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Abstract

Estimating depth from a single RGB images is a fun-

damental task in computer vision, which is most directly

solved using supervised deep learning. In the field of unsu-

pervised learning of depth from a single RGB image, depth

is not given explicitly. Existing work in the field receives

either a stereo pair, a monocular video, or multiple views,

and, using losses that are based on structure-from-motion,

trains a depth estimation network. In this work, we rely,

instead of different views, on depth from focus cues. Learn-

ing is based on a novel Point Spread Function convolutional

layer, which applies location specific kernels that arise from

the Circle-Of-Confusion in each image location. We evalu-

ate our method on data derived from five common datasets

for depth estimation and lightfield images, and present re-

sults that are on par with supervised methods on KITTI

and Make3D datasets and outperform unsupervised learn-

ing approaches. Since the phenomenon of depth from de-

focus is not dataset specific, we hypothesize that learning

based on it would overfit less to the specific content in each

dataset. Our experiments show that this is indeed the case,

and an estimator learned on one dataset using our method

provides better results on other datasets, than the directly

supervised methods.

1. Introduction

In classical computer vision, many depth cues were

used in order to recover depth from a given set of im-

ages. These shape from X methods include structure-from-

motion, which is based on multi-view geometry, shape from

structured light, in which the known light source plays the

role of an additional view, shape from shadow, and most rel-

evant to our work, shape from defocus. In machine learning

based computer vision, the interest has mostly shifted into

depth from a single image, treating the problem as a mul-

tivariant image-to-depth regression problem, with an addi-

tional emphasis on using deep learning.

Learning depth from a single image consists of two

forms. There are supervised methods, in which the target in-

formation (the depth) is explicitly given, and unsupervised

methods, in which the depth information is given implic-

itly. The most common approach in unsupervised learn-

ing is to provide the learning algorithm with stereo pairs

or other forms of multiple views [37, 41]. In these meth-

ods, the training set consists of multiple scenes, where for

each scene, we are given a set of views. The output of the

method, similar to the supervised case, is a function that

given a single image, estimates depth at every point.

In this work, we rely, instead of multiple view geom-

etry, on shape from defocus. The input to our method,

during training, is an all-in-focus image and one or more

focused images of the same scene from the same view-

ing point. The algorithm then learns a regression function,

which, given an all-in-focus image, estimates depth by re-

constructing the given focused images. In classical com-

puter vision, research in this area led to a variety of appli-

cations [44, 35, 32], such as estimating depth from mobile

phone images [33]. A deep learning based approach was

presented by Anwar et al. [1] who employ synthetic focus

images in supervised depth learning, and an aperture super-

vision depth learning by Srinivasan et al. [31], who employ

lightfield images in the same way we use defocus images.

Our method relies on a novel Point Spread Function

(PSF) layer, which preforms a local operation over an im-

age, with a location dependent kernel which is computed

“on-the-fly”, according to the estimated parameters of the

PSF at each location. More specifically, the layer receives

three inputs: an all-in-focus image, estimated depth-map

and camera parameters, and outputs an image at one spe-

cific focus. This image is then compared to the training

images to compute a loss. Both the forward and backward

operations of the layer are efficiently computed using a ded-

icated CUDA kernel. This layer is then used as part of a

novel architecture, combining the successful ASPP archi-

tecture [5, 9]. To improve the ASPP block, we add dense

connections [16], followed by self-attention [42].

We evaluate our method on all relevant benchmarks we

were able to obtain. These include the flower lightfield

dataset and the multifocus indoor and outdoor scene dataset,

for which we compare the ability to generate unseen focus
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images with other methods. We also evaluate on the KITTI,

NYU, and Make3D, which are monocular depth estimation

datasets. In all cases, we show an improved performance in

comparison to methods with a similar level of supervision,

and performance that is on par with the best directly super-

vised methods on KITTI and Make3D datasets. We note

that our method uses focus cues for depth estimation, hence

the task of defocusing for itself is not evaluated.

When learning depth from a single image, the most dom-

inant cue is often the content of the image. For example, in

street view images one can obtain a good estimate of the

depth based on the type of object (sidewalk, road, building,

car) and its location in the image. We hypothesize that when

learning from focus data, the role of local image statistics

becomes more dominant, and that these image statistics are

more global between different visual domains. We therefore

conduct experiments in which a depth estimator trained on

one dataset is evaluated on another. Our experiments show

a clear advantage to our method, in comparison to the state-

of-the-art supervised monocular method of [9].

