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Abstract

Many recent advances in computer vision are the result

of a healthy competition among researchers on high qual-

ity, task-specific, benchmarks. After a decade of active re-

search, zero-shot learning (ZSL) models accuracy on the

Imagenet benchmark remains far too low to be considered

for practical object recognition applications. In this pa-

per, we argue that the main reason behind this apparent

lack of progress is the poor quality of this benchmark. We

highlight major structural flaws of the current benchmark

and analyze different factors impacting the accuracy of ZSL

models. We show that the actual classification accuracy of

existing ZSL models is significantly higher than was previ-

ously thought as we account for these flaws. We then intro-

duce the notion of structural bias specific to ZSL datasets.

We discuss how the presence of this new form of bias al-

lows for a trivial solution to the standard benchmark and

conclude on the need for a new benchmark. We then de-

tail the semi-automated construction of a new benchmark

to address these flaws.

1. Introduction

Datasets play a leading role in computer vision research.

Perhaps the most striking example of the impact a dataset

can have on research has been the introduction of Imagenet

[2]. The new scale and granularity of Imagenet’s coverage

of the visual world has paved the way for the success and

wide spread adoption of CNN [8, 11] that have revolution-

ized generic object recognition.

The current best-practice for the development of a prac-

tical object recognition solution consists in collecting and

annotating application-specific training data to fine-tune a

large Imagenet-pretrained CNN on. This data annotation

process can be prohibitively expensive for many applica-

tions which hinders the wide-spread usage of these tech-

nologies. ZSL models generalize the recognition ability of

traditional image classifiers to unknown classes, for which

no image sample is available for training. The promise of

ZSL for generic object recognition is huge: to scale up the

recognition capacity of image classifiers beyond the set of

annotated training classes. Hence ZSL has the potential to

be of great practical impact as they would considerably ease

the deployment of object recognition technologies by elim-

inating the need for expensive task-specific data collection

and fine-tuning processes.

Despite its great promise, and after a decade of active

research [10], the accuracy of ZSL models on the standard

Imagenet benchmark [3] remain far too low for practical

applications. To better understand this lack of progress, we

analyzed the errors of several ZSL baselines. Our analysis

leads us to identify two main factors impacting the accuracy

of ZSL models: structural flaws in the standard evaluation

protocol and poor quality of both semantic and visual sam-

ples. On the bright side of things, we show that once these

flaws are taken into account, the actual accuracy of existing

ZSL models is much higher than was previously thought.

On the other hand, we show that a trivial solution outper-

forms most existing ZSL models by a large margin, which

is upsetting. To explain this phenomenon, we introduce the

notion of structural bias in ZSL datasets. We argue that

ZSL models should aim to develop compositional reason-

ing abilities, but the presence of structural bias in the Ima-

genet benchmark favors solutions based on a trivial one to

one mapping between training and test classes. We come to

the conclusion that a new benchmark is needed to address

the different problems identified by our analysis and, in the

last section of this paper, we detail the semi-automated con-

struction of a new benchmark we propose.

To structure our discussion, we first briefly review pre-

liminaries on ZSL in Section 3. Section 4 details our anal-

ysis of the different factors impacting the accuracy of ZSL

models on the standard benchmark. Section 5 introduces

the notions of structural bias, and propose a way to measure

and minimize its impact in the construction of a new bench-

mark. Finally, Section 6 summarizes the construction of our

proposed benchmark. For space constraint, we only include

the main results of our analysis in the body of this paper.

We refer interested readers to the supplementary material

for additional results and details of our analysis.
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2. Related Work

2.1. ZSL datasets

Early research on ZSL has been carried out on relatively

small scale or domain specific benchmarks [9, 14, 19], for

which human-annotated visual attributes are proposed as se-

mantic representations of the visual classes. On the one

hand, these benchmarks have provided a controlled setup

for the development of theoretical models and the accurate

tracking of ZSL progress. On the other hand, it is unclear

whether approaches developed on such dataset would gen-

eralize to the more practical setting of zero-shot generic ob-

ject recognition. For instance, in generic object recognition,

manually annotating each and every possible visual class of

interest with a set of visual attributes is impractical due to

the diversity and complexity of the visual world.

