. We also collect an image-

level boolean label, ec
i
, indicating if image i ∈ Pc is ex-

haustively annotated for category c. In most cases (91%),

this flag is true, indicating that the annotations are indeed

exhaustive. In the remaining cases, there is at least one in-

stance in the image that is not annotated. Missing annota-

tions often occur in ‘crowd’ cases in which there are a large

number of instances and delineating them is difficult. Dur-

ing evaluation, we do not count false positives for category

c on images i that have ec
i

set to false. We do measure recall

on these images: the detector is expected to predict accurate

segmentation masks for the labeled instances. Our strategy

differs from other datasets that use a small maximum num-

ber of instances per image, per category (10-15) together

with ‘crowd regions’ (COCO) or use a special ‘group of c’
label to represent 5 or more instances (Open Images). Our

annotation pipeline (§3) attempts to collect segmentations

for all instances in an image, regardless of count, and then

checks if the labeling is in fact exhaustive. See Fig. 3.

Hierarchy. During evaluation, we treat all categories the

same; we do nothing special in the case of hierarchical re-

lationships. To perform best, for each detected object o, the

detector should output the most specific correct category as

well as all more general categories, e.g., a canoe should be

labeled both canoe and boat. The detected object o in image

i will be evaluated with respect to all labeled positive cate-

gories {c | i ∈ Pc}, which may be any subset of categories

between the most specific and the most general.

Synonyms. A federated dataset that separates synonyms

into different categories is valid, but is unnecessarily frag-

mented (see Fig. 2, right). We avoid splitting synonyms

into separate categories with WordNet [21]. Specifically, in

LVIS each category c is a WordNet synset—a word sense

specified by a set of synonyms and a definition.

2It’s possible that the categories present in the validation and test sets

may be a strict subset of those in the training set; we use the standard

COCO 2017 validation and test splits and cannot guarantee that all cate-

gories present in the training data are also present in validation and test.
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Figure 4. Our annotation pipeline comprises six stages. Stage 1: Object Spotting elicits annotators to mark a single instance of many

different categories per image. This stage is iterative and causes annotators to discover a long tail of categories. Stage 2: Exhaustive

Instance Marking extends the stage 1 annotations to cover all instances of each spotted category. Here we show additional instances of

book. Stages 3 and 4: Instance Segmentation and Verification are repeated back and forth until ∼99% of all segmentations pass a quality

check. Stage 5: Exhaustive Annotations Verification checks that all instances are in fact segmented and flags categories that are missing

one or more instances. Stage 6: Negative Labels are assigned by verifying that a subset of categories do not appear in the image.

3. Dataset Construction

In this section we provide an overview of our annotation

pipeline. User interface examples are in the supplement.3

3.1. Annotation Pipeline

Fig. 4 illustrates our annotation pipeline by showing the

output of each stage, which we describe below. For now,

assume that we have a fixed category vocabulary V . We

will describe how the vocabulary was collected in §3.2.

Object Spotting, Stage 1. The goals of the object spotting

stage are to: (1) generate the positive set, Pc, for each cat-

egory c ∈ V and (2) elicit vocabulary recall such that many

different object categories are included in the dataset.

Object spotting is an iterative process in which each im-

age is visited a variable number of times. On the first visit,

an annotator is asked to mark one object with a point and to

name it with a category c ∈ V using an autocomplete text

input. On each subsequent visit, all previously spotted ob-

jects are displayed and an annotator is asked to mark an ob-

ject of a previously unmarked category or to skip the image

if no more categories in V can be spotted. When an image

has been skipped 3 times, it will no longer be visited. The

autocomplete is performed against the set of all synonyms,

presented with their definitions; we internally map the se-

lected word to its synset/category to resolve synonyms.

Obvious and salient objects are spotted early in this iter-

ative process. As an image is visited more, less obvious ob-

jects are spotted, including incidental, non-salient ones. We

run the spotting stage twice, and for each image we retain

categories that were spotted in both runs. Thus two people

must independently agree on a name in order for it to be

included in the dataset; this increases naming consistency.

