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Abstract

We proposed a novel architecture for the problem of

video super-resolution. We integrate spatial and temporal

contexts from continuous video frames using a recurrent

encoder-decoder module, that fuses multi-frame informa-

tion with the more traditional, single frame super-resolution

path for the target frame. In contrast to most prior work

where frames are pooled together by stacking or warping,

our model, the Recurrent Back-Projection Network (RBPN)

treats each context frame as a separate source of informa-

tion. These sources are combined in an iterative refine-

ment framework inspired by the idea of back-projection in

multiple-image super-resolution. This is aided by explic-

itly representing estimated inter-frame motion with respect

to the target, rather than explicitly aligning frames. We

propose a new video super-resolution benchmark, allowing

evaluation at a larger scale and considering videos in dif-

ferent motion regimes. Experimental results demonstrate

that our RBPN is superior to existing methods on several

datasets.

1. Introduction

The goal of super-resolution (SR) is to enhance a low-

resolution (LR) image to higher resolution (HR) by filling

missing fine details in the LR image. This field can be di-

vided into Single-Image SR (SISR) [4, 8, 9, 19, 21, 29],

Multi-Image SR (MISR) [5, 6], and Video SR (VSR) [2,

30, 27, 16, 13, 25], the focus of this paper.

Consider a sequence of LR video frames

It−n, . . . , It, . . . , It+n, where we super-resolve a target

frame, It. While It can be super-resolved independently

of other frames as SISR, this is wasteful of missing details

available from the other frames. In MISR, the missing

details available from the other frames are fused for

super-resolving It. For extracting these missing details, all

frames must be spatially aligned explicitly or implicitly.

By separating differences between the aligned frames from

missing details observed only in one or some of the frames,

the missing details are extracted. This alignment is required

to be very precise (e.g., sub-pixel accuracy) for SR. In

MISR, however, the frames are aligned independently with

no cue given by temporal smoothness, resulting in difficulty

in the precise alignment. Yet another approach is to align

the frames in temporal smooth order as VSR.

In recent VSR methods using convolutional networks,

the frames are concatenated [22, 16] or fed into recurrent

networks (RNNs) [13]) in temporal order; no explicit align-

ment is performed. The frames can be also aligned ex-

plicitly, using motion cues between temporal frames with

the alignment modules [25, 2, 30, 27]. These latter meth-

ods generally produce results superior to those with no ex-

plicit spatial alignment [22, 13]. Nonetheless, these VSR

methods suffer from a number of problems. In the frame-

concatenation approach [2, 16, 25], many frames are pro-

cessed simultaneously in the network, resulting in difficulty

in training the network. In RNNs [30, 27, 13], it is not easy

to jointly model subtle and significant changes (e.g., slow

and quick motions of foreground objects) observed in all

frames of a video even by those designed for maintaining

long-term temporal dependencies such as LSTMs [7].

Our method proposed in this paper is inspired by “back-

projection” originally introduced in [14, 15] for MISR.

Back-projection iteratively calculates residual images as re-

construction error between a target image and a set of its

corresponding images. The residuals are back-projected to

the target image for improving its resolution. The multi-

ple residuals can represent subtle and significant differences

between the target frame and other frames independently.

Recently, Deep Back-Projection Networks (DBPN) [8] ex-

tended back-projection to Deep SISR under the assumption

that only one LR image is given for the target image. In that

scenario, DBPN produces a high-resolution feature map, it-

eratively refined through multiple up- and down-sampling

layers. Our method, Recurrent Back-Projection Networks

(RBPN), integrates the benefits of the original, MISR back

projection and DBPN, for VSR. Here we use other video

frames as corresponding LR images for the original MISR

back-projection. In addition, we use the idea of iteratively

refining HR feature maps representing missing details by

up- and down-sampling processes to further improve the
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(a) Temporal concatenation (b) Temporal aggregation (c) RNNs (d) Our RBPN