The Imagenet dataset [2] consists of more than 13 mil-

lion images scattered among 21,845 visual classes. Ima-

genet relies on Wordnet [12] to structure its classes: each

visual class in Imagenet corresponds to a concept in Word-

net. Frome et al. [3] proposed a benchmark for ZS generic

object recognition based on the Imagenet dataset, which has

been widely adopted as the standard evaluation benchmark

by recent works [13, 20, 15, 1, 21, 7, 18]. Using word

embeddings as semantic representations, they use the 1000

classes of the ILSVRC dataset as training classes and pro-

pose different test splits drawn from the remaining 20,845

classes of the Imagenet dataset based on their distance to the

training classes within the Wordnet hierarchy: the 2-hops,

3-hops and all test splits.

Careful inspection of these test splits revealed a confu-

sion in their name: The 2-hops test split actually consists of

the set of 1589 test classes directly connected to the train-

ing set classes in Wordnet, i.e; within 1 hop of the training

set. Similarly, the 3-hops test set actually corresponds to the

test classes within 2-hops. In this paper, we will refer to the

standard test splits by the name of their true configuration:

1-hop, 2-hops and all, as illustrated in Figure 1.

2.2. Dataset bias

Bias in datasets can take many forms, depending on the

specific target task. Torralba et al. [17] investigates bias

in generic object recognition. The notion of structural bias

we introduce in Section 5 is closely related to the notion of

negative set bias they analyze.

As more complex tasks are being considered, more in-

sidious forms of bias sneak into our datasets. In VQA, the

impressive results of early baseline models have later been

shown to be largely due to statistical biases in the ques-

tion/answers pairs [4, 6, 5]. Similar to these works, we will

show that a trivial solution leveraging structural bias in the

Imagenet ZSL benchmark outperforms early ZSL baselines.

Xian et al. [21] identify structural incoherences in small-

scale ZSL benchmarks and proposes new test splits to rem-

edy them. Closely related to our work, they also observe a

correlation between test class sample population and clas-

sification accuracy in the Imagenet ZSL benchmark. How-

ever, their analysis mainly focuses on small-scale bench-

marks and the comparison of existing ZSL models, while

we analyze the ZSL benchmark for generic object recogni-

tion in more depth.

3. Preliminaries

ZSL models aim to recognize unseen classes, for which

no image sample is available to learn from. To do so, ZSL

models use descriptions of the visual classes, i.e., represen-

tations of the visual classes in a semantic space shared by

both training and test classes. To evaluate the out-of-sample

recognition ability of models, ZSL benchmarks split the full

set of classes C into disjoint training and test sets. ZSL

benchmarks are fully defined by three components: a set of

training and test classes (Ctr, Cte), a set of labeled images

X , and a set of semantic representations Y :

Ctr ∪ Cte ⊂ C (1a)

Ctr ∩ Cte = ∅ (1b)

Y = {yc ∈ R
d ∀c ∈ C} (1c)

X = {(x, c) ∈ R
3×h×w × C} (1d)

Tr = {(x, yc) | c ∈ Ctr} (1e)

Te = {(x, yc) | c ∈ Cte} (1f)

ZSL models are typically trained to minimize a loss

function L over a similarity score E between image and

semantic features of the training sample set with respect to

the model parameters θ.

