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Abstract

Surface-based geodesic topology provides strong cues

for object semantic analysis and geometric modeling. How-

ever, such connectivity information is lost in point clouds.

Thus we introduce GeoNet, the first deep learning archi-

tecture trained to model the intrinsic structure of surfaces

represented as point clouds. To demonstrate the applica-

bility of learned geodesic-aware representations, we pro-

pose fusion schemes which use GeoNet in conjunction with

other baseline or backbone networks, such as PU-Net and

PointNet++, for down-stream point cloud analysis. Our

method improves the state-of-the-art on multiple represen-

tative tasks that can benefit from understandings of the un-

derlying surface topology, including point upsampling, nor-

mal estimation, mesh reconstruction and non-rigid shape

classification.

1. Introduction

Determining neighborhood relationship among points in a

point cloud, known as topology estimation, is an important

problem since it indicates the underlying point cloud struc-

ture, which could further reveal the point cloud semantics

and functionality. Consider the red inset in Fig. 1: the two

clusters of points, though seemingly disconnected, should

indeed be connected to form a chair leg, which supports the

whole chair. On the other hand, the points on opposite sides

of a chair seat, though spatially very close to each other,

should not be connected to avoid confusing the sittable up-

per surface with the unsittable lower side. Determining such

topology appears to be a very low-level endeavor but in real-

ity it requires global, high-level knowledge, making it a very

challenging task. Still, from the red inset in Fig. 1, we could

draw the conclusion that the two stumps are connected only

after we learn statistical regularities from a large number

of point clouds and observe many objects of this type with

connected elongated vertical elements extending from the

body to the ground. This motivates us to adopt a learning

approach to capture the topological structure within point

clouds.

Our primary goals in this paper are to develop represen-

tations of point cloud data that are informed by the under-

Figure 1. Our method takes a point cloud as input, and outputs rep-

resentations used for multiple tasks including upsampling, normal

estimation, mesh reconstruction, and shape classification.

lying surface topology as well as object geometry, and pro-

pose methods that leverage the learned topological features

for geodesic-aware point cloud analysis. The representa-

tion should capture various topological patterns of a point

cloud and the method of leveraging these geodesic features

should not alter the data stream, so our representation can

be learned jointly and used in conjunction with the state-of-

the-art baseline or backbone models (e.g. PU-Net, Point-

Net++ [45, 32, 33, 7]) that feed the raw data through, with

no information loss to further stages of processing.

For the first goal, we propose a geodesic neighborhood

estimation network (GeoNet) to learn deep geodesic repre-

sentations using the ground truth geodesic distance as su-

pervision signals. As illustrated in Fig. 2, GeoNet consists

of two modules: an autoencoder that extracts a feature vec-

tor for each point and a geodesic matching (GM) layer that

acts as a learned kernel function for estimating geodesic

neighborhoods using the latent features. Due to the super-

vised geodesic training process, intermediates features of

the GM layer contain rich information of the point cloud

topology and intrinsic surface attributes. We note that the

representation, while trained on geodesic distances, does

not by construction produce geodesics (e.g. symmetry, tri-

angle inequality, etc.). The goal of the representation is to

inform subsequent stages of processing of the global geom-

etry and topology, and is not to conduct metric computa-

tions directly.

For the second task, as shown in Fig. 3, we propose

geodesic fusion schemes to integrate GeoNet into the state-
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of-the-art network architectures designed for different tasks.

Specifically, we present PU-Net fusion (PUF) for point

cloud upsampling, and PointNet++ fusion (POF) for normal

estimation, mesh reconstruction as well as non-rigid shape

classification. Through experiments, we demonstrate that

the learned geodesic representations from GeoNet are bene-

ficial for both geometric and semantic point cloud analyses.