Figure 1. Comparison of Deep VSRs. (a) Input frames are concatenated to preserve temporal information [18, 2, 16, 22]. (b) Temporal

aggregation improves (a) to preserve multiple motion regimes [25]. (c) RNNs take a sequence of input frames to produce one SR image at

a target frame, It [13, 30, 27]. (d) Our recurrent back-projection network accepts It, which is enclosed by a blue dashed line, as well as

a set of residual features computed from a pairing It with other frames (i.e., It−k for k ∈ {1, · · · , n}), as enclosed by a red dotted line,

while previous approaches using RNNs shown in (c) feed all temporal frames one by one along a single path. Residual features computed

from the pairs of (It, It−k) (MISR path - the vertical red arrows) are fused with features extracted from variants of It (SISR path - the

horizontal blue arrows) through RNN.

quality of SR.

Our contributions include the following key innovations.

Integrating SISR and MISR in a unified VSR frame-

work: SISR and MISR extract missing details from differ-

ent sources. Iterative SISR [8] extracts various feature maps

representing the details of a target frame. MISR provides

multiple sets of feature maps from other frames. These

different sources are iteratively updated in temporal order

through RNN for VSR.

Back-projection modules for RBPN: We develop a re-

current encoder-decoder mechanism for incorporating de-

tails extracted in SISR and MISR paths through the back-

projection. While the SISR path accepts only It, the MISR

path also accepts It−k where k ∈ [n]. A gap between It
and It−k is larger than the one in other VSRs using RNN

(i.e., gap only between It and It−1). Here, the network is

able to understand this large gap since each context is cal-

culated separately, rather than jointly as in previous work,

this separate context plays an important role in RBPN.

Extended evaluation protocol: We report extensive exper-

iments to evaluate VSR. In addition to previously-standard

datasets, Vid4 [24] and SPMCS [30], that lack signifi-

cant motions, a dataset containing various types of motion

(Vimeo-90k [34]) is used in our evaluation. This allows

us to conduct a more detailed evaluation of strengths and

weaknesses of VSR methods, depending on the type of the

input video.

2. Related Work

While SR has an extensive history, our discussion in this

section focuses on deep SR – SR methods that involve deep

neural network components, trained end-to-end.

2.1. Deep Image Super­resolution

Deep SISR is first introduced by SRCNN [4] that re-

quires a predefined upsampling operator. Further im-

provements include better up-sampling layers [28], residual

learning [19, 29], back-projection [8], recursive layers [20],

and progressive upsampling [21]. See NTIRE2018 [31] and

PIRM2018 [1] for comprehensive comparison.

2.2. Recurrent Networks

Recurrent neural networks (RNNs) deal with sequential

inputs and/or outputs, and have been employed for video

captioning [17, 26, 35], video summarization [3, 32], and

VSR [30, 13, 27]. Two types of RNN have been used for

VSR. A many-to-one architecture is used in [30, 13] where

a sequence of frames is mapped to a single target HR frame.

A synchronous many-to-many RNN has recently been used

in VSR by [27], to map a sequence of LR frames to a se-

quence of HR frames.

2.3. Deep Video Super­resolution

Deep VSR can be primarily divided into three types

based on the approach to preserving temporal information

as shown in Fig. 1 (a), (b), and (c).

(a) Temporal Concatenation. The most popular approach

to retain temporal information in VSR is by concatenating

the frames as in [18, 2, 16, 22]. This approach can be seen as

an extension of SISR to accept multiple input images. VSR-

DUF [16] proposed a mechanism to construct up-sampling

filters and residual images. However, this approach fails to

represent the multiple motion regimes on a sequence be-

cause input frames are concatenated together.

(b) Temporal Aggregation. To address the dynamic mo-

tion problem in VSR, [25] proposed multiple SR inferences

which work on different motion regimes. The final layer ag-

gregates the outputs of all branches to construct SR frame.

However, this approach basically still concatenates many

input frames, resulting in difficulty in global optimization.