θ∗ = argminθE(x,y)∈TrL(Eθ(x, y) + Ω(θ)) (2)

In the standard ZSL setting, test samples xte are classified

among the set of unseen test classes by retrieving the class

description y of highest similarity score:

c = argmaxc∈Cte
E(xte, yc) (3)

In the generalized ZSL setting, test samples are classified

among the full set of training and test classes:

c = argmaxc∈CE(xte, yc) (4)

Xian et al. [20] have shown that many ZSL models can

be formulated within a same linear model framework, with

different training objectives and regularization terms. More

recently, Wang et al. [18] have proposed a Graph Convolu-

tional Network (GCN) model that has shown impressive im-

provements over the previous state of the art. In our study,

we will present results obtained with both a baseline linear

model [15] and a state of the art GCN model [18, 7].
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4. Error analysis

In the previous section, we have mentioned that ZSL

benchmarks are fully defined by three components: a set of

labeled images X , a set of semantic representations Y , and

the set of training and test classes (Ctr, Cte). In this section,

we analyze each of the standard benchmark components in-

dividually: We first highlight inconsistencies in the config-

uration of the different test splits and show that these incon-

sistencies lead to many false negatives in the reported evalu-

ation of ZSL models outputs. Next, we identify a number of

factors impacting the quality of the word embeddings of vi-

sual classes and argue that visual classes with poor semantic

representations should be excluded from ZSL benchmarks.

We then observe that the Imagenet dataset contains many

ambiguous image samples. We define what a good image

sample means in the context of ZSL and propose a method

to automatically select such images.

4.1. Structural flaws

Figure 1 illustrates the configuration of test classes of

the standard test splits within the Wordnet hierarchy. This

configuration leads to an obvious contradiction: test sets in-

clude visual classes of both parents and their children con-

cepts. Consider the problem of classifying images of birds

within the hop-1 test split as in Figure 1. The standard test

splits give rise to two possibly inconsistent scenarios:

Figure 1. Illustration of the standard test splits configuration

A ZSL model may classify an image of the children class

Cathartid as its parent class Raptor. The standard bench-

mark considers such cases as classification errors, while the

classification is semantically correct.

A ZSL model may classify an image of the parent class

Raptor as one of its children class: Cathartid. Classification

may be semantically correct or incorrect, depending on the

specific breed of raptor in the image, but we have no way to

automatically assess it without additional annotation. The

standard benchmark considers such cases as classification

errors, while the classification is semantically undefined.

We refer to both of the above cases as false negatives.

Figure 2 illustrates the distribution of ZSL classification

Figure 2. Distribution of the classification outputs of different

ZSL models on the 1-hop test split. An image x can be either be

classified into its actual label c, the parent class of c, one of its chil-

dren class, or an unrelated class. Only the latter case constitutes a

definitive error.

outputs among these different scenarios on the 1-hop test

split. On the standard ZSL task for instance, the reported

accuracy of the GCN model is 21.8% while the actual (se-

mantically correct) accuracy should be somewhere in be-

tween 27.8% and 40.4%.

The ratio of false negatives per accuracy increases dra-

matically in the generalized ZSL setting. The linear base-

line reported accuracy is only 1.9%, while the actual

(semantically correct) accuracy lies between 16.0% and

41.1%. This is due to the fact that ZSL models tend to clas-

sify test images into their parent or children training class:

for example, Cathartid images tend to be classified as Vul-

ture. Appendix A of the supplementary material presents

results on the other standard splits on which we show that

the ratio of false negative per reported accuracy further in-

creases with with larger test splits.

4.2. Word embeddings

In this section, we identify two factors impacting the

quality of word embeddings and analyse their affect on ZSL

accuracy: polysemy and occurrence frequency. These prob-

lems naturally arise in the definition of large scale object

categories so they are inherent problems of ZS recognition

of generic objects. However, we argue that ZSL bench-

marks should provide a curated environment with high qual-

ity, unambiguous, semantic representations and that solu-

tions to tackle the special case of polysemous and rare

words should be separately investigated in the future.
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4.2.1 Occurrence frequency

Word embeddings are learned in an unsupervised manner

from the co-occurrence statistics of words in large text cor-

pora. Common words are learned from plentiful statistics

so we expect them to provide more semantically meaning-

ful representations than rare words, which are learned from

scarce co-occurrence statistics. We found many Imagenet

class labels to be rare words (see Appendix B of the supple-

mentary materials), with as many as 33.7% of label words

appearing less than 50 times in Wikipedia. Here, we ques-

tion whether the few co-occurrence statistics from which

such rare word embeddings are learned actually provide any

visually discriminative information for ZSL.