In summary, in this paper we propose an approach for

learning deep geodesic-aware representations from point

clouds and leverage the results for various point set anal-

yses. Our contributions are:

• We present, to the best of our knowledge, the first deep

learning method, GeoNet, that ingests point clouds and

learns representations which are informed by the in-

trinsic structure of the underlying point set surfaces.

• To demonstrate the applicability of learned geodesic

representations, we develop network fusion architec-

tures that incorporate GeoNet with baseline or back-

bone networks for geodesic-aware point set analysis.

• Our geodesic fusion methods are benchmarked on

multiple geometric and semantic point set tasks using

standard datasets and outperform the state-of-the-art

methods.

2. Related work

We assume our input is a point cloud, which can be ob-

tained by multiple-view geometry, single image depth esti-

mation [29, 20, 15, 38, 12] or collected from various sensors

(e.g. depth camera, Lidar, etc.). We mainly review tradi-

tional graph-based methods for geodesic distance compu-

tation, as well as general works on point cloud upsampling,

normal estimation, and non-rigid shape classification, as we

are unaware of other prior works on point cloud-based deep

geodesic representation learning.

Geodesic distance computation. There are two types

of methods: some allow the path to traverse mesh faces [35,

31, 6, 14, 37, 41, 8] for accurate geodesic distance compu-

tation, while others find approximate solutions via shortest

path algorithms constrained on graph edges [11, 13, 23].

For the first type, an early method [35] suggests a polyno-

mial algorithm of time O(n3logn) where n is the number

of edges, but their method is restricted to a convex poly-

tope. Based on Dijkstra’s algorithm [11], [31] improves

the time complexity to O(n2logn) and extends the method

to an arbitrary polyhedral surface. Later, [6] proposes an

O(n2) approach using a set of windows on the polyhedron

edges to encode the structure of the shortest path set. By

filtering out useless windows, [41] further speeds up the al-

gorithm. Then [8] introduces a heat method via solving a

pair of standard linear elliptic problems. As for graph edge-

based methods, typical solutions include Dijkstra’s [11],

Floyd-Warshall [13] and Johnson’s algorithms [23], which

have much lower time complexity than the surface travers-

ing methods. For a 20000-vertex mesh, computing its all-

pair geodesic distances can take several days using [41]

while [23] only uses about 1 minute on CPU. When a mesh

is dense, the edge-constrained shortest path methods gen-

erate low-error geodesic estimates. Thus in our work, we

apply [23] to compute the ground truth geodesic distance.

Point upsampling. Previous methods can be summa-

rized into two categories. i) Optimization based meth-

ods [1, 27, 22], championed by [1], which interpolates a

dense point set from vertices of a Voronoi diagram in the

local tangent space. Then [27] proposes a locally opti-

mal projection (LOP) operator for point cloud resampling

and mesh reconstruction leveraging an L1 median. For im-

proving robustness to point cloud density variations, [22]

presents a weighted LOP. These methods all make strong

assumptions, such as surface smoothness, and are not data-

driven, and therefore have limited applications in practice.

ii) Deep learning based methods. To apply the (graph) con-

volution operation, many of those methods first voxelize

a point cloud into regular volumetric grids [40, 39, 19, 9]

or instead use a mesh [10, 44]. While voxelization intro-

duces discretization artifacts and generates low resolution

voxels for computational efficiency, mesh data can not be

trivially reconstructed from a sparse and noisy point cloud.

In [43, 42] a sparse point cloud is reprojected onto a range

map and modeled as a 2.5D inpanting problem. To directly

upsample a 3D point cloud, PU-Net [45] learns multilevel

features for each point and expands the point set via a multi-

branch convolution unit implicitly in feature space. But PU-

Net is based on Euclidean space and thus does not leverage

the underlying point cloud surface attributes in geodesic

space, which we show in this paper are important for up-

sampling.