(c) RNNs. This approach is first proposed by [13] using

bidirectional RNNs. However, the network has a small net-
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Figure 2. Overview of RBPN. The network has two approaches. The horizontal blue line enlarges It using SISR. The vertical red line is

based on MISR to compute the residual features from a pair of It to neighbor frames (It−1, ..., It−n) and the precomputed dense motion

flow maps (Ft−1, ..., Ft−n). Each step is connected to add the temporal connection. On each projection step, RBPN observes the missing

details on It and extract the residual features from each neighbor frame to recover the missing details.

work capacity and has no frame alignment step. Further

improvement is proposed by [30] using a motion compen-

sation module and a convLSTM layer [33]. Recently, [27]

proposed an efficient many-to-many RNN that uses the pre-

vious HR estimate to super-resolve the next frames. While

recurrent feedback connections utilize temporal smoothness

between neighbor frames in a video for improving the per-

formance, it is not easy to jointly model subtle and signifi-

cant changes observed in all frames.

3. Recurrent Back-Projection Networks

3.1. Network Architecture

Our proposed network is illustrated in Fig. 2. Let I be

LR frame with size of (M l × N l). The input is sequence

of n + 1 LR frames {It−n, . . . , It−1, It} where It is the

target frame. The goal of VSR is to output HR version of It,

denoted by SRt with size of (Mh ×Nh) where M l < Mh

and N l < Nh. The operation of RBPN can be divided into

three stages: initial feature extraction, multiple projections,

and reconstruction. Note that we train the entire network

jointly, end-to-end.

Initial feature extraction. Before entering projection mod-

ules, It is mapped to LR feature tensor Lt. For each neigh-

bor frame among It−k, k ∈ [n], we concatenate the pre-

computed dense motion flow map Ft−k (describing a 2D

vector per pixel) between It−k and It with the target frame

It and It−k. The motion flow map encourages the projec-

tion module to extract missing details between a pair of It
and It−k. This stacked 8-channel “image” is mapped to a

neighbor feature tensor Mt−k .

Multiple Projections. Here, we extract the missing details

in the target frame by integrating SISR and MISR paths,

then produce refined HR feature tensor. This stage receives

Lt−k−1 and Mt−k, and outputs HR feature tensor Ht−k.

Reconstruction. The final SR output is obtained

by feeding concatenated HR feature maps for all

frames into a reconstruction module, similarly to [8]:

SRt = frec([Ht−1, Ht−2, ..., Ht−n]). In our experiments,

frec is a single convolutional layer.

3.2. Multiple Projection

The multiple projection stage of RBPN uses a re-

current chain of encoder-decoder modules, as shown in

Fig. 3. The projection module, shared across time

frames, takes two inputs: Lt−n−1 ∈ R
M

l
×N

l
×c

l

and

Mt−n ∈ R
M

l
×N

l
×c

m

, then produces two outputs: Lt−n

and Ht−n ∈ R
M

h
×N

h
×c

h

where cl, cm, ch are the number

of channels for particular map accordingly.

The encoder produces a hidden state of estimated HR

features from the projection to a particular neighbor frame.

The decoder deciphers the respective hidden state as the

next input for the encoder module as shown in Fig. 4 which

are defined as follows:

Encoder: Ht−n = NetE(Lt−n−1,Mt−n; θE) (1)

Decoder: Lt−n = NetD(Ht−n; θD) (2)

The encoder module NetE is defined as follows:

SISR upscale: H l

t−n−1 = Netsisr(Lt−n−1; θsisr) (3)

MISR upscale: Hm

t−n
= Netmisr(Mt−n; θmisr) (4)

Residual: et−n = Netres(H
l

t−n−1 −Hm

t−n
; θres) (5)

Output: Ht−n = H l

t−n−1 + et−n (6)

3.3. Interpretation

Figure 5 illustrates the RBPN pipeline, for a 3-frame

video. In the encoder, we can see RBPN as the combina-

tion of SISR and MISR networks. First, target frame is en-

larged by Netsisr to produce H l

t−k−1
. Then, for each com-

bination of concatenation from neighbor frames and target

frame, Netmisr performs implicit frame alignment and ab-

sorbs the motion from neighbor frames to produce warping
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Figure 3. The proposed projection module. The target features

(Lt−n−1) is projected to neighbor features (Mt−n) to construct

better HR features (Ht−n) and produce next LR features (Lt−n)

for the next step.