2. Related Work

Learning based monocular depth estimation In monoc-

ular depth estimation, a single image is given as input, and

the output is the predicted depth associated with that im-

age. Supervised training methods learn from the ground

truth depth directly and the so-called unsupervised methods

employ other data cues, such as stereo image pairs. One

of the first methods in the field was presented by Saxena et

al. [27], applying supervised learning and proposed a patch-

based model and Markov Random Field (MRF). Following

this work, a variety of approaches had been presented us-

ing hand crafted representations [29, 18, 26, 11]. Recent

methods use convolutional neural networks (CNN), start-

ing from learning features for a conditional random field

(CRF) model as in Liu et al. [22], to learning end-to-end

CNN models refined by CRFs, as in [2, 40].

Many models employ an autoencoder structure [7, 12,

17, 19, 39, 9], with an added advantage to very deep net-

works that employ ResNets [15]. Eigen et al. [8, 7] showed

that using multi-scaled depth predictions helps with the de-

crease in spatial resolution, which happened in the encoder

model, and improves depth estimation. Other work uses dif-

ferent loss for regression, such as the reversed Huber [24]

used by Laina et al. [19] to lower the smoothness effect

of the L2 norm, and the recent work by Fu et al. [9] who

uses ordinal regression for each pixel with their spacing-

increasing discretization (SID) strategy to discretize depth.

Unsupervised depth estimation Modern methods for

unsupervised depth estimation have relied on the geome-

try of the scene, Garg et al. [12] for example, proposed us-

ing stereo pairs for learning, introducing the differentiable

inverse warping. Godard et al. [14] added the Left-Right

consistency constraint to the loss function, exploiting an-

other geometrical cue. Zhou et al. [43] learned, in addition

the ego-motion of the scene, and GeoNet [41] also used the

optical flow of the scene. Wang et al. [37] recently showed

that using direct visual odometry along with depth normal-

ization substantially improves performance on prediction.

Depth from focus/defocus The difference between depth

from focus and depth from defocus is that, in the first case,

camera parameters can be changed during the depth estima-

tion process. In the second case, this is not allowed. Un-

like the motion based methods above, these methods obtain

depth using the structure of the optical geometry of the lens

and light ray, as described in Sec. 3.1. Work in this field

mainly focuses on analytical techniques. Zhuo et al. [44]

for example, estimated the amount of spatially varying de-

focus blur at edge locations. The use of Coded Aperture had

been proposed by [20, 36, 30] to improve depth estimation.

Later work in this field, such as Suwajanakorn et al. [33],

Tang et al. [35] and Surh et al. [32] employed focal stacks

— sets of images of the same scene with different focus

distances — and estimated depth based on a variety of blur-

ring models, such as the Ring Difference Filter [32]. These

methods first reconstruct an all-in-focus image and then op-

timize a depth map that best explains the re-rendering of the

focal stack images out of the all-in-focus image.

There are not many deep learning works in the field.

Srinivasan et al. [31] presented a new lightfield dataset of

flower images. They used the ground truth lightfield im-

ages to render focused images and employed a regression

model to estimate depth from defocus by reconstruction of

the rendered focused images.While Srinivasan et al. [31]

did not compare to other RGB-D datasets [13, 27, 28, 23],

their method can take as input any all-in-focus image. We

evaluate [31] rendering process using our network on the

KITTI dataset. Anwar et al. [1] utilized the provided depth

of those datasets to integrate focus rendering within a fully

supervised depth learning scheme.

3. Differentiable Optical Model

We review the relevant optical geometry on which our

PSF layer relies and then move to the layer itself.

3.1. Depth From Defocus

Depth from focus methods are mostly based on the thin-

lens model and geometry, as shown in Fig. 1(a). The figure

illustrates light rays trajectories and the blurring effect made

by out-of-focus objects. The plane of focus is defined such

that light rays emerging from it towards the lens fall at the

same point on the camera sensor plane. An object is said

to be in focus, if its distance from the lens falls inside the

camera’s depth-of-field (DoF), which is the distance about

the plane of focus where objects appear acceptably sharp
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(a) Lens illustration
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Figure 1: (a) Illustration of lens principles. Blue beams rep-

resent an object in focus. Red beams represent an object fur-

ther away and out of focus. See text for symbol definitions.