Normal estimation. A widely used method for point

cloud normal estimation is to analyze the variance in a tan-

gential plane of a point and find the minimal variance direc-

tion by Principal Component Analysis (PCA) [21, 24]. But

this method is sensitive to the choice of the neighborhood

size, namely, large regions can cause over-smoothed sur-

faces and small ones are sensitive to noises. To improve ro-

bustness, [16, 4, 2] propose to fit higher-order shapes. How-

ever, methods described above all require careful parameter

tuning at the inference time and only estimate normal orien-

tation up to sign. Thus, so far robust estimation for oriented

normal vectors using traditional methods is still challeng-

ing, especially across different noise levels and shape struc-

tures. There are only few data-driven methods that are able

to integrate normal estimation and orientation alignment

into a unified pipeline [17, 33]. They take a point cloud as

input and directly regress oriented normal vectors, but these

methods are not designed to learn geodesic topology-based
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Figure 2. GeoNet: geodesic neighborhood estimation network.

representations that capture the intrinsic surface features for

better normal estimation.

Non-rigid shape classification. Classifying the point

cloud of non-rigid objects often consists of two steps: ex-

tracting intrinsic features in geodesic space and applying a

classifier (e.g. SVM, MLP, etc.). Some commonly used

features include wave kernel signatures [3], heat kernel sig-

natures [36], spectral graph wavelet signatures [30], Shape-

DNA [34], etc. For example, DeepGM [28] uses geodesic

moments and stacked sparse autoencoders to classify non-

rigid shapes, such as cat, horse, spider, etc. The geodesic

moments are feature vectors derived from the integral of

the geodesic distance on a shape, while stacked sparse au-

toencoders are deep neural networks consisting of multiple

layers of sparse autoencoders. However, the above methods

all require knowing graph-based data, which is not avail-

able from widely used sensors (e.g. depth camera, Lidar,

etc.) for 3D data acquisition. Though PointNet++ [33] is

able to directly ingest a point cloud and conduct classifica-

tion, it is not designed to model the geodesic topology of

non-rigid shapes and thus its performance is inferior to tra-

ditional two-step methods which heavily reply on the offline

computed intrinsic surface features.

3. Method

3.1. Problem Statement

χ = {xi} denotes a point set with xi ∈ R
d and

i = 1, . . . , N . Although the problem and the method de-

veloped are general, we focus on the case d = 3 using

only Euclidean coordinates as input. A neighborhood sub-

set within radius r from a point xi is denoted Br(xi) =
{xj |dE(xi, xj) ≤ r} where dE(xi, xj) ∈ R is the Eu-

clidean (embedding) distance between xi and xj . The cardi-

nality ofBr(xi) isK. The corresponding geodesic distance

set around xi is called Gr(xi) = {gij = dG(xi, xj)|xj ∈
Br(xi)} where dG ∈ R means the geodesic distance. Our

goal is to learn a function f : xi 7→ Gr(xi) that maps

each point to (an approximation of) the geodesic distance

set Gr(xi) around it.

3.2. Method

We introduce GeoNet, a network trained to learn the

function f defined above. It consists of an autoencoder

with skip connections, followed by a multi-scale Geodesic

Matching (GM) layer, leveraging latent space features

{ψ(xi)} ⊆ R
3+C of the point set. GeoNet is trained

in a supervised manner using ground truth geodesic dis-

tances between points in the set χ. To demonstrate the ap-

plicability of learned deep geodesic-aware representations

from GeoNet, we test our approach on typical tasks that

require understandings of the underlying surface topology,

including point cloud upsampling, surface normal estima-

tion, mesh reconstruction, and non-rigid shape classifica-

tion. To this end, we leverage the existing state-of-the-

art network architectures designed for the aforementioned

problems. Specifically, we choose PU-Net as the base-

line network for point upsampling and PointNet++ for other

tasks. The proposed geodesic fusion methods, called PU-

Net fusion (PUF) and PointNet++ fusion (POF), integrate

GeoNet with the baseline or backbone models to conduct

geodesic-aware point set analysis.

