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Abstract

Numerous cloud-based services are provided to help

customers develop and deploy deep learning applications.

When a customer deploys a deep learning model in the

cloud and serves it to end-users, it is important to be able to

verify that the deployed model has not been tampered with.

In this paper, we propose a novel and practical method-

ology to verify the integrity of remote deep learning models,

with only black-box access to the target models. Specifi-

cally, we define Sensitive-Sample fingerprints, which

are a small set of human unnoticeable transformed inputs

that make the model outputs sensitive to the model’s param-

eters. Even small model changes can be clearly reflected in

the model outputs. Experimental results on different types

of model integrity attacks show that the proposed approach

is both effective and efficient. It can detect model integrity

breaches with high accuracy (>99.95%) and guaranteed

zero false positives on all evaluated attacks. Meanwhile, it

only requires up to 103× fewer model inferences, compared

to non-sensitive samples.

1. Introduction

The past few years have witnessed the fast development

of deep learning (DL). One popular class of deep learning

models is Deep Neural Networks (DNN), which has been

widely adopted in many artificial intelligence applications,

such as image recognition [20, 25], natural language pro-

cessing [11, 28], speech recognition [19, 13] and anomaly

detection [29, 21].

To make it automatic and convenient to deploy deep

learning applications, many IT corporations offer cloud-

based services for deep learning model training and serv-

ing, usually dubbed as Machine Learning as a Service

(MLaaS). For example, Google Machine Learning Engine

[1], Microsoft Azure ML Studio [2] and Amazon Sage-

Maker framework [3] enable customers to deploy their

models online and release query APIs to end users. Cus-

tomers are charged on a pay-per-query basis.

However, deploying deep learning tasks in MLaaS

brings new security concerns. First, the model owner does

not manage or have control over the actual model in the

cloud any more. This gives adversaries opportunities to

intentionally tamper with the remote models, to make it

malfunction. Different attacks against model integrity have

been proposed: e.g., DNN trojan attack [26, 17, 10], poi-

soning attack [7, 30, 34, 31], etc. These attacks have been

shown to be practical in various DNN-based applications,

e.g. autonomous driving [17, 26], user authentication [10]

and speech recognition [26]. Figure 1 shows an example of

attacking a deep learning based face recognition system: an

adversary can insert a trojan into the authentication model

by slightly modifying the face classifier. The compromised

model can still give correct prediction results for original

faces. However, it will mis-classify an arbitrary person

with a specific pair of galsses as “A. J. Buckley”. With this

technique the adversary can easily bypass the authentication

mechanism without being detected.

Trigger

Trojaned 

DNN

Correct Output Malicious Output

“Chris Pine” “Bae Doona” “A.J. Buckley” “A.J. Buckley” 

Figure 1: Illustration of a DNN trojan. A person without the

trigger (left) is recognized correctly by the trojaned DNN.

A person wearing a specific pair of glasses, i.e. the trigger,

is mis-classified.

Second, a dishonest cloud provider may stealthily vio-

late the Service Level Agreement (SLA), without making

the customers aware, for financial benefits [35, 8]. For in-

stance, the cloud provider can use a simpler or compressed

model to replace the customers’ models to save computa-

tional resources and storage [15]. Customers are annoyed

with such SLA violations, even though it has a subtle impact
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on the model accuracy, as they pay more for the resources

than they actually get.

However, providing a methodology to protect the model

integrity of DNN models deployed in clouds is challenging:

(1) the complex cloud environment inevitably causes a big

attack surface. (2) Once the customers submit their mod-

els to the clouds, the security status of the models are not

transparent or directly verifiable to the customers. (3) For

some model integrity attacks, the adversary only makes sub-

tle modifications to the model, and wrong predictions only

occur for specific attacker-chosen inputs which are imper-

ceptible to the customers. (4) The cloud provider may not

actively check the data integrity status in a timely manner.

This gives adversaries opportunities to corrupt the models

and cause damage before being detected.