To answer this question, we evaluate ZSL models on

different test splits of 100 classes: we split the Imagenet

classes into different subsets based on the occurrence fre-

quency of their label word. We independently evaluate the

accuracy of our model on each of these splits and report the

ZSL accuracy with respect to the average occurrence fre-

quency of the visual class labels in Figure 3.

Figure 3. Each dot in these figures represent the top-1 accuracy

(y-axis) of a 100 classes test split with respect to the test split char-

acteristics (x-axis): Left: Mean occurrence frequency of the test

class labels. Right: test classes of primary meaning, such as cairn

(monument), or secondary meaning, such as cairn (dog)

Our results highlight a strong correlation (r = 0.89) be-

tween word frequency and the Linear baseline accuracy as

test splits made of rare words strikingly under-perform test

splits made of more common words, although accuracy re-

mains well above chance (1%), even for test sets of very rare

words. Results are more nuanced for the GCN model (cor-

relation coefficient r = 0.74), which can be explained by

the fact that GCN uses the Wordnet hierarchy information

in addition to word embeddings.

4.2.2 Polysemy

The English language contains many polysemous words,

which makes it difficult to uniquely identify a visual class

with a single word. We found that half of the ImageNet

word labels are shared with at least one other Wordnet con-

cept, and that 38% of ImageNet classes share at least one

word label with other visual classes. Figure 4 illustrates

the example of the word ”cairn”. Two visual classes share

the same label ”cairn”: One relates to the meaning of cairn

as a stone memorial, while the other refers to a dog breed.

This is problematic as both of these visual classes share the

same representation in the label space, so they are essen-

tially defined as the same class although they correspond to

two visually very distinct concepts.

To deal with polysemy, we assume that all words have

one primary meaning, with possibly several secondary

meanings. We consider word embeddings to reflect the se-

mantics of their primary meaning exclusively, and discard

visual classes associated with the secondary meanings of

their word label. To automatically identify the first mean-

ing of visual class labels. we implement a solution based

on both Wordnet and word embeddings statistics detailed in

the supplementary material.

Figure 4. Illustration of polysemous words. Each color represents

the 100 nearest neighbors of a given word. ”Cairn” and its closest

neighbors are clustered around the stone and monument related

vocabulary, far away from dog-related vocabulary so we assign

the top visual class as primary meaning of the word cairn.

We conduct an experiment to assess both the impact of

polysemy on ZSL accuracy and the efficiency of our so-

lution. As in the previous section, we evaluate our ZSL

models on different test splits of 100 classes: We separately

evaluate test classes identified as the primary meaning of

their word label and test classes corresponding to the sec-

ondary meaning of their word label. Figure 3 reports the

accuracy obtained on these different test splits. We can see

a significant boost in the ZSL accuracy of test classes whose

word labels are identified as primary meanings. In com-

parison, test splits made exclusively of secondary meanings

performed poorly. This confirms that polysemy does in-

deed impact ZSL accuracy, and suggests that our solution

for primary meaning identification allows addressing this

problem.

4.3. Image samples

The ILSVRC dataset consists of a high-quality curated

subset of the Imagenet dataset. The current ZSL bench-

mark uses ILSVRC classes as training classes and classes

drawn from the remainder of the Imagenet dataset as test
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sets, assuming similar standards of quality from these test

classes. Upon closer inspection, we found these test classes

to contain many inconsistencies and ambiguities. In this

section, we detail a solution to automatically filter out am-

biguous samples so as to only select quality samples for our

proposed benchmark.