3.3. Geodesic Neighborhood Estimation

As illustrated in Fig. 2, GeoNet consists of two modules:

an autoencoder that extracts a feature vector ψ(xi) for each

point xi ∈ χ and a GM layer that acts as a learned geodesic

kernel function for estimating Gr(xi) using the latent fea-

tures.

Feature Extraction. We use a variant of PointNet++,

which is a point set based hierarchical and multi-scale func-

tion, for feature extraction. It maps an input point set χ

to a feature set {ϕ(xi)|xi ∈ χ̃} where ϕ(xi) ∈ R
3+C̃ is

a concatenation of the xyz coordinates and the C̃ dimen-

sional embedding of xi, and χ̃ is a sampled subset of χ by

farthest-point sampling. To recover features {ψ(xi)} for the

point cloud χ, we use a decoder with skip connections. The

decoder consists of recursively applied tri-linear feature in-

terpolators, shared fully connected (FC) layers, ReLU and

Batch Normalization. The resulting (N, 3 + C) tensor is

then fed into the GM layer for geodesic neighborhood esti-

mation.

Geodesic Matching. We group the latent features ψ(xi)
into neighborhood feature sets Frl(xi) = {ψ(xj)|xj ∈
Brl(xi)}, under multiple radius scales rl. At each scale

rl we set a maximum number of neighborhood points Kl,

and thus produce a tensor of dimension (N,Kl, 3+C). The

grouped features, together with the latent features, are sent

to a geodesic matching module, where ψ(xi) is concate-

nated with ψ(xj) for every xj ∈ Brl(xi). The resulting
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Figure 3. PU-Net (top) and PointNet++ (bottom) geodesic fusion architectures.

feature ξij ∈ R
3+2C becomes the input to a set of shared

FC layers with ReLU, Batch Normalization and Dropout.

As demonstrated in [18], the multilayer perceptron (MLP)

acts as a kernel function that maps ξij to an approxima-

tion of the geodesic distance, ĝij . Finally, the GM layer

yieldsGrl(xi) for each point of the input point cloud χ. We

use a multi-scale L1 loss Lgeo =
∑

l Lgeol to compare the

ground truth geodesic distances to their estimates:

Lgeol =
∑

xi∈χ

∑

xj∈Brl
(xi)

|gij − ĝ(xi, xj)|

NKl
(1)

3.4. Geodesic Fusion

To demonstrate how the learned geodesic representations

can be used for point set analysis, we propose fusion meth-

ods based on the state-of-the-art (SOTA) network archi-

tectures for different tasks. For example, PU-Net is the

SOTA upsampling method and thus we propose PUF that

uses PU-Net as the baseline network to conduct geodesic

fusion for point cloud upsampling. With connectivity infor-

mation provided by the estimated geodesic neighborhoods,

our geodesic-fused upsampling network can better recover

topological details, such as curves and sharp structures, than

PU-Net. We also present POF leveraging PointNet++ as the

fusion backbone, and demonstrate its effectiveness on both

geometric and semantic tasks where PointNet++ shows the

state-of-the-art performance.

PU-Net Geodesic Fusion. A PUF layer, as illustrated

in Fig. 3 (top), takes a (N, d) point set as input and sends

it into two branches: one is a multi-scale Euclidean group-

ing layer, and the other is GeoNet. At each neighborhood

scale rl, the grouped point set Brl(xi) is fused with the es-

timated geodesic neighborhood Grl(xi) to yield Srl(xi) =

{(xj , gij)|xj ∈ Brl(xi)} with (xj , gij) ∈ R
d+1. Then the

(N,Kl, d+ 1) fused tensor is fed to a PointNet to generate

a (N,Cl) feature tensor which will be stacked with features

from other neighborhood scales. The remaining layers are

from PU-Net. As indicated by the red rectangles in Fig. 3,

the total loss has two weighted terms:

L = Lgeo + λLtask (2)

where Lgeo is for GeoNet training (1), λ is a weight and

Ltask, in general, is the loss for the current task that we are

targeting. In this case, the goal is point cloud upsampling:

Ltask = Lup(θ) where θ indicates network parameters.