In this paper, we are the first to show a new line of

research where the integrity property of a DNN model

can be dynamically verified by querying the model with

a few carefully designed inputs. Specifically, we propose

Sensitive-Samples fingerprinting, a new methodol-

ogy for customers to verify the integrity of deep learning

models stored in the cloud. The primary advantages of

Sensitive-Samples are: ① high effectiveness and re-

liability, > 99.95% attack detection rate on all evaluated at-

tacks, ② guaranteed zero false-positives, ③ high efficiency

– although extensively querying the model with normal im-

ages may possibly detect the integrity breaches, it is very

costly and inefficient on the pay-per-query basis. Our pro-

posed approach achieves up to 103× fewer model infer-

ences and ④ requires only black-box accesses to the de-

ployed model through APIs.

The key contributions of this paper are:

• We are the first using carefully designed transformed

inputs as a defense, to protect the integrity property of

DNNs.

• A novel and highly effective Sensitive-Samples

generation approach for deep neural network integrity

verification, achieving > 99.95% attack detection rate

with only black-box accesses.

• A Maximum Active-Neuron Cover sample selection al-

gorithm to generate the fingerprint of a DNN model from

Sensitive-Samples, reducing the number of re-

quired model inferences by up to 103×.

• Comprehensive evaluation of our approach on different

types of attacks on various applications and models.

The rest of the paper is organized as follows: Section

2 gives the background of deep neural networks, integrity

attacks and defenses. Section 3 describes our new method-

ology of Sensitive-Sample fingerprinting. Section 4

introduces the experimental settings, datasets and attacks

for evaluation. Section 5 gives the experimental results and

discussions. We conclude the paper in Section 6.

2. Background and Related Work

2.1. Deep Neural Networks

A deep neural network (DNN) is a parameterized func-

tion fθ : X 7→ Y that maps an input x ∈ X to an output

y ∈ Y . A neural network usually consists of an input layer,

an output layer and one or more hidden layers between the

input and output. Each layer is a collection of units called

neurons, connecting neurons in other layers.
The training process of a neural network is to find the

optimal parameters θ that can accurately reflect the relation-
ship between X and Y . To achieve this, the user needs a

training dataset Dtrain = {xtrain
i , ytraini }Ni=1 with N sam-

ples, where xtrain
i ∈ X is the input and ytraini ∈ Y is the

corresponding ground-truth label. Then a loss function L
is adopted to measure the errors between the ground-truth

output ytraini and the predicted output fθ(x
train
i ). The goal

of training a neural network is to minimize this loss func-
tion (Eq (1)). After figuring out the optimal parameters θ∗,

given a testing input xtest
, the output ytest = fθ∗(xtest)

can be predicted. This prediction is called inference.

θ
∗

= argmin
θ

(

N
∑

i=1

L(y
train

i , fθ(x
train

i )) (1)

2.2. DNN Integrity Attacks and Defenses

Neural network trojan attack. The attack goal is to inject

a trojan into the model so that the model mis-classifies the

samples containing a specific trigger [26, 17]. To achieve

this, given a pretrained DNN model, the adversary carefully

selects some “critical” neurons which the outputs are highly

dependent on. He modifies the weights on the path from the

selected neurons to the last layer by retraining the model

using the data with triggers.

Targeted poisoning attack. The attack goal is to force the

model to mis-classify a target class. The adversary achieves

this by poisoning the dataset with carefully-crafted mali-

cious samples. We consider two types of such attacks: the

first one is error-generic poisoning attack [7, 30, 34], in

which the outputs of the compromised model for the tar-

get class can be arbitrary. The second one is error-specific

poisoning attack [31]: the adversary modifies the model to

mis-classify the target class as a fixed class that he desires.

Model compression attack. The attacker’s (cloud

provider’s) goal is to compress the DNN model with negli-

gible accuracy drop, to save cloud storage for profit. There

are different compression techniques to achieve this, e.g.,

pruning [18], quantization [16], low precision [12] and ar-

chitecture optimization [24, 23].

Defenses. Past work have been designed to defeat model

integrity attacks. For DNN trojan attacks, Liu et al. [27]

proposed to detect anomalies in the dataset, or remove the

trojan via model retraining or input preprocessing. For data
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poisoning attacks, the typical solution is also to identify and

remove the poisoning data from the dataset by statistical

comparisons [9, 32]. While these methods are effective lo-

cally on white-box models, they fail to protect black-box

models served in a remote MLaaS platform.