(a) Encoder (the back-projection)

(b) Decoder

Figure 4. Detailed illustration of encoder and decoder. The en-

coder performs back-projection from Lt−n−1 to Mt−n to produce

the residual et−n.

features Hm

t−k
which may capture missing details in the tar-

get frame. Finally, the residual features et−k from H l

t−k−1

and Hm

t−k
are fused back to H l

t−k−1
to refine the HR fea-

tures and produce hidden state Ht−k. The decoder “deci-

phers” the hidden state Ht−k to be the next input for the

encoder Lt−k. This process is repeated iteratively until the

target frame is projected to all neighbor frames.

The optimal scenario for this architecture is when each

frame can contribute to filling in some missing details in the

target frame. Then Ht−k generated in each step k produce

unique features. In the generate case when n = 0 (no other

frames) or the video is completely static (identical frames)

RBPN will effectively ignore the Netmisr module, and fall

back to a recurrent SISR operation.

4. Experimental Results

In all our experiments, we focus on 4× SR factor.

4.1. Implementation and training details

We use DBPN [8] for Netsisr, and Resnet [10] for

Netmisr, Netres, and NetD. For Netsisr, we construct

three stages using 8× 8 kernel with stride = 4 and pad by 2

pixels. For Netmisr, Netres, and NetD, we construct five

Bicubic DBPN DBPN-MISR RBPN-MISR RBPN

1 Frame 1 Frame 5 Frames 5 Frames 5 Frames

27.13/0.749 29.85/0.837 30.64/0.859 30.89/0.866 31.40/0.877

Table 1. Baseline comparison on SPMCS-32. Red here and in the

other tables indicates the best performance (PSNR/SSIM).

blocks where each block consists of two convolutional lay-

ers with 3×3 kernel with stride = 1 and pad by 1 pixel. The

up-sampling layer in Netmisr and down-sampling layer in

NetD use 8× 8 kernel with stride = 4 and pad by 2 pixels.

Our final network uses cl = 256, cm = 256, and ch = 64.

We trained our networks using Vimeo-90k [34], with a

training set of 64,612 7-frame sequences, with fixed resolu-

tion 448 × 256. Furthermore, we also apply augmentation,

such as rotation, flipping, and random cropping. To produce

LR images, we downscale the HR images 4× with bicubic

interpolation.

All modules are trained end-to-end using per-pixel L1

loss per-pixel between the predicted frame and the ground

truth HR frame. We use batch size of 8 with size 64 × 64
which is cropped randomly from 112 × 64 LR image. The

learning rate is initialized to 1e − 4 for all layers and de-

crease by a factor of 10 for half of total 150 epochs. We

initialize the weights based on [11]. For optimization, we

used Adam with momentum to 0.9. All experiments were

conducted using Python 3.5.2 and PyTorch 1.0 on NVIDIA

TITAN X GPUs. Following the evaluation from previous

approaches [2, 30, 27], we crop 8 pixels near image bound-

ary and remove first six frames and last three frames. All

measurements use only the luminance channel (Y).