PUF upsampling takes a randomly distributed sparse point

set χ as input and generates a uniformly distributed dense

point cloud P̂ ⊆ R
3. The upsampling factor is α = |P |

|χ| :

Lup(θ) = LEMD(P, P̂ ) + λ1Lrep(P̂ ) + λ2 ‖θ‖
2

(3)

in which the first term is the Earth Mover Distance (EMD)

between the upsampled point set P̂ and the ground truth

dense point cloud P :

LEMD(P, P̂ ) = min
φ:P̂→P

∑

pi∈P̂

‖pi − φ(pi)‖
2

(4)

where φ : P̂ → P indicates a bijection mapping.

The second term in (3) is a repulsion loss which pro-

motes a uniform spatial distribution for P̂ by penalizing

close point pairs:

Lrep(P̂ ) =
∑

pi∈P̂

∑

pj∈P̃i

η(‖pi − pj‖)ω(‖pi − pj‖) (5)
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Figure 4. Representative results of geodesic neighborhood estimation. Red dots indicate the reference point and stars represent target points

selected for the purpose of illustration. Points in dark-purple are closer to the reference point than those in bright-yellow. Shortest paths

between the reference point and the target point in euclidean space are colored in sky-blue. Topology-based geodesic paths are in pink.

where P̃i is a set of k-nearest neighbors of pi, η(r) = −r

penalizes close pairs (pi, pj), and ω(r) = e−r2/h2

is a fast-

decaying weight function with some constant h [22, 27].

PointNet++ Geodesic Fusion. Fig. 3 (bottom) illus-

trates the PointNet++ based fusion pipeline. Due to task

as well as architecture differences between PU-Net and

PointNet++, we make following changes to PUF to de-

sign a suitable fusion strategy that leverages PointNet++.

First, for multi-scale grouping, we use the learned geodesic

neighborhoods Ĝr(xi) instead of Euclidean ones. Geodesic

grouping brings attention to the underlying surfaces as well

as structures of the point cloud. Second, while the PUF

layer fuses estimated Ĝr(xi) = {ĝij = d̂G(xi, xj)|xj ∈
Br(xi)}, where ĝij ∈ R, of each neighborhood point set

Br(xi) into the backbone network, the POF layer uses the

latent geodesic-aware features ξ̃ij ∈ R
C̃ extracted from the

second-to-last FC layer in GeoNet. Namely, ξ̃ij is an inter-

mediate high-dimensional feature vector from ξij to ĝij via

FC layers, and therefore it is better informed of the intrin-

sic point cloud topology. Third, in PointNet++ fusion we

apply the POF layer in a hierarchical manner, leveraging

farthest-point sampling. Thus, the learned features encode

both local and global structural information of the point set.

The total loss for POF also has two parts: One is for GeoNet

training and the other is for the task-at-hand. We experiment

on representative tasks that can benefit from understandings

of the topological surface attributes. We use the L1 error for

point cloud normal estimation:

Lnormal =
∑

xi∈χ

3∑

j=1

∣∣∣n(j)
i − n̂(xi)