4.3.1 Class-wise selection

Xian et al. [20] have first identified a correlation between

the sample population of visual classes and their classi-

fication accuracy. They conjecture that small population

classes are harder to classify because they correspond to

fine-grained visual concepts, while large population classes

correspond to easier, coarse-grained concepts. Manual in-

spection of these classes lead us to a different interpretation:

First, we found no significant correlation between sample

population and concept granularity (Appendix C). For ex-

ample, fine-grained concepts such as specific species of

birds or dogs tend to have high sample populations. On the

other hand, we found many visually ambiguous concepts

such as ”ringer”, ”covering” or ”chair of state” to have low

sample populations. Such visually ambiguous concepts are

harder for crowd-sourced annotators to reach consensus on

labeling, resulting in lower population counts.

In Figure 5, we report the ZSL accuracy of our models on

different test splits with respect to their average population

counts. This figure shows a clear correlation between the

sample population and the accuracy of both models, with

low accuracy for low sample population classes. We use

the sample population as a rough indicator to quickly filter

out ambiguous visual classes and only consider classes with

sample population superior to 300 images as valid candidate

classes in our proposed dataset.

Figure 5. ZSL accuracy with respect to sample population sizes.

Left: Distribution of Imagenet class population size. 6.1% of Ima-

genet classes have less than 10 samples, 21.1% have less than 100

samples. Right: ZSL accuracy of different test splits with respect

to their mean sample population size.

4.3.2 Sample-wise selection

Even among the selected classes, we found many inconsis-

tent and ambiguous images to remain (Appendix C), so we

would like to further filter quality test images sample-wise.

But what makes a good candidate image for a ZSL bench-

mark? How can we measure the quality of a sample? We

argue that ZSL benchmarks should only reflect the zero-shot

ability of models: ZSL benchmarks should evaluate the ac-

curacy of ZSL models relatively to the accuracy of standard

non-ZSL models. Hence, we define a good ZSL sample as

an image unambiguous enough to be correctly classified by

standard image classifiers trained in a supervised manner.

To automatically filter such quality samples, we fine-tune

and evaluate a standard CNN in a supervised manner on the

set of candidate test classes. We consider consistently miss-

classified samples to be too ambiguous for ZSL and only

select samples that were correctly classified by the CNN

Details of this selection process are presented in Appendix

C of the supplementary material.

4.4. Dataset Summary

Figure 6 summarizes the impact of the different factors

we analyzed on the top-1 classification error of both our

baseline models on the ”1-hop” test split. The error rate of

the Linear model on the standard ZSL setting drops from

86% to 61% after removing ambiguous images, semantic

samples, and structural flaws. The error rate of the GCN

model on the generalized setting drops from 90% to 47%.

Figure 6. Estimation of the impact of different factors on the

reported error of existing models on the 1-hop test split

The GCN model is particularly sensitive to the structural

flaws of the standard benchmark, but less sensitive to noisy

word embeddings than the linear baseline. This can be eas-

ily explained by the fact that GCN models rely on the ex-

plicit Wordnet hierarchy information as semantic data in ad-

dition to word embeddings. Additional results and details

on the methodology of our analysis are given in Appendix

D of the supplementary material.
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5. Structural bias

ZSL models are inspired by the human ability to rec-

ognize unknown objects from a mere description, as it is

often illustrated by the following example: Without having

ever seen a zebra, a person would be able to recognize one,

knowing that zebras look like horses covered in black and

white stripes. This example illustrates the human capacity

to compose visual features of different known objects to de-

fine and recognize previously unknown object categories.