To summarize the output of stage 1: for each category in

the vocabulary, we have a (possibly empty) set of images in

which one object of that category is marked per image. This

defines an initial positive set, Pc, for each category c.

3See an extended version of this work on arXiv (under preparation).

Exhaustive Instance Marking, Stage 2. The goals this

stage are to: (1) verify stage 1 annotations and (2) take each

image i ∈ Pc and mark all instances of c in i with a point.

In this stage, (i, c) pairs from stage 1 are each sent to 5

annotators. They are asked to perform two steps. First, they

are shown the definition of category c and asked to verify if

it describes the spotted object. Second, if it matches, then

the annotators are asked to mark all other instances of the

same category. If it does not match, there is no second step.

To prevent frequent categories from dominating the dataset

and to reduce the overall workload, we subsample frequent

categories such that no positive set exceeds more than 1%

of the images in the dataset.

To ensure annotation quality, we embed a ‘gold set’

within the pool of work. These are cases for which we know

the correct ground-truth. We use the gold set to automati-

cally evaluate the work quality of each annotator so that we

can direct work towards more reliable annotators. We use 5

annotators per (i, c) pair to help ensure instance-level recall.

To summarize, from stage 2 we have exhaustive instance

spotting for each image i ∈ Pc for each category c ∈ V .

Instance Segmentation, Stage 3. The goals of the instance

segmentation stage are to: (1) verify the category for each

marked object from stage 2 and (2) upgrade each marked

object from a point annotation to a full segmentation mask.

To do this, each pair (i, o) of image i and marked object

instance o is presented to one annotator who is asked to ver-

ify that the category label for o is correct and if it is correct,

to draw a detailed segmentation mask for it (e.g. see Fig. 3).

We use a training task to establish our quality standards.

Annotator quality is assessed with a gold set and by track-

ing their average vertex count per polygon. We use these

metrics to assign work to reliable annotators.

In sum, from stage 3 we have for each image and spotted

instance pair one segmentation mask (if it is not rejected).

Segment Verification, Stage 4. The goal of the segment

verification stage is to verify the quality of the segmenta-

tion masks from stage 3. We show each segmentation to
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up to 5 annotators and ask them to rate its quality using

a rubric. If two or more annotators reject the mask, then

we requeue the instance for stage 3 segmentation. Thus we

only accept a segmentation if 4 annotators agree it is high-

quality. Unreliable workers from stage 3 are not invited to

judge segmentations in stage 4; we also use rejections rates

from this stage to monitor annotator reliability. We iterate

between stages 3 & 4 a total of four times, each time only

re-annotating rejected instances.

To summarize the output of stage 4 (after iterating back

and forth with stage 3): we have a high-quality segmenta-

tion mask for >99% of all marked objects.

Full Recall Verification, Stage 5. The full recall verifica-

tion stage finalizes the positive sets. The goal is to find im-

ages i ∈ Pc where c is not exhaustively annotated. We do

this by asking annotators if there are any unsegmented in-

stances of category c in i. We ask up to 5 annotators and

require at least 4 to agree that annotation is exhaustive. As

soon as two believe it is not, we mark the exhaustive anno-

tation flag ec
i

as false. We use a gold set to maintain quality.

To summarize the output of stage 5: we have a boolean

flag ec
i

for each image i ∈ Pc indicating if category c is ex-

haustively annotated in image i. This finalizes the positive

sets along with their instance segmentation annotations.

Negative Sets, Stage 6. The final stage of the pipeline is to

collect a negative set Nc for each category c in the vocabu-

lary. We do this by randomly sampling images i ∈ D \ Pc,

where D is all images in the dataset. For each sampled im-

age i, we ask up to 5 annotators if category c appears in

image i. If any one annotator reports that it does, we reject

the image. Otherwise i is added to Nc. We sample until the

negative set Nc reaches a target size of 1% of the images in

the dataset. We use a gold set to maintain quality.