4.2. Ablation studies

Baselines We consider three baselines, that retain some

components of RBPN while removing others. First, we re-

move all components by Netsisr (DBPN); this ignores the

video context. Second, we use DBPN with temporal con-

catenation (DBPN-MISR). Third, we remove the decoder,

thus severing temporal connections, so that our model is

reduced to applying back-projection Netmisr with each

neighboring frame, and concatenating the results; we call

this baseline RBPN-MISR. The results are shown in Ta-

ble 1. Our intuition suggests, and the results confirm, that

such an approach would be weaker than RBPN, since it does

not have the ability to separately handle changes of different

magnitude that RBPN has. As expected, SISR suffers from

ignoring extra information in other frames. RBPN-MISR

and DBPN-MISR does manage to leverage multiple frames

to improve performance, but the best results are obtained by

the full RBPN model.

Network setup. The modular design of our approach al-

lows easy replacement of modules; in particular we con-

sider choices of DBPN or ResNet for Netsisr, Netmisr, or

both. In Table 2, we evaluate three combinations: RBPN
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Figure 5. The illustration of each operation in RBPN (n+ 1 = 3). Zoom in to see better visualization.

DBPN RESNET Netsisr=DBPN, Netmisr=RESNET

30.54/0.856 30.74/0.862 30.96/0.866

Table 2. Network analysis using RBPN/2 on SPMCS-32.

Figure 6. Effect of context (past) length, 4× SR on SPMCS-32.

RBPN/〈k〉: RBPN trained/tested with k past frames. Note: DBPN

is equivalent to RBPN/0.

with DBPN, RBPN with Resnet, and RBPN with the com-

bination of DBPN as Netsisr and Resnet as Netmisr. The

latter produces the best results, but the difference are minor,

showing stability of RBPN w.r.t. choice of components.

Context length We evaluated RBPN with different lengths

of video context, i.e., different number of past frames n ∈
{2, . . . , 6}. Figure 6 shows that performance (measured on

(on SPMCS-32 test set) improves with longer context. The

performance of RBPN/3 is even better than VSR-DUF as

one of state-of-the-art VSR which uses six neighbor frames.

It also shows that by adding more frames, the performance

of RBPN increase by roughly 0.2 dB.

Fig. 7 provides an illustration of the underlying perfor-

mance gains. Here, VSR-DUF fails to reconstruct the brick

pattern, while RBPN/3 reconstructs it well, even with fewer

frames in the context; increasing context length leads to fur-

ther improvements.

RBPN/2 RBPN/6

RBPN Last w/ LSTM RBPN

PSNR/SSIM 30.96/0.866 30.89/0.864 31.46/0.880 31.64/0.883

Table 3. Comparison of temporal integration strategies on

SPMCS-32.

Temporal integration Once the initial feature extraction

and the projection modules have produced a sequence of

HR feature maps Ht−k, k = 1, . . . , n, we can use these

maps in multiple ways to reconstruct the HR target. The

proposed DBPN concatenates the maps; We also consider

an alternative where only the Ht−n is fed to Netrec (re-

ferred to as Last). Furthermore, instead of concatenating

the maps, we can feed them to a convolutional LSTM [33],

the output of which is then fed to Netrec. The results are

shown in Table 3. Dropping the concatenation and only us-

ing last feature map harms the performance (albeit moder-

ately). Replacing concatenation with an LSTM also reduces

the performance (while increasing computational cost). We

conclude that the RBPN design depicted in Fig. 2 is better

than the alternatives.

Temporal order When selecting frames to serve as context

for a target frame t, we have a choice of how to choose and

order it: use only past frames (P; for instance, with n = 6,

this means It, It−1, . . . , It−6), use both past and future (PF,

It−3, . . . , It, . . . , It+3), or consider the past frames in ran-

dom order (PR; we can do this since the motion flow is

computed independently for each context frame w.r.t. the

target). Table 4 shows that PF is better than P by 0.1 dB;

presumably this is due to the increased, more symmetric

representation of motion occurring in frame t. Interest-

ingly, when the network is trained on PF, then tested on

P (PF→P), the performance is decreased (-0.17dB), but

when RBPN is trained on P then tested on PF (P→PF),

the performance remains almost the same.