Standard image classifiers encode class labels as local

representations (one-hot embeddings), in which each di-

mension represents a different visual class, as illustrated in

Figure 8. As such, no information is shared among classes

in the label space: visual class embeddings are equally dis-

tant and orthogonal to each other. The main idea behind

ZSL models is to instead embed visual classes into dis-

tributed representations: In label space, visual classes are

defined by multiple visual features (horse-ish shape, stripes,

colors) shared among classes. Distributed representations

allow to define and recognize unknown classes by composi-

tion of visual features shared with known classes, in a sim-

ilar manner as the human ability described above.

The embedding of visual classes into distributed feature

representations is especially powerful since it allows to de-

fine a combinatorial number of test classes by composition

of a possibly small set of features learned from a given set of

training classes. Hence, we argue that the key challenge be-

hind ZSL is to achieve ZS recognition of unknown classes

by composition of known visual features, following their

original inspiration of the human ability, and as made pos-

sible by distributed feature representations. In this section,

we will see that not all ZSL problems require such kind of

compositional ability. On the standard benchmark, we show

that a trivial solution based on local representations of vi-

sual classes outperform existing approaches based on word

embeddings. We show that this trivial solution is made pos-

sible by the specific configuration of the standard test splits

and introduce the notion of structural bias to refer to the

existence of such trivial solutions in ZSL datasets.

5.1. Toy example

Figure 7 illustrates a toy ZSL problem in which, given

a training set of Horse and TV monitor images, the goal is

to classify images of Zebra and PC laptop. Let’s consider

training an image classifier on the training set and directly

applying it to images from the test set. We can safely as-

sume that most zebra images will be classified as horses,

and most laptop samples as TV monitors. Hence, a triv-

ial solution to this problem consists in defining a one to

one mapping between test classes and their closest train-

ing class: Horse=Zebra and TV monitor=PC laptop. This

example makes it fairly obvious that not all ZSL problems

require the ability to compose visual features to solve.

Figure 7. Illustration of the toy example. Left: Wordnet-like class

hierarchy. Training classes are shown in red and test class in green.

Right: Illustration of image samples. The black captions represent

the distance between classes as their shortest path length.

Classification problems define a close-world assump-

tion: As all test samples are known to belong to one of the

test classes, classifying an image x into a given test class c
means that x is more likely to belong to c than other classes

of the test set. In other words, classification is performed

relatively to a negative set of classes [17]. What made this

trivial ZSL solution possible is the fact that test classes of

our toy example are very similar to one of the training class,

relatively to their negative set. This allowed us to identify a

one-to-one mapping by similarity between training and test

classes. We refer to this trivial solution as a similarity-based

solution, in opposition to solutions based on the composi-

tion of visual features.

Figure 8. Illustration of local (one-hot, on the left) and distributed

(right) representations of visual classes. The similarity-based solu-

tion encodes both training and test classes as local representations.

Composition-based solutions need distributed representations.

As illustrated in Figure 8, the similarity mapping be-

tween test and training classes can be directly embedded in

the semantic space using local representations. The trivial

solution consists in assigning to test classes the exact same

semantic representation as their most similar training class.

Consider applying these semantic embeddings within a ZSL

framework to our toy problem: classifying a test image x as

a Horse relatively to the negative set of TV within the train-

ing set becomes strictly equivalent to classifying x as Zebra

relatively to its negative set PC within the test set. Hence,
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any existing ZSL model using these local embeddings in-

stead of distributed representations like word embeddings

Y would converge to the same solution.

5.2. Standard benchmark

Besides our toy example, how well would this trivial so-

lution perform on the standard benchmark? To implement

it, we used the Linear baseline model [15] with local rep-

resentations inferred from the Wordnet hierarchy (see Ap-

pendix E), but any model would essentially converge to a

similar solution. Table 1 compares the accuracy of this triv-

ial solution to state of the art models as reported in [21, 7].

The trivial similarity-based solution outperforms existing

ZSL models by a significant margin. Only GCN-based

models [7], which we discuss in the next section, seem to

outperform our trivial solution.