(j)
∣∣∣

3N
(6)

in which ni ∈ R
3 is the ground truth unit normal vector of

xi, and n̂(xi) ∈ R
3 is the estimated normal. We then use

the normal estimation to generate mesh via Poisson surface

K-3 K-6 K-12 Euc GeoNet

v1

r 6 0.1 8.75 8.97 9.04 9.06 5.67

r 6 0.2 16.22 17.33 17.90 18.16 9.25

r 6 0.4 15.15 16.80 17.88 18.95 9.75

v2

r 6 0.1 11.71 11.49 11.55 11.57 7.06

r 6 0.2 19.22 17.76 18.28 18.56 9.74

r 6 0.4 21.03 17.19 18.20 19.44 10.04

v3

r 6 0.1 13.28 14.23 14.62 14.78 10.86

r 6 0.2 14.85 17.27 18.54 19.49 13.61

r 6 0.4 13.48 16.10 17.72 19.68 14.73

Table 1. Neighborhood geodesic distance estimation MSE (x100)

on the heldout ShapeNet training-category samples. We com-

pare with KNN-Graph based shortest path methods under different

choices of K values. Euc represents the difference between Eu-

clidean distance and geodesic distance. MSE(s) are reported under

multiple radius ranges r. v1 takes uniformly distributed point sets

with 512 points as input, and v2 uses randomly distributed point

clouds. v3 is tested using point clouds that have 2048 uniformly

distributed points.

K-3 K-6 K-12 Euc GeoNet

v1
r 6 0.1 8.81 9.01 9.05 9.06 7.52

r 6 0.2 11.84 12.88 13.49 13.75 11.44

v2
r 6 0.1 10.52 10.21 10.25 10.26 8.94

r 6 0.2 15.02 12.99 13.59 13.86 11.69

v3
r 6 0.1 11.82 12.39 12.65 12.75 10.88

r 6 0.2 11.80 12.84 13.55 14.50 12.26

Table 2. Geodesic neighborhood estimation MSE (x100) on the

leftout ShapeNet categories. v1 takes uniformly distributed point

sets with 512 points as input, and v2 uses randomly distributed

point clouds. v3 is tested using point clouds that have 2048 uni-

formly distributed points.

reconstruction [25]. To classify point clouds of non-rigid

objects, we use cross-entropy loss:

Lcls = −

S∑

c=1

yclog(pc(χ)) (7)
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Figure 5. Point cloud upsampling comparisons with PU-Net. The input point clouds have 512 points with random distributions and the

upsampled point clouds have 2048 points. Red insets show details of the corresponding dashed region in the reconstruction.

where S is the number of non-rigid object categories, and c

is class label; yc ∈ {0, 1} is a binary indicator, which takes

value 1 if class label c is ground truth for the input point set.

pc(χ) ∈ R is the predicted probability w.r.t. class c of the

input point set.

3.5. Implementation

For GeoNet training, the multiscale loss Lgeol is en-

forced at three radius ranges: 0.1, 0.2 and 0.4. We use

Adam [26] with learning rate 0.001 and batchsize 3 for 8

epochs. To train the geodesic fusion networks, we set the

task term weight λ as 1, and use Adam with learning rate

0.0001 and batchsize 2 for around 300 to 1500 epochs de-

pending on the task and the dataset. Source code in Tensor-

flow will be made available upon completion of the anony-

mous review process.

4. Experiments

We put GeoNet to the test by estimating point cloud

geodesic neighborhoods. To demonstrate the applicabil-

ity of learned deep geodesic-aware representations, we also

conduct experiments on down-stream point cloud tasks such

as point upsampling, normal estimation, mesh reconstruc-

tion and non-rigid shape classification.

4.1. Geodesic Neighborhood Estimation

In Tab. 1 (v1) we show geodesic distance set, Gr(xi),
estimation results on the ShapeNet dataset [5] using point

clouds with 512 uniformly distributed points. Mean-

squared errors (MSE) are reported under multiple radius

scales r w.r.t. xi ∈ χ. GeoNet demonstrates consistent

improvement over the baselines. Representative results are

visualized in Fig. 4. Our method captures various topologi-

cal patterns, such as curved surfaces, layered structures, in-

ner/outer parts, etc.

Figure 6. Top-k mean square error (MSE) of upsampled points that

have large errors, for both the heldout training-category samples

(red) and the leftout ShapeNet categories (green).