In the scenario of remote deep learning service, Ghodsi

[15] proposed a protocol to verify if an untrusted service

provider cheats the model owner with a simpler and less ac-

curate model. However, this approach can only be applied

to a specific class of neural networks with polynomial acti-

vation functions, and does not support max pooling.

3. Sensitive-Sample Fingerprinting

3.1. Overview

We consider the attack scenario in which the customer

uploads a machine learning model fθ to the cloud provider

for model serving. However, an adversary may compro-

mise the model and stealthily change it to fθ′ . The customer

wants to verify if the black-box model served by the cloud

provider is actually the one he uploaded. Although exten-

sively querying the model with normal images may detect

the integrity breaches, it is very costly and inefficient on the

pay-per-query basis.

Our main idea is that, we can carefully generate a small

set of transformed inputs {vi}
n
i=1, whose outputs predicted

by any compromised model will be different from the out-

puts predicted by the original intact model. We call such

transformed inputs Sensitive-Samples. We use a

small set of these transformed inputs and their correspond-

ing correct model outputs as the fingerprint of the DNN

model, i.e. FG = {(vi, fθ(vi))}
n
i=1.

To verify the integrity of a model, the customer

first uses the correct model locally to generate

Sensitive-Samples and obtain the correspond-

ing output y = fθ(v). For verification, he simply sends

these samples to the cloud provider and obtains the output

y′ = fθ′(v). By comparing y and y′, the customer can

check if the model is intact or changed.

There are some requirements in designing a good finger-

print, especially a good input transform, for integrity check-

ing. We define a qualified fingerprint as one satisfying the

following characteristics:

• Effectiveness. The fingerprint must be sensitive to even

subtle modification of model parameters. In some at-

tacks, the adversary changes a small number of parame-

ters, e.g. selective neuron modification [26].

• Efficiency. The fingerprint must be light-weight and ef-

ficient, in order to reduce the cost and overhead for the

verification, and avoid raising any suspicions.

• Black-box verification. The model served by the cloud

provider is a black-box to the customer, thus the verifi-

cation process must be feasible under this setting.

• Hard to spot. The generated fingerprint should look

similar to natural inputs so the adversary cannot recog-

nize if it is used for integrity checking, or for normal

model serving.

• Generalizable. The fingerprint generation algorithm

should be independent of the machine learning models,

the training datasets and the attacks. It must be able to

detect any unknown attacks.

3.2. Single SensitiveSample Generation

A DNN model can be defined as a function y = fθ(x).
Here θ is the set of all parameters in the model. We rewrite

the model function as y = f(W,x) = [y1, ..., yr]
T =

[f1(W,x), ..., fr(W,x)]T . Here W = [w1, w2, ..., ws] is

a subset of parameters-of-interest in θ in our consideration,

containing the weights and biases.
We assume W in the correct model is modified by ∆w,

i.e. W ′ = W + ∆w. The corresponding outputs of the
correct and compromised model become y = f(W,x) and

y′ = f(W + ∆w, x), respectively. In order to precisely

detect this change through y and y′, the “sensitive” input v
should maximize the difference between y and y′.

v = argmaxx ||f(W +∆w, x)− f(W,x)||2

= argmaxx ||f(W +∆w, x)− f(W,x)||
2

2

= argmaxx Σ
r

i=1||fi(W +∆w, x)− fi(W,x)||
2

2

(2)

where || · ||2 denotes the l2 norm of a vector. With Taylor
Expansion:

fi(W +∆w, x) = fi(W,x) +
∂fi(W,x)

∂W

T

∆w +O(||∆w||
2

2) (3)

Note that we assume no prior-knowledge on ∆w (how the
adversary modifies the model). Consider ∆w as a perturba-
tion of W , we approximate Eq (3) to the first-order term:

||fi(W +∆w, x)− fi(W,x)||
2

2 ≈ ||
∂fi(W,x)

∂W

T

∆w||
2

2 (4)

∝ ||
∂fi(W,X)

∂W
||
2

2 (5)

Note that the left-hand side of Eq (4) models the difference

of output yi between a correct DNN and a compromised

DNN with weights perturbation ∆w.
In Eq (5) we conclude that the l2 norm of the gradient

||∂fi(W,x)
∂W

||2 can model the element-wise “sensitivity” of
the DNN output corresponding to the parameters. There-
fore, the sensitivity S of f(W,x) can be defined as:

S = Σ
r

i=1||
∂fi(W,x)

∂W
||
2

2 =

∥

∥

∥

∥

∂f(W,x)

∂W

∥

∥

∥

∥

2

F

(6)

where || · ||F is the Frobenius norm [4] of a matrix. Eq (6)

serves as the main objective function of our problem. In

practice, there are auxiliary constraints on the sample.