(b) CoC diameter w.r.t. object distance as seen in KITTI.

Camera settings are: N = 2.8, F = 35, and s = 2. (c)

Sample blur kernel. Green line represents depth edge, Blue

colors represent the relative blur contribution w.r.t. CoC.

by the human eye. Objects outside the DoF appear blurred

on the image plane, an effect caused by the spread of light

rays coming from the unfocused objects and forming what

is called the “Circle-Of-Confusion” (CoC), as marked by C

in Fig. 1(a). In this paper, we will use the following termi-

nology: an all-in-focus image is an image where all objects

appear in focus, and a focused image is one where blurring

effects caused by the lens configuration are observed.

In this model, we consider the following parameters to

describe a specific camera: focal-length F , which is the dis-

tance between the lens plane and the point where initially

parallel rays are brought to a focus, aperture A, which is the

diameter of the lens (or an opening through which light trav-

els), and the plane of focus Df (or focus distance), which

is the distance between the lens plane and the plane where

all points are in focus. Following the thin-lens model, we

define the size of blur, i.e., the diameter of the CoC, which

we denote as Cmm, according to the following equation:

Cmm = A
|Do −Df |

Do

F

Df − F
(1)

where Do is the distance between an object to the lens

plane, and A = F/N where N is what is known as the

f-number of the camera. While CoC is usually measured in

millimeters (Cmm), we transform its size to pixels by con-

sidering a camera pixel-size of p = 5.6µm as in [3], and

a camera output scale s, which is the ratio between sensor

size and output image size. The final CoC size in pixels C
is computed as follows:

C =
Cmm

p · s
. (2)

The CoC is directly related to the depth, as illustrated

in Fig. 1(b), where each line represents a different focus

distance Df . As can be seen, the relation is not one-to-one

and will cause ambiguity in depth estimation. Moreover,

different camera settings are required for different scenes

in terms of the scene’s maximum depth, i.e. for KITTI, we

consider maximum depth of 80 meters, and 10 meters for

NYU. We also consider a constant f-number of N = 2.8
and a different focal-length for all datasets, in order to lower

depth ambiguity by lowering the DoF range (see Sec. 5.2 for

more details).

We now refer to one more measurement named CoC-

limit, defined as the largest blur spot that will still be per-

ceived by the human eye as a point, when viewed on a final

image from a standard viewing distance. The CoC-limit

also limits the kernel size used for rendering and is, there-

fore, highly influential on the run time (bigger kernels lead

to more computations). We employ a kernel of size 7 × 7,

which reflects a standard CoC-limit of 0.061mm.

In this work, following [33, 35], we consider the blur

model to be a disc-shaped point spread function (PSF),

modeled by a Gaussian kernel with radius r = C/2 and

kernel’s location indices u, v:

G(u, v, r) =
1

2πr2
exp

(

−

(

u2 + v2

2r2

))

(3)

Because we work in pixel space, if the diameter is less then

one pixel (C < 1), we ignore the blurring effect.

According to the above formulation, a focused image can

be generated from an all-in-focus image and depth-map, as

commonly done in graphics rendering. Let I be an all-in-

focus image and J be a rendered focused image derived

from depth-map Do, CoC-map C, camera parameters A,

F and Df , we define J as follows:

Fx,y(u, v) =
2

πC2
x,y

exp

(

− 2

(

u2 + v2

C2
x,y

))

(4)

Jx,y : = (I ⊛ F ) (5)

=

∫

u,v∈Ω

Ix−u,y−vFx−u,y−v(u, v)dudv

∫

u′,v′∈Ω

Fx−u′,y−v′(u′, v′)du′dv′
,

where Ω is an offsets set related to a kernel of size m×m:

Ω :=

{

(u, v) : u, v ∈

[

−
m

2
, . . . , 0, . . . ,

m

2

]

∈ N

}

(6)

We denote by ⊛ the convolution operation with a functional

kernel F , by (x, y) the image location indices, and by (u, v)
the offset indices bounded by the kernel size.

Based on Eq. 5, given a set of focused images of the same

scene, one may optimize a model to predict the all-in-focus

image and the depth map. Alternatively, given a focused

image and its correspondent all-in-focus image, we predict

the scene depth by reconstructing the focused image.