Table 1. Top-1 accuracy on the standard test splits (top) as reported

for linear baselines in [21], (middle) as reported for GCN-based

models in [7] and (down) obtained by our trivial solution

model 1-hop 2-hops all

SYNC [1] 9.26 2.29 0.96

CONSE [13] 7.63 2.18 0.95

ESZSL [15] 6.35 1.51 0.62

LATEM [20] 5.45 1.32 0.5

DEVISE[3] 5.25 1.29 0.49

CMT [16] 2.88 0.67 0.29

GCNZ [18] 19.8 4.1 1.8

ADGPM [7] 26.6 6.3 3.0

Trivial 20.27 3.59 1.53

5.3. Measuring structural bias

In our toy example, we have hinted at the fact that struc-

tural bias emerges for test sets in which test classes are rel-

atively similar to training classes, while being comparably

more dissimilar to each other (to their negative set). To con-

firm this intuition, we define the following structural ratio:

r(c) =
minc′∈Ctr

d(c, c′)

minc′∈Cte
d(c, c′)

(5a)

R(Cte) =
1

|Cte|

∑

c∈Cte

r(c) (5b)

In which c represents a visual class, Cte and Ctr repre-

sent test and training sets respectively, and d is a distance

reflecting similarity between two classes. Here, r(c) repre-

sents the ratio of the distance between c and its closest train-

ing class to the distance between c and its closest test class.

In our experiments, we use the the shortest path length be-

tween two classes in the Wordnet hierarchy as a measure of

distance d, although different metrics would be interesting

to investigate as well. We compute the structural ratio of a

test set R(Cte) as the mean structural ratio of its individ-

ual classes. Figure 9 shows the top-1 accuracy achieved by

baseline models on different test sets with respect to their

structural ratio R. As for previous experiments, we report

our results on test splits of 100 classes.

Figure 9. ZSL accuracy on different test sets with respect to their

structural ratio R(Cte).

On test splits of low structural ratio, the trivial solution

performs remarkably well, on par with the state of the art

GCN model. Such test splits are similar to the toy example

in which each test class is closely related to a training class

while being far away from other test classes in the Wordnet

hierarchy. As an example, the structural ratio of the test split

in our toy example is R(Cte) = 1/2× (2/4 + 2/4) = 0.5,

which corresponds to the highest accuracies achieved by the

trivial solution. We say that such test split is structurally

biased towards similarity-based trivial solutions.

However, the accuracy of the similarity-based trivial so-

lution decreases sharply with the structural ratio until it

reaches near chance accuracy for the highest ratios. Hence

maximizing the structural ratio of test splits seems to be an

efficient way to minimize structural bias. Although their

accuracy decrease with larger structural ratios, both GCN

and Linear models remain well above chance. These results

suggest that ZSL models based on word embeddings are in-

deed capable of compositional reasoning. At the very least,

they are able to perform more complex ZSL tasks than the

trivial similarity-based solution. Interestingly, as the triv-

ial solution converges towards chance accuracy, the GCN

model accuracy seems to converge towards the accuracy of

the ZSL baseline. This suggests that the main reason behind

the success of GCN models is that they efficiently leverage

the Wordnet hierarchy to exploit structural bias.

The 1-hop and 2-hops test splits of the standard bench-

mark consist of the set of test classes closest to the train-

ing classes within the Wordnet hierarchy. This leads to test

splits of very low structural ratio, similar to our toy exam-

ple. For instance, the 1-hop test split has a structural ratio of

0.55. It is an example of structural bias even more extreme

than our toy example as test classes are either children or

parent classes of a training class. In the next section, we
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propose a new benchmark with maximal structural ratio in

order to minimize structural bias.