Sample Correctness. In some cases, there are some re-

quirements for the range of sample data, denoted as [p, q].
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For instance, all pixels must be in the range of [0, 255] for

a valid image input.

Small Perturbation. In Section 3.1, we described a

Sensitive-Sample should look like a normal input, to

prevent the adversary from evading the integrity checking.

So we add one more constraint: the generated sample is a

small perturbation of a natural data v0 sampled from the

original data distribution DX , i.e. the difference of the gen-

erated sample and v0 should not exceed a small threshold

ǫ.

Eqs (7) summarize the objective and constraints of this
optimization problem. The constraint set [p, q]m is a convex
set, therefore we can use Projected Gradient Ascent [5] to
generate v.

v =argmax
x

∥

∥

∥

∥

∂f(W,x)

∂W

∥

∥

∥

∥

2

F

s.t. x ∈ [p, q]
m

‖x− v0‖ ≤ ǫ

(7)

We show a single Sensitive-Sample generation algo-

rithm in Algorithm 1. Line 8 initializes the input with any

sample from the natural data distribution DX . Line 10 sets

up the element-wise loss function ||∂fi(W,x)
∂W

||22. Line 11 sets

up the sample correctness constraints. Line 12 loops while

v is still similar to the original initialization v0. itr max is

set to avoid an infinite loop. Lines 14-17 apply a gradient

ascent on the sensitivity, a.k.a. S in Eq (6). Line 18 projects

v onto the sample correctness constraint set.

Algorithm 1 Generating a Sensitive-Sample

1: Function Sensitive-Sample-Gen(f , W , itr max, ǫ, lr)
2: /* f: the target model */
3: /* W: parameters in consideration */
4: /* itr max: maximum number of iterations */
5: /* ǫ: threshold for small perturbation constraints */
6: /* lr: learning rate in projected gradient ascent */
7:

8: v0= Init Sample()
9: v, i = v0, 0

10: lk =
∥

∥

∥

∂fk(W,v)
∂W

∥

∥

∥

2

2
, k = 1, 2...NOutput

11: Constraint Set = [p, q]m

12: while ((|v − v0| ≤ ǫ) && (i < itr max)) do
13: ∆ = 0
14: for (k = 0; k < NOutput; k ++) do

15: ∆+ = ∂lk/∂v
16: end for
17: v = v + lr ∗∆
18: v = Projection(v, Constraint Set)
19: i++
20: end while
21: return {v, f(W, v)}

3.3. Fingerprint Generation: Maximum Active
Neuron Cover (MANC) Sample Selection

In some cases, a single Sensitive-Sample may not

be enough to detect any weight changes. We observe that

the main reason is that if a neuron is inactive
1

given an input

sample, the sensitivity of all weights connected to that neu-

ron becomes zeros, i.e. small modification of such weights

will not be reflected in the outputs. We show the proof of

this phenomenon in the extended version of this paper [22].

To address this problem, we propose Maximum Active

Neuron Cover (MANC) sample selection algorithm to se-

lect a small number of samples from a bag of generated

Sensitive-Samples, to avoid the inactive neurons.

Our criterion is to minimize the number of neurons not

being activated by any Sensitive-Sample, or equiv-

alently, maximize the number of neurons being activated

at least once by the selected samples. We call the resul-

tant set of Sensitive-Samples with their correspond-

ing model outputs, the fingerprint of the DNN model.

We can abstract it as a maximum coverage prob-

lem [6, 14]. As input, we are given a bag of gen-

erated Sensitive-Samples B = {S1, ..., SN} and

k, the number of desired samples. Suppose each

Sensitive-Sample Si activates a set of neurons Pi.

The set {Pi} may have elements (neurons) in common. We

will select k of these sets such that a maximum number of

elements (neurons) are covered, i.e. the union of the se-

lected sets has maximal size.