While [31] uses a weighted sum of disk kernels to render

blur, our blur kernel is a Gaussian composition of different

blur contributions from all neighbors (Eq. 5) where each

kernel coefficient is calculated by a Gaussian function w.r.t.

a different estimated CoC, as illustrated in Fig. 1(c).
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3.2. The PSF Convolutional layer

The PSF layer we employ can be seen as a particular

case of the locally connected layers of [34], with a few

differences: first, in the PSF layer, the same operator is

applied across all channels, while in the locally-connected

layer, as well as in conventional layers (excluding depth-

convolution [6]), the local operator varies between the input

channels. Additionally, The PSF layer does not sum the

outcomes, and returns the same number of channels in the

output tensor as in the input tensor.

The PSF convolutional layer, designed for the task of

Depth from Defocus (DfD), is based on Eq. 5, where kernels

vary between locations and are calculated “on-the-fly”, ac-

cording to function F , which is defined in Eq. 4. The kernel

is, therefore, a local function of the object’s distance, with a

blur kernel applied to out-of-focus pixels. The layer takes as

input an all-in-focus image I , depth-map Do and the camera

parameters vector ρ, which contains the aperture A, the fo-

cal length F and the focal depth Df . The layer then outputs

a focused image J . As mentioned before, we fix the near

and far distance limits to fit each dataset and use the fixed

pixel size mentioned above. The rendering process begins

by first calculating the CoC-map C according to Eq. 1, and

then applying the functional kernel convolution defined in

Eq. 5. We implement the following operation in CUDA and

compute its derivative as follows:

(

∂Js,t
∂Ix,y

)

=
Fx,y(u, v)

∫

u′,v′∈Ω

Fs−u′,t−v′(u′, v′)du′dv′
(7)

(

∂Js,t
∂Cx,y

)

=
ξx,y(u, v)(Ix,y − Js,t)Fx,y(u, v)
∫

u′,v′∈Ω
Fs−u′,t−v′(u′, v′)du′dv′

(8)

ξx,y(u, v) : =
4(u2 + v2)− 2C2

x,y

C3
x,y

(9)

A detailed explanation of the forward and backward pass

is provided in the supplementary material.

4. Approach

In this section, we describe the training method and the

model architecture, which extends the ASPP architecture to

include both self-attention and dense connections. We then

describe the training procedure.

4.1. General Architecture and the Training Loss

Let J be a (real-world) focused version of I , and J̄ be a

predicted focused version of I . We train a regression model

to minimize the reconstruction loss of J and J̄ .

We define two networks, f and g, for depth estimation

and focus rendering respectively. While f is learned, g im-

plements Eq. 4 and 5. Both networks take part in the loss,

and backpropagation through g is performed using Eq. 7, 8.

D̄o

Do

g(I; D̄o; ρ)

g(I;Do; ρ)

f(I)
I J̄

J real/rendered

Loss

Figure 2: Training scheme. Blue region represents the ren-

dering branch, which is used for depth-based datasets.

The learned network f is applied to an all-in-focus im-

age I and returns a predicted depth D̄o = f(I). The fixed

network g consists of the PSF layer, as described in Sec. 3.2.

It takes as input an all-in-focus I , a depth (estimated or

not) Do and the camera parameters vector ρ. It outputs

J = g(I,Do, ρ), which is a focused version of I accord-

ing to depth Do and camera parameters ρ. We distinguish

between a rendered focus image from ground truth depth

Do which we denote as J (also used for real focused im-

aged), and rendered focused image from predicted depth

D̄o, which we denote as J̄ = g(I, D̄o, ρ).
The training procedure has two cases, training with real

data or on generated data, depending on the training dataset

at hand. In both cases, training is performed end-to-end

by running f and g sequentially. First, f is applied to an

all-in-focus image I and outputs the predicted depth-map

D̄o. Using this map, the all-in-focus image and camera pa-

rameters ρ, g renders the predicted focused image J̄ . A

reconstruction error is then applied with J and J̄ , where

for the case of depth-based datasets, we render the train-

ing focused images J , according to ground truth depth-map

Do and camera specifications ρ. Fig. 2 shows the training

scheme, where the blue dashed rectangle illustrates the sec-

ond case, where J is rendered from the ground truth depth.

In the first case, since we compare with the work of [31],

we use a single focused image during training, although

more can be used. In the second case, we compare with

fully supervised methods, that benefit from a direct access

to the depth information, and we report results for 1, 2, 6

and 10 rendered focused images.