The results of comparing order P to random ordering PR

are shown in Table 5. Interestingly, RBPN performance is
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(a) VSR-DUF/6 [16] (b) RBPN/2 (c) RBPN/3 (d) RBPN/4 (e) RBPN/5 (f) RBPN/6 (g) GT

Figure 7. Visual results on different frame length (SPMCS-32). Zoom in to see better visualization.

P PF P → PF PF → P

PSNR/SSIM 31.64/0.883 31.74/0.884 31.66/0.884 31.57/0.881

Table 4. Effect of temporal order of context, RBPN/6 on SPMCS-

32.

P PR P → PR PR → P

PSNR/SSIM 31.40/0.877 31.39/0.876 31.39/0.877 31.35/0.875

Table 5. Effect of temporal order (RBPN/4) on SPMCS-32.

RBPN/5

w/ w/o

PSNR/SSIM 31.54/0.881 31.36/0.878

Table 6. Optical flow (OF) importance on SPMCS-32.

not significantly affected by the choice of order. We at-

tribute this robustness to the decision to associate each con-

text frame with the choice of order.

Optical flow Finally, we can remove the optical flow com-

ponent of Mt−k, feeding the projection modules only the

concatenated frame pairs. As Table 6 shows, explicit opti-

cal flow representation is somewhat, but not substantially,

beneficial. We compute the flow using an implementation

of [23].

4.3. Comparison with the­state­of­the­arts

We compare our network with eight state-of-the-art SR

algorithms: DBPN [8], BRCN [13], VESPCN [2], B123 +
T [25], VSR-TOFLOW [34], DRDVSR [30], FRVSR [27],

and VSR-DUF [16]. Note: only VSR-DUF and DBPN pro-

vide full testing code without restrictions, and most of the

previous methods use different training sets. Other methods

provide only the estimated SR frames. For RBPN, we use

n = 6 with PF (past+future) order, which achieves the best

results, denoted as RBPN/6-PF.

We carry out extensive experiments using three datasets:

Vid4 [24], SPMCS [30], and Vimeo-90k [34]. Each dataset

has different characteristics. We found that evaluating on

Vid4, commonly reported in literature, has limited ability

to assess relative merits of competing approaches; the se-

quences in this set have visual artifacts, very little inter-

frame variation, and fairly limited motion. Most notably, it

only consists of four video sequences. SPMCS data exhibit

more variation, but still lack significant motion. Therefore,

in addition to the aforementioned data sets, we consider

Vimeo-90k, a much larger and diverse data set, with high-

quality frames, and a range of motion types. We stratify the

Vimeo-90k sequences according to estimated motion veloc-

ities into slow, medium and fast “tiers”, as shown in Fig. 8,

and report results for these tiers separately.

Table 7 shows the results on Vid4 test set. We also pro-

vide the average flow magnitude (pixel/frame) on Vid4. It

shows that Vid4 does not contain significant motion. The

results also show that RBPN/6-PF is better than the previ-

ous methods, except for VSR-DUF. Figure 9 shows some

qualitative results on Vid4. (on “Calendar”). The “MA-

REE” text reconstructed with RBPN/6-PF has sharper im-

ages than previous methods. However, here we see that the

ground truth (GT) itself suffers from artifacts and aliasing,

perhaps due to JPEG compression. This apparently leads in

some cases to penalizing sharper SR predictions, like those

made by our network, as illustrated in Fig. 9.

Table 8 shows the detailed results on SPMCS-11.

RBPN/6-PF has better performance of 0.68 dB and 1.28

dB than VSR-DUF and DRDVSR, respectively. Even with

fewer frames in the context, RBPN/4-P has better average

performance than VSR-DUF and DRDVSR by 0.33 dB and

0.93 dB, respectively. Qualitative results on SPMCS are

shown in Fig. 10. In the first row, we see that RBPN repro-

duces a well-defined pattern, especially on the stairs area.

In the second row, RBPN recovers sharper details and pro-

duces better brown lines from the building pattern.