MSE EMD CD

Training
PU-Net 7.14 8.06 2.72

PUF 6.23 7.62 2.46

Leftout
PU-Net 12.38 11.43 3.98

PUF 9.55 8.90 3.27

Table 3. Point cloud upsampling results on both the heldout

training-category samples and the unseen ShapeNet categories.

MSE(s) (x10000) are scaled for better visualization.

Generality. We test GeoNet’s robustness under different

point set distributions and sizes. In Tab. 1 (v2) we use point

clouds with 512 randomly distributed points as input. We

also test on dense point sets that contain 2048 uniformly

distributed points in Tab. 1 (v3). Our results are robust to

different point set distributions as well as sizes. To show the

generalization performance, in Tab. 2 we report results on

the leftout ShapeNet categories. Our method performs bet-

ter on unseen categories, while KNN-Graph based shortest

path approaches suffer from point set distribution random-

ness, density changes and unsuitable choices of K values.
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Figure 7. Mesh reconstruction results on the Shrec15 (left) and the ShapeNet (right) datasets using the estimated normal by PointNet++

and our method POF. GT presents mesh reconstructed via the ground truth normal. We also visualize POF normal estimation in the fourth

and the last columns.

Figure 8. Point set normal estimation errors. Blue indicates small

errors and red is for large ones.

6 2.5◦ 6 5◦ 6 10◦ 6 15◦

PCA 6.16±0.01 14.85±0.02 27.16±0.17 34.17±0.28
PointNet++ 12.81±0.18 33.37±0.92 61.58±2.02 75.49±1.95

POF 16.26±0.30 39.02±1.09 66.98±1.46 79.66±1.21

Table 4. Point cloud normal estimation accuracy (%) on the

Shrec15 dataset under multiple angle thresholds.

6 2.5◦ 6 5◦ 6 10◦ 6 15◦

Training

PCA 5.33 10.11 18.52 24.82

PointNet++ 30.68 43.19 55.91 62.30

POF 32.04 45.02 57.52 63.62

Leftout

PCA 5.24 10.59 18.99 25.17

PointNet++ 17.35 28.82 43.26 51.17

POF 19.13 31.83 46.22 53.78

Table 5. Point cloud normal estimation accuracy (%) on the

ShapeNet dataset for both heldout training-category samples and

leftout categories.

4.2. Point Cloud Upsampling

We test PUF on point cloud upsampling and present re-

sults in Tab. 3. We compare against the state-of-the-art point

set upsampling method PU-Net on three metrics: MSE,

EMD as well as the Chamfer Distance (CD). Our method

outperforms the baseline under all metrics by 9.25% av-

erage improvement on the heldout training-category sam-

ples. Since geodesic neighborhoods are better informed of

the underlying point set topology than Euclidean ones, PUF

upsampling produces less outliers and recovers more details

in Fig. 5, such as curves and sharp structures.

Generality. To analyze outlier robustness (i.e. points

with large reconstruction errors), we plot top-k MSE in

Fig. 6. Our method generates fewer outliers on both the

heldout training-category samples and the unseen cate-

gories. We also report quantitative results on the leftout

categories in Tab. 3. Again, PUF significantly surpasses the

state-of-the-art upsampling method PU-Net under three dif-

ferent evaluation metrics.

4.3. Normal Estimation and Mesh Reconstruction

For normal estimation we apply PointNet++ geodesic fu-

sion, POF, then we conduct Poisson mesh reconstruction

leveraging the estimated normals. Quantitative results for

normal estimation on the Shrec15 dataset and the ShapeNet

dataset are given in Tab. 4 and Tab. 5, respectively. We com-

pare our method with the traditional PCA algorithm as well

as the state-of-the-art deep learning method PointNet++.

Our results outperform the baselines by around 10% rela-

tive improvement. In Fig. 8, we visualize typical normal

estimation errors, showing that PointNet++ usually fails at

high-curvature and complex-surface regions. For further ev-

idence, we visualize Poisson mesh reconstruction in Fig. 7

using the estimated normals.