We define the set of neurons being activated at least once

by the k samples as Active-Neuron Cover (ANC). It is the

union of individually activated neurons Pi, i.e.
⋃k

i=1 Pk.

We would like to maximize the number of elements (neu-

rons) in ANC, i.e. maximize |
⋃k

i=1 Pk|.
Obtaining the accurate maximum of ANC is time-

consuming and unnecessary in our experiment. Instead we

use a greedy search to approximate the maximum. Intu-

itively, in each iteration t, we choose a set Pt which con-

tains the largest number of uncovered neurons. We show

the pseudo-code of MANC algorithm in Algorithm 2, and

illustrate one step of the MANC algorithm in Figure 2.

Line 5 in Algorithm 2 initializes the uncovered neurons to

all neurons of interest, and the set of the selected samples

to null. Line 9 computes the activations of neurons with

corresponding input Sensitive-Sample B[i]. Line 10

determines the neurons that are activated by B[i], i.e. Pi.

Line 14 loops to select one sample in each iteration. Lines

16-21 determine which sample activates the largest number

of uncovered neurons, and add it to the selected sample set.

Line 22 updates the uncovered neurons.

1
The neuron’s output after the activation is 0 or very close to 0.

4732



Algorithm 2 Maximum Active Neuron Cover (MANC)

Sample Selection

1: Function MANC(Neurons, B, k)
2: /* Neurons: The neurons of interest */
3: /* B: The bag of samples from Algorithm 1 */
4: /* k: Number of desired samples */
5: Uncovered, Fingerprint = Neurons, []
6:

7: /* Each sample B[i] activates neurons Pi */
8: for (i = 0; i < |B|; i++) do
9: α = Activation(Neurons, B[i])

10: Pi = {αi|αi > 0}
11: end for
12:

13: /* Outer loop selects one sample each time */
14: for (i = 0; i < k; i++) do
15: /* Inner loop among all samples to find the one that

activates the largest number of uncovered neurons */
16: for (j = 0; j < |B|; j ++) do
17: NewCoveredj = Uncovered

⋂

Pj

18: Nj = | NewCoveredj |

19: end for
20: l = argmaxj Nj

21: Fingerprint.add(B[l])
22: Uncovered = Uncovered - Pl

23: end for
24: return Fingerprint

Already 

Covered=8

New Covered=4

New Covered=8

New Covered=3

Select !

(a)

(b)

(c)

Active neurons of each new sample Pi

Neurons already covered

Neurons uncovered

Figure 2: Illustration of selecting one sample in Algorithm

2 (line 16-21). Suppose the set Fingerprint initially con-

tains one selected sample (young lady, left). We want to

select the next sample from three candidates (a),(b) and (c).

We compute the neurons (red) that have been activated by

the samples already in S, i.e. Active-Neuron Cover, and the

uncovered neurons (white). We also compute the neurons

activated by each candidate (Pi). Candidate samples (a),(b)

and (c) activate 4,8 and 3 uncovered neurons, respectively.

Thus we add the candidate (b) to Fingerprint and update

the covered neurons.

3.4. Model Output Specification

The form of the model output significantly affects the

information that can be retrieved through black-box access.

We consider three forms of y as the outputs of a DNN for

classification tasks:

• Case 1: Numerical probabilities of each class.

• Case 2: Top-k (k>1) classification labels.

• Case 3: Top-1 classification label.

In general, the less information included in the output

(from Case 1 (most) to Case 3 (least)), the harder it is to

generate valid Sensitive-Samples and fingerprints.

However, in our experiments, our proposed algorithm can

detect an integrity breach for all known real attacks even if

only the top-1 label is provided (Case 3) with high accuracy

(>99.95%, <10 samples). Our experiments also show that

we need even fewer samples (<3 samples) if more informa-

tion is provided (Cases 1 and 2). We discuss these results in

detail in Section 5.

3.5. SensitiveSamples and Adversarial Examples

A similar and popular concept of our proposed

Sensitive-Samples is adversarial examples [33]: the

adversary intentionally adds human unnoticeable permuta-

tion ∆x to a normal sample x, so the model gives a wrong

prediction for this sample, i.e., fθ(x+∆x) 6= fθ(x).