To summarize, from stage 6 we have a negative image

set Nc for each category c ∈ V such that the category does

not appear in any of the images in Nc.

3.2. Vocabulary Construction

We construct the vocabulary V with an iterative process

that starts from a large super-vocabulary and uses the object

spotting process (stage 1) to winnow it down. We start from

8.8k synsets that were selected from WordNet by remov-

ing some obvious cases (e.g. proper nouns) and then find-

ing the intersection with highly concrete common nouns [2].

This yields a high-recall set of concrete, and thus likely vi-

sual, entry-level synsets. We then apply object spotting to

10k COCO images with autocomplete against this super-

vocabulary. This yields a reduced vocabulary with which

we repeat the process once more. Finally, we perform mi-

nor manual editing. For more details, see the supplement.3

The resulting vocabulary contains 1723 synsets—the upper

bound on the number of categories that can appear in LVIS.
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Figure 5. Distribution of object centers in normalized image coor-

dinates for four datasets. Objects in LVIS, COCO, and ADE20K

are well distributed (objects in LVIS are slightly less centered than

in COCO and slightly more centered than in ADE20K). On the

other hand, Open Images exhibits a strong center bias.

4. Dataset Analysis

For analysis, we have annotated 5000 images (the COCO

val2017 split) twice using the proposed pipeline. We be-

gin by discussing general dataset statistics next before pro-

ceeding to an analysis of annotation consistency in §4.2 and

an analysis of the evaluation protocol in §4.3.

4.1. Dataset Statistics

Category Statistics. There are 977 categories present in

the 5000 LVIS images. The category growth rate (see

Fig. 9) indicates that the final dataset will have well over

1000 categories. On average, each image is annotated with

11.2 instances from 3.4 categories. The largest instances-

per-image count is a remarkable 294. Fig. 6a shows the full

categories-per-image distribution. LVIS’s distribution has

more spread than COCO’s indicating that many images are

labeled with more categories. The low-shot nature of our

dataset can be seen in Fig. 6b, which plots the total number

of instances for each category (in the 5000 images). The

median value is 9, and while this number will be larger for

the full image set, this statistic highlights the challenging

long-tailed nature of our data.

Spatial Statistics. Our object spotting process (stage 1) en-

courages the inclusion of objects distributed throughout the

image plane, not just the most salient foreground objects.

The effect can be seen in Fig. 5 which shows object-center

density plots. While objects in LVIS, COCO, and ADE20K

are fairly well distributed, objects in Open Images exhibit a

strong centered object bias possibly due to semi-automated

annotation. The even distribution of object centers is an im-

portant characteristic for detection datasets and was a core

motivating factor for the creation of COCO which empha-

sized in context detection. LVIS shares this property.

Scale Statistics. Objects in LVIS are also more likely to

be small. Fig. 6c shows the relative size distribution of ob-

ject masks: compared with COCO, LVIS objects tend to

smaller and there are fewer large objects (e.g., objects that

occupy most of an image are ∼10× less frequent). ADE20K

has the fewest large objects overall and more medium ones.
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Figure 6. Dataset statistics. Best viewed digitally.
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(a) LVIS segmentation quality measured by mask

IoU between matched instances from two runs of

our annotation pipeline. Masks from the runs are

consistent with a dataset average IoU of 0.85.
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(b) LVIS recognition quality measured by F1

score given matched instances across two runs of

our annotation pipeline. Category labeling is con-

sistent with a dataset average F1 score of 0.87.

Mask IoU: 0.91

Boundary quality: 0.82

Mask IoU: 0.94

Boundary quality: 0.99

(c) Illustration of mask IoU vs. boundary quality

to provide intuition for interpreting Fig. 7a (left)

and Tab. 1a (dataset annotations vs. expert anno-

tators, below).