Generality. In Tab. 5 we evaluate normal estimation per-

formance on the leftout ShapeNet categories. Our method

has higher accuracy over competing methods under multi-

ple angle thresholds. Though trained with point clouds of

2048 points, POF is also tested on denser input. In Fig. 9

we take point clouds with 8192 points as input, and visual-

ize the normal estimation and mesh reconstruction results,

which shows that our method generalizes to dense point
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Figure 9. Normal estimation and Poisson mesh reconstruction re-

sults by POF using dense point clouds with 8192 points.

Input feature Accuracy (%)

PointNet++ XYZ 73.56

POF XYZ 94.67

DeepGM Intrinsic features 93.03

Table 6. Point cloud classification of non-rigid shapes on the

Shrec15 dataset.

Gaussian Noise Level

0.8% 0.9% 1.0% 1.1% 1.2%

PointNet++ 70.54 69.27 67.83 65.66 62.38

POF 91.89 90.93 89.40 87.72 84.98

Table 7. Noisy point clouds classification accuracy (%). We add

Gaussian noise of 0.8% to 1.2% of unit ball radius.

clouds without re-training and produces fine-scaled mesh.

4.4. Non­rigid Shape Classification

Results of non-rigid shape classification are reported in

Tab. 6. While POF and PointNet++ only take point cloud-

based xyz Euclidean coordinates as input, DeepGM re-

quires offline computed intrinsic features from mesh data in

the ground truth geodesic metric space. Though using less

informative data, our method has higher classification ac-

curacy than other methods, which further demonstrates that

the proposed geodesic fusion architecture, POF, is suitable

for solving tasks that require understandings of the underly-

ing point cloud surface attributes.

Generality. We add Gaussian noise of different lev-

els to the input and conduct noisy point clouds classifica-

tion. Comparisons are shown in Tab. 7. POF outperforms

PointNet++ under several noise levels. Our method also

demonstrates better noise robustness. It shows a 10.24%

decrease in relative accuracy at the maximum noise level,

while PointNet++ decreases by up to 15.20%.

4.5. Failure Modes

Failure cases of geodesic neighborhood estimation are

shown in Fig. 10. Due to large ratios between length and

width/height, after normalizing a stick-shaped object (e.g.

Figure 10. Failure cases of geodesic neighborhood estimation for

stick-shaped objects (e.g. rocket, knife, etc.) which have large

ratios between length and width/height. Red dots indicate the ref-

erence point. Points in dark-purple are closer to the reference point

than those in bright-yellow.

rocket, knife, etc.) into a unit ball we need high preci-

sion small values to represent its point-pair geodesic dis-

tance along the width/height sides. Since stick-shaped ob-

jects like rocket and knife only take up a small portion of

the training data, GeoNet tends to make mistakes for held-

out samples from these categories at inference time. Us-

ing an anistropic normalization might alleviate this issue but

is challenging in practice as the principal directions would

have to be estimated. We have not found additional failure

cases, and quantitative improvements continue to take effect

due to rich surface-based topological information learned

during the geodesic-supervised training process.

5. Conclusion

We have presented GeoNet, a novel deep learning archi-

tecture to learn the geodesic space-based topological struc-

ture of point clouds. The training process is supervised by

the ground truth geodesic distance and therefore the learned

representations reflect the intrinsic structure of the underly-

ing point set surfaces. To demonstrate the applicability of

such a topology estimation network, we also propose fusion

methods to incorporate GeoNet into computational schemes

that involve the standard backbone architectures for point

cloud analysis. Our method is tested on both geometric and

semantic tasks and outperforms the state-of-the-art meth-

ods, including point upsampling, normal estimation, mesh

reconstruction and non-rigid shape classification. For future

works we will move on to complicated scenes where a mesh

might need to be approximated for supervision.
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