Training loss We first consider the reconstruction loss

and the depth smoothness [38, 14] w.r.t. the input image

I , the predicted focused image J̄ , the focused image J , and

the estimated depth map D̄o:

Lrec =
1

N

∑

α
1− SSIM(J̄ , J)

2
+ (1− α)‖J̄ − J‖1

(10)

Lsmooth =
1

N

∑

|∂xD̄o|e
−|∂xI| + |∂yD̄o|e

−|∂yI| (11)

where SSIM is the Structural Similarity measure [38], and

α controls the balance w.r.t. to L1 loss.
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Skip Connection
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Figure 3: Dense ASPP with an added attention block.

The reconstruction loss above does not take into account

the blurriness in some parts of image J , which arise from

regions that are out of focus. We, therefore, add a sharp-

ness measure S(I) similar to [25], which considers the

sharpness of each pixel. It contains three parts: (i) the im-

age Laplacian ∆I := ∂2
xI + ∂2

yI , (ii) the image Contrast

Visibility C(I) :=

∣

∣

∣

∣

I−µI

µI

∣

∣

∣

∣

, and (iii) the image Variance

V (I) := (I − µI)
2, where µI is the average pixel value

in a window of size 7× 7 pixels. The sharpness measure is

given by S(I) = −∆I−C(I)−V (I), and the loss term is:

Lsharp = ‖S(Ĵ)− S(J)‖1. (12)

The final loss term is then:

Loss = λ1Lrec + λ2Lsmooth + λ3Lsharp (13)

For all experiments, we set λ1 = 1, λ2 = 10−3, λ3 = 10−1.

4.2. Model Architecture

Our network f is illustrated in Fig. 3. It consists of

an encoder-decoder architecture, where we rely on the

DeepLabV3+ [4, 5] model, which was found to be effective

for semantic segmentation and depth estimation tasks [9].

The encoder has two parts: a ResNet [15] backbone and a

subsequent Atrous Spatial Pyramid Pooling (ASPP) mod-

ule. Unlike [9], we do not employ a pretrained ResNet and

learn it end-to-end.

The Atrous convolutions (also called dilated convolu-

tions) add padding between kernel cells to enlarge the re-

ceptive field from earlier layers, while keeping the weight

size constant. ASPP contains several parallel Atrous convo-

lutions with different dilations. As advised in [5], we also

replace all pooling layers of the encoder with convolution

layers with an appropriate stride.

The loss is computed in the highest resolution, to sup-

port higher quality outputs. However, to comply with GPU

memory constraints, the network takes as an input, a down-

sampled image of half the original size. The network’s out-

put is then upsampled to the original image size.

Dense ASPP with Self-Attention The original ASPP

consists of three or more independent layers - average pool-

ing followed by 1 × 1 convolution, 1 × 1 convolution, and

four Atrous layers. Each convolution layer has 256 chan-

nels and the four outputs of these layers, along with the

pool+conv layer are concatenated together to form a tensor

with channel size C = 1280. We propose two additional

modifications from different parts of the literature: dense

connections [16] and self attention [42].

We add dense connections between the 1×1 convolution

and all Atrous convolution layers of the ASPP module, se-

quentially connecting all layers from smallest to the largest

dilation layer. Each layer, therefore, receives as the input

tensor not just the output of the previous layer, but the con-

catenation of the output tensors of all preceding layers. This

is illustrated as the skip connection arrows in Fig. 3.

Self-Attention aims to integrate local features with their

global dependencies, and as shown in previous work [42,

10], it improve results in image segmentation and genera-

tion. Our implementation is based on [10] dual-attention.

The decoder part of f consists of three upsampling

blocks, each having three convolution layers followed by

bilinear upsampling. A skip connection from a low level

layer of the backbone is concatenated with the input of the

second block. The output of decoder is the predicted depth.

5. Experiments

We divide our experiments into two types, DoF supervi-

sion and DoF supervision from rendered data, as mentioned

in the previous section. We further experiment with cross

domain evaluation, where we evaluate our method in com-

parison to the state-of-the-art supervised method [9]. Here

the models are trained on domain A and tested on domain B,

denoted as A → B. We show that learning depth from focus

cues, though not achieving better results than the supervised

methods - but comparable with top methods in KITTI and

Make3D datasets, achieves better generalization expressed

by higher results in cross domain evaluation.