It is interesting to see that VSR-DUF tends to do better

on SSIM than on PSNR. It has been suggested that PSNR is

more sensitive to Gaussian noise, while SSIM is more sen-

sitive to compression artifacts [12]. VSR-DUF generates

up-sampling filter to enlarge the target frame. The use of

up-sampling filter can keep overall structure of target frame

which tends to have higher SSIM. However, since the resid-

ual image produced by VSR-DUF fails to generate the miss-

ing details, PSNR tends to be lower. In contrast with VSR-

DUF, our focus is to fuse the missing details to the target

frame. However, if in some cases we generate sharper pat-

tern than GT, this causes lower SSIM. This phenomenon

mainly can be observed in the Vid4 test set.

Table 9 shows the results on Vimeo-90k. RBPN/6-PF

outperforms VSR-DUF by a large margin. RBPN/6-PF gets

higher PSNR by 1.22 dB, 1.44 dB, and 2.54 dB than VSR-

DUF on, respectively, slow, medium, and fast motion. It

can be seen that RBPN is able to preserve different temporal

scale. RBPN achieves the highest gap relative to prior work
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Figure 8. Examples from Vimeo-90k [34]. Top row: fast camera motion; new object appears in the third frame. Middle row: medium

motion, little camer movement but some scene movement (e.g., person’s arm in the foreground). Bottom row: slow motion only.

Flow Bicubic DBPN BRCN VESPCN B123 + T DRDVSR FRVSR VSR-DUF RBPN/6-PF

Clip Name Magnitude [8] [13] [2] [25] [30] [27] [16]

Calendar 1.14 19.82/0.554 22.19/0.714 - - 21.66/0.704 22.18/0.746 - (24.09/0.813*) 23.99/0.807 (23.93/0.803*)

City 1.63 24.93/0.586 26.01/0.684 - - 26.45/0.720 26.98/0.755 - (28.26/0.833*) 27.73/0.803 (27.64/0.802*)

Foliage 1.48 23.42/0.575 24.67/0.662 - - 24.98/0.698 25.42/0.720 - (26.38/0.771*) 26.22/0.757 (26.27/0.757*)

Walk 1.44 26.03/0.802 28.61/0.870 - - 28.26/0.859 28.92/0.875 - (30.50/0.912*) 30.70/0.909 (30.65/0.911*)

Average 1.42 23.53/0.629 25.37/0.737 24.43/0.662 25.35/0.756 25.34/0.745 25.88/0.774 26.69/0.822 (27.31/0.832*) 27.12/0.818 (27.16/0.819*)

Table 7. Quantitative evaluation of state-of-the-art SR algorithms on Vid4 for 4×. Red indicates the best and blue indicates the second

best performance (PSNR/SSIM). The calculation is computed without crop any pixels border and remove first and last two frames. For

B123 + T and DRDVSR, we use results provided by the authors on their webpage. For BRCN, VESPCN, and FRVSR, the values taken

from their publications. *The output is cropped 8-pixels near image boundary.

Flow Bicubic DBPN [8] DRDVSR [30] VSR-DUF [16] RBPN/4-P RBPN/6-P RBPN/6-PF

Clip Name Magnitude (1 Frame) (7 Frames) (7 Frames) (5 Frames) (7 Frames) (7 Frames)