Figure 7. Annotation consistency using 5000 doubly annotated images from LVIS. Best viewed digitally.

mask IoU boundary quality

dataset comparison mean median mean median

COCO
dataset vs. experts 0.83 – 0.87 0.88 – 0.91 0.77 – 0.82 0.79 – 0.88

expert1 vs. expert2 0.91 – 0.95 0.96 – 0.98 0.92 – 0.96 0.97 – 0.99

ADE20K
dataset vs. experts 0.84 – 0.88 0.90 – 0.93 0.83 – 0.87 0.84 – 0.92

expert1 vs. expert2 0.90 – 0.94 0.95 – 0.97 0.90 – 0.95 0.99 – 1.00

LVIS
dataset vs. experts 0.90 – 0.92 0.94 – 0.96 0.87 – 0.91 0.93 – 0.98

expert1 vs. expert2 0.93 – 0.96 0.96 – 0.98 0.91 – 0.96 0.97 – 1.00

(a) For each metric (mask IoU, boundary quality) and each statistic (mean, median), we show

a bootstrapped 95% confidence interval. LVIS has the highest quality across all measures.

annotation boundary complexity

dataset source mean median

COCO
dataset 5.59 – 6.04 5.13 – 5.51

experts 6.94 – 7.84 5.86 – 6.80

ADE20K
dataset 6.00 – 6.84 4.79 – 5.31

experts 6.34 – 7.43 4.83 – 5.53

LVIS
dataset 6.35 – 7.07 5.44 – 6.00

experts 7.13 – 8.48 5.91 – 6.82

(b) Comparison of annotation complexity. Boundary

complexity is perimeter divided by square root area [1].

Table 1. Annotation quality and complexity relative to experts.

4.2. Annotation Consistency

Annotation Pipeline Repeatability. A repeatable annota-

tion pipeline implies that the process generating the ground-

truth data is not overly random and therefore may be

learned. To understand repeatability, we annotated the 5000

images twice: after completing object spotting (stage 1),

we have initial positive sets Pc for each category c; we

then execute stages 2 through 5 (exhaustive instance mark-

ing through full recall verification) twice in order to yield

doubly annotated positive sets. To compare them, we com-

pute a matching between them for each image and category

pair. We find a matching that maximizes the total mask in-

tersection over union (IoU) summed over the matched pairs

and then discard any matches with IoU < 0.5. Given these

matches we compute the dataset average mask IoU (0.85)

and the dataset average F1 score (0.87). Intuitively, these

quantities describe ‘segmentation quality’ and ‘recognition

quality’ [12]. The cumulative distributions of these metrics

(Fig. 7a and 7b) show that even though matches are estab-

lished based on a low IoU threshold (0.5), matched masks

tend to have much higher IoU. The results show that roughly

50% of matched instances have IoU greater than 90% and

roughly 75% of the image-category pairs have a perfect F1

score. Taken together, these metrics are a strong indication

that our pipeline has a large degree of repeatability.

Comparison with Expert Annotators. To measure seg-

mentation quality, we randomly selected 100 instances with

mask area greater than 322 pixels from LVIS, COCO,

and ADE20K. We presented these instances (indicated by

bounding box and category) to two independent expert an-

notators and asked them to segment each object using pro-

fessional image editing tools. We compare dataset annota-

tions to expert annotations using mask IoU and boundary

quality (boundary F [20]) in Tab. 1a. The results (boot-

strapped 95% confidence intervals) show that our masks are

high-quality, surpassing COCO and ADE20K on both mea-

sures (see Fig. 7c for intuition). At the same time, the ob-

jects in LVIS have more complex boundaries [1] (Tab. 1b).
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(a) Given fixed detections, we show how AP

varies with max |Nc|, the max number of nega-

tive images per category used in evaluation.
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(b) With the same detections from Fig. 8a and

max |Nc| = 50, we show how AP varies as we

vary max |Pc|, the max positive set size.
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(c) Low-shot detection is an open problem:

training Mask R-CNN on 1k images decreases

COCO val2017 mask AP from 36% to 10%.

Figure 8. Detection experiments using COCO and 5000 annotated images from LVIS. Best viewed digitally.