The network is trained on a single Titan-X Pascal GPUs

with batch size of 3, using Adam for optimization with a

learning rate of 2 · 10−5 and weight decay of 4 · 10−5. The

dedicated CUDA implementation of the PSF layer runs x80

faster than the optimized pytorch implementation.

The following five benchmarks are used:

Lightfield dataset [31] The dataset contains lightfield

flowers and plants images, taken with a Lytro Illum camera.

From the lightfield images, we follow the procedure of [31]

to generate the all-in-focus and shallow DoF images, and

split the dataset into 3143 and 300 images for train and test.

DSLR dataset [3] This dataset contains 110 images and

ground truth depth from indoor scenes, with 81 images for

training and 29 images for testing, and 34 images from out-

door scenes without ground truth depth. Each scene is ac-
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Algorithm Supervision PSNR SSIM

Image Regression [31] DoF 24.60 0.895

Multi-View [31] DoF 34.49 0.960

Lightfield [31] DoF 36.68 0.967

Compositional [31] DoF 36.90 0.966

Ours DoF 38.33 0.979

Table 1: Quantitative results on the Lightfield test set, re-

ported as a mean value of PSNR and SSIM of the recon-

structed focused image.

quired with two camera apertures: N = 2.8 and N = 8,

providing focused and all-in-focus images.

KITTI [13] This benchmark contains RGB-D images

taken in an outdoor environment at resolution of roughly

370 × 1226 which we refer to as the full resolution output

size. The train/test splits we employ follow Eigen et al. [8],

with 23,000 training images and 697 test images. The in-

put depth-maps and images are cropped, according to [8] to

obtain valid depth values, and resized to half-size.

NYU DepthV2 [23] This benchmark contains about

120K indoor RGB and depth images captured with a Mi-

crosoft Kinect. The datasets consists of 249 scenes for train-

ing and 215 scenes for testing. We report results on 654

test images from a small subset of 1449 aligned RGB-depth

pairs, as done in previous work.

Make3D [27, 28] The Make3D benchmark contains 534

RGB-depth pairs, split into 400 pairs for training and 134

for testing. The input images are provided at a high resolu-

tion, while the depth-maps are at low resolution. Therefore,

data is resized to 460 × 345, as proposed by [27, 28]. Fol-

lowing [27], results are evaluated in two settings: C1 for

depth cap of 0-70, and C2 for depth cap 0-80.

5.1. Results

DoF supervision We first report results on the Lightfield

dataset dataset, which provides focused and all-in-focus im-

age pairs with no ground truth depth. The performance is

evaluated using the PSNR and SSIM measures. Our results

are shown in Tab. 1. As can be seen, we significantly out-

perform the literature baselines provided by [31].

Rendered DoF supervision For rendered DoF supervi-

sion, we consider four datasets [8, 27, 23, 3] with ground

truth depth, where we render focused images with differ-

ent focus distances. We denote by F1, F2, F6, F10 the

four training setups, which differ by the number of ren-

dered focused images used in training. The order in which

focal distances are selected, is defined by the following fo-

cal sequence [0.2, 0.8, 0.1, 0.9, 0.3, 0.7, 0.4, 0.6, 0.5, 0.35],
where each number represents the percent of the maximum

depth used for each dataset. For example, F2 employs focal

distances of 0.2 and 0.8 times the maximal depth.

We perform two types of evaluations. First, we evalu-

ate our method for each dataset with different numbers of

focused images during training, and compare our results

with other unsupervised methods, as well as with super-

vised ones. The evaluation measures are those commonly

used in the literature [13, 27, 28] and include various RMSE

measures and a thresholded error rate.

Tab. 2 and 3 show that our method outperforms monoc-

ular and stereo supervision methods on the KITTI and

Make3D dataset. This also holds when the previous meth-

ods are trained with additional data obtained from the

Cityscapes dataset. In comparison to the depth supervised

methods, we outperform all methods on KITTI, with the ex-

ception of [9], and outperform [9, 21] on Make3D. In Fig. 4,

we present qualitative results of our method compared to

the state-of-the-art unsupervised method [37] on the KITTI

dataset. As can be seen in Tab. 4, there are no literature

unsupervised methods reported for the NYU dataset, where

we are slightly outperformed by the supervised methods.