In this paper, we introduce Sensitive-Samples,

another type of transformed inputs which also have human

unnoticeable permutations from the normal samples, i.e.,

z′ = z + ∆z. Instead of making the model give wrong

outputs, the outputs of the Sensitive-Samples change

with the model parameters, i.e., fθ(z
′) 6= fθ+∆θ(z

′).
Thus, unlike adversarial examples usually being used as

an evasion attack strategy, Sensitive-Samples can be

used as a powerful approach to defend against model in-

tegrity attacks. Table 1 shows the comparisons between our

Sensitive-Samples and adversarial examples.

Table 1: Comparisons between Sensitive-Samples

and adversarial examples.

Sensitive-Samples Adversarial-Examples

Similarity Transformed inputs

Purpose Defense Attack

Settings
Model parameters change

fθ(z
′) 6= fθ+∆θ(z

′)
Input perturbation

fθ(x+∆x) 6= fθ(x)

Generation White-box White/Black box

Usage Black-box Black-box

Optimization Maximize the sensitivity
Maximize the cost function

⋆

Goal of output w.r.t model parameters
⋆

There are other approaches to generate adversarial examples.
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4. Implementation

4.1. Attack Coverage

Our proposed method is generic and able to detect in-

tegrity breaches due to various attacks against DNN mod-

els. We evaluate this method on all four categories of

real attacks in Section 2.2: neural network trojan at-

tacks, error-generic and error-specific poisoning attacks and

model compression attacks. These cover from subtle model

changes to significant changes. We also consider the most

general scenario: the adversary changes the weights of any

arbitrary neurons to arbitrary values. The goal is to inves-

tigate the capability of our approach in defending against

general model integrity breaches. We show the results of

arbitrary weight changes in the extended version [22].

4.2. Datasets and Models

For most of the integrity attacks, we use the same

datasets and models as in the literature. In Table 2, we list

the model specifications, as well as the attack results.

Original accuracy denotes the accuracy of the original

correct model. Attack goal shows the adversary’s target of

modifying the model. Note that we do not make any specific

assumption about attack techniques, providing comprehen-

sive protection against all types of model modification.

4.3. Hyperparameters and Configurations

In our experiments, we set the learning rate to 1*10−3
.

We choose ADAM as our optimizer. We set itr Max to

1000. We consider all the weights in the last layer as

parameters-of-interest W . This is because the last layer

must be modified in all existing attacks, and the output is

most sensitive to this layer.

We reproduce the above four categories of DNN integrity

attacks, and implement our solution using Tensorflow 1.4.1.

We run our experiments on a server with 1 Nvidia 1080Ti

GPU, 2 Intel Xeon E5-2667 CPUs, 32MB cache and 64GB

memory. Under this setting, each Sensitive-Sample

takes 3.2s to generate on average.

5. Evaluation

5.1. SensitiveSample Generation

We first show the generation mechanism and generated

Sensitive-Samples in Figure 3 on VGG-Face dataset.

Figure 3 left shows the trade-off between the sensitivity and

similarity during the Sensitive-Samples generation

process
2
. The blue line represents the sensitivity, i.e. de-

fined in Eq (6) as ||∂f(W,x)
∂W

||2F . The orange line represents

the similarity in terms of SNR. At the beginning of the opti-

mization, the similarity is high, reflecting that the generated

2
The ǫ constraint in Eqs (7) is removed in Figure 3 left, to show the

generation mechanism.

image is similar to the original input. However, the sensi-

tivity is low, showing that the DNN output is not sensitive

to the weight changes. It also indicates that directly using

original images as fingerprints is not good. As the opti-

mization goes on, the sensitivity increases significantly and

finally converges to a high value. Meanwhile, artifacts are

introduced in the sample generation, decreasing the similar-

ity. In Figure 3 right, we show representative examples of

the Sensitive-Samples on VGG-Face dataset.
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Figure 3: Left: Sensitivity and similarity in the Sensitive-

Sample generation process. Right: Original and generated

Sensitive-Sample images for integrity checking on VGG

Face dataset.

We show more generated Sensitive-Samples on

CIFAR-10, GTSRB Traffic Sign and AT&T dataset in Fig-

ure 4, respectively. The generated images are very similar

to the original inputs. Therefore, the attacker can hardly de-

termine whether it is a natural image or a testing image for

integrity checking. More generated Sensitive− Samples
can be found in the extended version [22].