Mask R-CNN test anno. box AP mask AP

R-50-FPN COCO 38.2 34.1

model id: 35859007 LVIS 38.8 34.4

R-101-FPN COCO 40.6 36.0

model id: 35861858 LVIS 40.9 36.0

X-101-64x4d-FPN COCO 47.8 41.2

model id: 37129812 LVIS 48.6 41.7

Table 2. COCO-trained Mask R-CNN evaluated on LVIS an-

notations. Both annotations yield similar AP values.

4.3. Evaluation Protocol

COCO Detectors on LVIS. To validate our annotations

and federated dataset design we downloaded three Mask R-

CNN [9] models from the Detectron Model Zoo [7] and

evaluated them on LVIS annotations for the categories in

COCO. Tab. 2 shows that both box AP and mask AP are

close between our annotations and the original ones from

COCO for all models, which span a wide AP range. This re-

sult validates our annotations and evaluation protocol: even

though LVIS uses a federated dataset design with sparse an-

notations, the quantitative outcome closely reproduces the

‘gold standard’ results from dense COCO annotations.

Federated Dataset Simulations. For insight into how AP

changes with positive and negative sets sizes |Pc| and |Nc|,
we randomly sample smaller evaluation sets from COCO

val2017 and recompute AP. To plot quartiles and min-

max ranges, we re-test each setting 20 times. In Fig. 8a we

use all positive instances for evaluation, but vary max |Nc|
between 50 and 5k. AP decreases somewhat (∼2 points) as

we increase the number of negative images as the ratio of

negative to positive examples grows with fixed |Pc| and in-

creasing |Nc|. Next, in Fig 8b we set max |Nc| = 50 and

vary |Pc|. We observe that even with a small positive set

size of 80, AP is similar to the baseline with low variance.

With smaller positive sets (down to 5) variance increases,

but the AP gap from 1st to 3rd quartile remains below 2

points. These simulations together with COCO detectors

tested on LVIS (Tab. 2) indicate that including smaller eval-

uation sets for each category is viable for evaluation.

Low-Shot Detection. To validate the claim that low-shot

detection is a challenging open problem, we trained Mask

R-CNN on random subsets of COCO train2017 rang-
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Figure 9. (Left) As more images are annotated, new categories

are discovered. (Right) Consequently, the percentage of low-shot

categories (blue curve) remains large, decreasing slowly.

ing from 1k to 118k images. For each subset, we optimized

the learning rate schedule and weight decay by grid search.

Results on val2017 are shown in Fig. 8c. At 1k images,

mask AP drops from 36.4% (full dataset) to 9.8% (1k sub-

set). In the 1k subset, 89% of the categories have more than

20 training instances, while the low-shot literature typically

considers ≪ 20 examples per category [8]. We estimate

that roughly 50% of the categories in LVIS will have < 20

training instances, see Fig. 9 (right), discussed next.

Low-Shot Category Statistics. Fig. 9 (left) shows the cat-

egory growth curve as a function of image count in the

dataset (up to 977 categories in 5k images). Extrapolating

the trajectory, our final dataset should include well over 1k

categories (upper bounded by the vocabulary size, 1723).

Note that the low-shot nature of LVIS is largely indepen-

dent of the scale of the dataset, Fig. 9 (right). That is,

even as the number of annotated images increases, new cat-

egories will be added that have few labeled examples.

5. Conclusion

We introduced LVIS, a new dataset designed to enable,

for the first time, the rigorous study of instance segmenta-

tion algorithms that can recognize a large vocabulary of ob-

ject categories (>1000) and must do so using methods that

can cope with the open problem of low-shot learning. While

LVIS emphasizes learning from few examples, the dataset

is not small: it will span 164k images and label ∼2.2 million

object instances. Each object instance is segmented with a

high-quality mask that surpasses the annotation quality of

related datasets. We plan to establish LVIS as a benchmark

challenge that we hope will lead to exciting new object de-

tection, segmentation, and low-shot learning algorithms.
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