We next preform cross domain evaluation compared

to the published models of the state-of-the-art supervised

method [9], where training is performed on KITTI or NYU,

and tested on different datasets. These tests are meant to

evaluate the specificity of the learned network to a particular

dataset. Since the absolute depth differs between datasets,

we evaluate the methods by computing the Pearson correla-

tion metric. Results are shown in Tab. 5. As can be seen,

when transferring from both KITTI and NYU, we outper-

form the directly supervised method. The gap is especially

visible for the NYU network.

We also provide cross-domain results for the outdoor im-

ages of the DSLR dataset, where no ground truth depth is

provided, using the PSNR and SSIM metrics. Tab. 6 shows

in this case that our method transfers better from NYU and

only slightly better from KITTI in comparison to [9].

5.2. Ablation Studies

The Effect of Focal Distance Because the focus distance

Df and DoF range are positively correlated, training with a

far focus distance increases the DoF and puts a large range

of distances in focus. As a result, focus cues are lowered,

causing performance to decrease. In Fig. 5 we present, for

the Make3D dataset, the accuracy of F1 training with differ-

ent focus distances, where a clear decrease in performance

is seen at mid-range Df and an increase afterward, as a

result of the dataset maximum depth, capping the far DoF

distance, i.e. lowering the DoF range, and increasing focus

cues for closer objects.

Dense ASPP with Self-Attention We evaluate our dense

ASPP with self-attention in comparison to three versions of

the original ASPP model: vanilla ASPP, ASPP with dense

connections and ASPP with self-attention. In order to dif-

ferentiate between different ambiguity scenarios, training is

preformed with the F1, F2, F6 and F10 methods. As can be
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Reference Image Ground Truth Wang [37] F2 F6 F10

Figure 4: KITTI: Qualitative results on the KITTI Eigen Split. All images are cropped to the valid depth region as proposed

in [8]. From left to right, reference image and ground truth, Wang et al. [37] and ours.

Algorithm Supervision Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.25
2

δ < 1.25
3

Godard et al. [14] S 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Geonet-ResNet [41] M 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Wang et al. [37] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Godard et al. [14] S(K+CS) 0.114 0.898 4.935 0.206 0.861 0.949 0.976

Ours F1 DoF 0.141 1.473 5.187 0.221 0.846 0.953 0.981

Ours F2 DoF 0.129 0.722 4.233 0.183 0.856 0.960 0.985

Ours F6 DoF 0.114 0.671 4.144 0.172 0.867 0.963 0.987

Ours F10 DoF 0.110 0.666 4.186 0.168 0.880 0.966 0.988

Liu et al. [22] Depth 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Kuznietsov et al. [17] Depth 0.113 0.741 4.621 0.189 0.862 0.960 0.986

DORN et al. [9] Depth 0.072 0.307 2.727 0.120 0.932 0.984 0.994

Table 2: KITTI: Quantitative results on the KITTI Eigen split. Top - Unsupervised methods where ‘S’ and ‘M’ stands for

stereo and video (monocular) supervision, and ‘K+CS’ stands for training with the added data from the CityScapes dataset.

Middle - Our method. Bottom - Supervised methods.

Algorithm Supervision
C1 C2

Abs Rel RMSE log10 RMSE Abs Rel RMSE log10 RMSE

Godard et al. [14] S 0.443 0.156 11.513 - - -

Zhou et al. [43] MS 0.383 0.478 10.470 - - -

Wang et al. [37] MS 0.387 0.204 8.090 - - -

Ours F1 DoF 0.568 0.192 8.822 0.575 0.195 10.147

Ours F2 DoF 0.287 0.116 7.710 0.294 0.121 9.387

Ours F6 DoF 0.262 0.109 7.474 0.269 0.115 9.248

Ours F10 DoF 0.246 0.110 7.671 0.254 0.116 9.494

Li et al. [21] Depth 0.278 0.092 7.120 0.279 0.102 10.27

MS-CRF [40] Depth 0.184 0.065 4.380 0.198 - 8.56

DORN [9] Depth 0.157 0.062 3.970 0.162 0.067 7.32

Table 3: Make3D: Quantitative results on Make3D [27, 28] dataset. Top - Unsupervised methods where ‘S’ and ‘M’ stands

for stereo and video (monocular) supervision. Middle - Our method. Bottom - Supervised methods.