6. New Benchmark

6.1. Proposed Benchmark

In this section, we briefly detail the semi-automated con-

struction of a new benchmark designed to fix the different

flaws of the current benchmark highlighted by our analy-

sis. For space constraints, a number of minor considerations

could not be properly presented in this paper. We detail

these additional considerations in Appendix F of the sup-

plementary material. Appendix F also provides additional

details regarding the different parameters and the level of

automation of each of the construction process. Appendix

G provides details on the code and data we release. Follow-

ing Frome et al. [3], we use the ILSVRC dataset as training

set, and propose a new test set. The selection of this new

test set proceeds in two steps:

In a first step, we select a subset of candidate test classes

C ′ ⊂ C from the remaining 20,845 Imagenet classes based

on the statistics of image samples and word labels: We first

filter out semantic samples Y ′ ⊂ Y corresponding to rare or

polysemous words of secondary meaning (Section 4.2). We

then discard visual classes of low sample population and fil-

ter out ambiguous image samples using supervised learning

to select X ′ ⊂ X (Section 4.3). The set of candidate test

classes is the subset of visual classes C ′ ⊂ C for which

sufficiently high quality image and semantic samples were

selected.

In a second step, we define the test split Cte ⊂ C ′ as a

structurally consistent set of minimal structural bias: The

test set was carefully selected so as to contain no overlap

among its own classes nor with the training classes in order

to provide a structurally consistent test set for the gener-

alized ZSL setting. This test set consists of 500 classes of

maximal structural ratio R(Cte) so as to minimize structural

bias.

6.2. Evaluation

Table 2. Evaluation on the proposed benchmark. Accuracy in

the generalized ZSL setting are reported as harmonic means over

training and test accuracy following [21]

Model
ZSL G-ZSL

@1 @5 @1 @5

Trivial 1.2 3.9 0 0

CONSE [13] 10.65 25.10 0.12 19.34

DEVISE [3] 11.15 29.52 7.87 26.10

ESZSL [15] 13.54 32.61 4.59 25.53

GCN-6 [18] 9.58 27.19 4.81 23.35

GCN-2 [7] 14.09 35.12 4.96 30.35

ADGPM [7] 14.10 36.03 4.90 29.96

Table 2 presents the evaluation of a number of base-

line models on the newly proposed benchmarks. A few

notable results stand out from this table: First, different

from the standard benchmark, CONSE [13] performs worse

than DEVISE [3]. The relatively high accuracy reported

by the CONSE model on the standard benchmark is most

likely due to the fact that word embeddings of test classes

are statistically close to the word embedding of their par-

ent/children test classes so that CONSE results more closely

fit the trivial similarity-based trivial solution. We expect

model averaging methods to benefit the most from the struc-

tural bias in the standard benchmark.

Second, the impressive improvements reported by GCN-

based models over linear baselines are significantly re-

duced, although GCN models still outperform linear base-

lines. This result corroborates the observation, in Section

5, that GCN models tend to converge towards the results of

linear baseline models for high structural ratio.

7. Conclusion and Discussion

ZSL has the potential to be of great practical impact for

object recognition. However, as for any computer vision

task, the availability of a high quality benchmark is a pre-

requisite for progress. In this paper, we have shown major

flaws in the standard generic object ZSL benchmark and

proposed a new benchmark to address these flaws. More

importantly, we introduced the notion of structural bias in

ZSL dataset that allows trivial solutions based on simple

similarity matching in semantic space. We encourage re-

searchers to evaluate their past and future models on our

proposed benchmark. It seems likely that sound ideas may

have been discarded for their poor performance relative to

baseline models that benefited most from structural bias.

Some of these ideas may be worth revisiting today.

Finally, we believe that a deeper discussion on the goals

and the definition of ZSL is still very much needed. There is

a risk in developing complex models to address poorly char-

acterized problems: Mathematical complexity can act as a

smokescreen of complexity that obfuscates the real prob-

lems and key challenges behind ZSL. Instead, we believe

that practical considerations grounded in common sense are

still very much needed at this stage of ZSL research. The

identification of structural bias is a first step towards a sound

characterization of ZSL problems. One practical way to

continue this discussion would be to investigate structural

bias in other ZSL benchmarks.
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