car05 001 6.21 27.62 29.58 32.07 30.77 31.51 31.65 31.92

hdclub 003 001 0.70 19.38 20.22 21.03 22.07 21.62 21.91 21.88

hitachi isee5 001 3.01 19.59 23.47 23.83 25.73 25.80 26.14 26.40

hk004 001 0.49 28.46 31.59 32.14 32.96 32.99 33.25 33.31

HKVTG 004 0.11 27.37 28.67 28.71 29.15 29.28 29.39 29.43

jvc 009 001 1.24 25.31 27.89 28.15 29.26 29.81 30.17 30.26

NYVTG 006 0.10 28.46 30.13 31.46 32.29 32.83 33.09 33.25

PRVTG 012 0.12 25.54 26.36 26.95 27.47 27.33 27.52 27.60

RMVTG 011 0.18 24.00 25.77 26.49 27.63 27.33 27.64 27.69

veni3 011 0.36 29.32 34.54 34.66 34.51 36.28 36.14 36.53

veni5 015 0.36 27.30 30.89 31.51 31.75 32.45 32.66 32.82

Average 1.17 25.67/0.726 28.10/0.820 28.82/0.841 29.42/0.867 29.75/0.866 29.96/0.873 30.10/0.874

Table 8. Quantitative evaluation of state-of-the-art SR algorithms on SPMCS-11 for 4×. Red indicates the best and blue indicates the

second best performance (PSNR/SSIM).

Vimeo-90k

Algorithm Slow Medium Fast

Bicubic 29.33/0.829 31.28/0.867 34.05/0.902

DBPN [8] 32.98/0.901 35.39/0.925 37.46/0.944

TOFLOW [34] 32.16/0.889 35.02/0.925 37.64/0.942

VSR-DUF/6 [16] 32.96/0.909 35.84/0.943 37.49/0.949

RBPN/3-P 33.73/0.914 36.66/0.941 39.49/0.955

RBPN/6-PF 34.18/0.920 37.28/0.947 40.03/0.960

# of clips 1,616 4,983 1,225

Avg. Flow Mag. 0.6 2.5 8.3

Table 9. Quantitative evaluation of state-of-the-art SR algorithms

on Vimeo-90k [34] for 4×.

on fast motion. Even with reduced amount of temporal con-

text available, RBPN/3-P (using only 3 extra frames) does

better than previous methods like VSR-DUF using the full

6-extra frame context. RBPN/3-P get higher PSNR by 0.77

dB, 0.82 dB, and 2 dB than VSR-DUF on slow, medium,

and fast motion, respectively.

Figure 11 shows qualitative results on Vimeo-90k.

RBPN/6-PF obtains reconstruction that appears most sim-

ilar to the GT, more pleasing and sharper than reconstruc-

tions with other methods. We have highlighted regions in

which this is particularly notable.

5. Conclusion

We have proposed a novel approach to video super-

resolution (VSR) called Recurrent Back-Projection Net-

work (RBPN). It’s a modular architecture, in which tempo-

ral and spatial information is collected from video frames

surrounding the target frame, combining ideas from single-

and multiple-frame super resolution. Temporal context

is organized by a recurrent process using the idea of

(back)projection, yielding gradual refinement of the high-
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“Calendar” (a) Bicubic (b) DBPN [8] (c) VSR [18] (d) VESPCN [2] (e) B123 + T [25]

(f) DRDVSR [30] (g) FRVSR [27] (h) VSR-DUF [16] (i) RBPN/6-PF (j) GT

Figure 9. Visual results on Vid4 for 4× scaling factor. Zoom in to see better visualization.

(a) DBPN [8] (b) DRDVSR [30] (c) VSR-DUF [16] (d) RBPN/6-PF (e) GT

Figure 10. Visual results on SPMCS for 4× scaling factor. Zoom in to see better visualization.

(a) Bicubic (b) TOFlow [34] (c) VSR-DUF [16] (d) RBPN/3-P (e) RBPN/6-PF (f) GT

Figure 11. Visual results on Vimeo-90k for 4× scaling factor. Zoom in to see better visualization.

resolution features used, eventually, to reconstruct the high-

resolution target frame. In addition to our technical innova-

tions, we propose a new evaluation protocol for video SR.

This protocol allows to differentiate performance of video

SR based on magnitude of motion in the input videos. In

extensive experiments, we assess the role played by various

design choices in the ultimate performance of our approach,

and demonstrate that, on a vast majority of thousands of test

video sequences, RBPN obtains significantly better perfor-

mance than existing VSR methods.
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