Algorithm Supervision Abs Rel RMSE log10 RMSE δ < 1.25 δ < 1.25
2

δ < 1.25
3

Ours F1 DoF 0.254 0.092 0.766 0.691 0.880 0.944

Ours F2 DoF 0.162 0.068 0.574 0.774 0.941 0.984

Ours F6 DoF 0.149 0.063 0.546 0.797 0.951 0.987

Ours F10 DoF 0.162 0.068 0.575 0.772 0.942 0.984

Li et al. [21] Depth 0.143 0.063 0.635 0.788 0.958 0.991

MS-CRF [40] Depth 0.121 0.052 0.586 0.811 0.954 0.987

DORN [9] Depth 0.115 0.051 0.509 0.828 0.965 0.992

Table 4: NYU: Quantitative results on NYU V2 [23] dataset. Top - Our method. Bottom - Supervised methods.
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Transition Algorithm Correlation

KITTI → NYU

DORN [9] 0.423 ± 0.010

Ours F1 0.121 ± 0.006

Ours F10 0.429 ± 0.009

KITTI → Make3D

DORN [9] 0.616 ± 0.011

Ours F1 0.484 ± 0.019

Ours F10 0.642 ± 0.014

KITTI → D3Net

DORN [9] 0.145 ± 0.048

Ours F1 0.148 ± 0.032

Ours F10 0.275 ± 0.054

NYU → KITTI
DORN [9] 0.456 ± 0.006

Ours F1 0.567 ± 0.006

Ours F10 0.634 ± 0.005

NYU → Make3D
DORN [9] 0.250 ± 0.019

Ours F1 0.249 ± 0.032

Ours F10 0.456 ± 0.022

NYU → D3Net

DORN [9] 0.260 ± 0.054

Ours F1 0.530 ± 0.048

Ours F10 0.434 ± 0.052

Table 5: Quantitative results for cross domain evaluation.

Models are trained on domain A and tested on domain B.

Reported numbers are mean ± standard error.

seen in Tab 7, our model outperform the different ASPP ver-

sions. However, as the number of focused images increases,

the gaps are reduced.

Different rendering methods To further compare

with [31], we have conducted a test on the KITTI dataset,

where we replaced our rendering network g with their

compositional rendering, and modified our depth network

f ’s last layer to output 80 depth probabilities (similar

to [31]). From Tab. 8, the compositional method of [31]

preforms poorly on KITTI in the F1 and F2 setting.

6. Conclusion

We propose a method for learning to estimate depth from

a single image, based on focus cues. Our method outper-

forms the similarly supervised method [31] and all other

unsupervised literature methods. In most cases, it matches

the performance of directly supervised methods, when eval-

uated on test images from the training domain. Since fo-

cus cues are more generic than content cues, our method

outperforms the state-of-the-art supervised method in cross

domain evaluation on all available literature datasets.

We introduce a differentiable PSF convolutional layer,

which propagates image based losses back to the estimated

depth. We also contribute a new architecture that intro-

duces dense connection and Self-Attention to the ASPP

module. Our code is available as part of the supplemen-

tary material, and on GitHub https://github.com/

Transition Algorithm PSNR SSIM

KITTI → DSLR

DORN [9] 24.95 0.823

Ours F1 24.91 0.822

Ours F10 24.98 0.826

NYU → DSLR

DORN [9] 24.73 0.749

Ours F1 24.97 0.774

Ours F10 24.97 0.773

Table 6: Quantitative results on the outdoor DSLR [3] test

set, reported as mean value of PSNR and SSIM of the re-

constructed focused image.

Model F1 F2 F6 F10

ASPP 5.412 4.422 4.311 4.194

ASPP + D 5.285 4.351 4.170 4.190

ASPP + SA 5.387 4.402 4.232 4.188

Our 5.187 4.233 4.144 4.186

Table 7: A comparison on KITTI between the original

ASPP and our dense ASPP with self-attention. We de-

note ‘D’ for Dense connections and ‘SA’ for Self-Attention.

RMSE is shown for focused image stacks of different sizes.

Rendering
F1 F2

Abs Rel RMSE δ<1.25 Abs Rel RMSE δ<1.25

[31] 0.489 12.395 0.293 0.636 11.177 0.230

[31]+BF 0.379 11.921 0.354 0.339 11.612 0.418

Ours 0.141 5.187 0.846 0.129 4.233 0.856

Table 8: A comparison on KITTI dataset between different

blur methods on top of our network. BF= bilateral filtering.
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Figure 5: (a) δ<1.25, lower is better, for training F1 with

different focus distance. (b) RMSE, higher is better.

shirgur/UnsupervisedDepthFromFocus.
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