5.2. SensitiveSample Effectiveness

We define a successful detection as “given NS sensi-

tive samples, there is at least one sample, whose top-1 la-

bel predicted by the compromised model is different from

the top-1 label predicted by the correct model”. Note that

“top-1 label” is the most challenging case discussed in Sec-

tion 3.4. In order to show the effectiveness of our approach

more clearly, we show the missing rate (1-detection rate) of

(1) Non-Sensitive Samples (green), (2) Sensitive-Samples

+ random selection (orange) and (3) Sensitive-Samples +

MANC (blue) against four different attacks in Figure 5. In

case (1), we randomly select NS images from the original

validation set. In case (2) and (3), we first generate a bag of

500 sensitive-samples and select NS of them using random

selection and MANC, respectively. We repeat the experi-

ment 10,000 times and report the average missing rate.

We observe that Sensitive-Samples + MANC is highly

effective in model integrity verification. In Table 3, for

(a) neural network trojan attack, (b) error-generic poison-

ing attack and (c) error-specific poisoning attack, a fin-

gerprint consisting of 3 Sensitive-Samples is enough to

achieve a missing rate less than 10−4
. For (d) model
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Table 2: Datasets and models in evaluation.

Dataset Task Model # Layers # Conv layers # FC layers Original accuracy Attack goal Attack technique Attack success rate

Neural network
VGG-Face

Face
VGG-16 16 13 3 74.8%

Misclassify inputs Selective neural
100%

trojan attack recognition with triggers retraining

Error-generic GTSRB
Traffic sign

CNN 7 6 1 95.6%
Misclassify “Stop” Data

98.6%
Targeted recognition traffic sign poisoning

poisoning
Error-specific GTSRB

Traffic sign
CNN 7 6 1 95.6%

Misclassify “Stop” Data
87.3%

recognition to “Speed 100km” poisoning

Model compression CIFAR-10
Image

CNN 7 6 1 87.59% Save storage
Precision 4x compression

classification reduction 86.94%

Arbitrary weights
AT&T

Face
MLP 1 0 1 95.0%

General model Arbitrary
⋆

modification recognition modification modification
⋆

We evaluate it for general integrity, thus no attack success rate.

(a) Original Images (CIFAR-10)

(b) Generated Sensitive-Samples (CIFAR-10)

(c) Original Images (GTSRB Traffic Sign)

(d) Generated Sensitive-Samples (GTSRB Traffic Sign)

(e) Original Images (AT&T)

(f) Generated Sensitive-Samples (AT&T)

Figure 4: Original and generated Sensitive-Samples for in-

tegrity protection on CIFAR (a)(b), GTSRB Traffic Sign

(c)(d) and AT&T (e)(f) dataset, respectively.

compression attack, although the compressed model is de-

liberately retrained to maintain accuracy on normal in-

puts, our Sensitive-Sample fingerprint still detects

99.96% integrity breaches (0.04% missing rate) with only 8

Sensitive-Samples. Further more, we compare the

Table 3: Missing rates (%) w.r.t to NS on four real attacks.

Attacks \ NS 1 2 3 4 5 8

Neural Network Trojan Attack 5.93 0.22 0.00 0.00 0.00 0.00

Error-Generic Poisoning Attack 12.26 0.04 0.01 0.00 0.00 0.00

Error-Specific Poisoning Attack 2.20 0.01 0.00 0.00 0.00 0.00

Model Compression Attack 48.93 15.56 4.72 1.81 0.83 0.04

missing rate of Non-sensitive Samples, Sensitive-Samples +

random selection and MANC in Figure 5. We observe that,

Sensitive-Samples based approaches always achieve

much lower missing rate than non-sensitive samples, re-

gardless of NS and attacks. Sensitive-Samples + MANC al-

ways achieves a lower missing rate than Sensitive-Samples

+ random selection, against all attacks.

False Positives. Another advantage of our proposed so-

lution is that false-positive is guaranteed to be zeros. Our

proposed Sensitive-Samples defense leverages the determi-

nacy of DNN model inference, therefore no false positive is

raised. It is true for all the models and datasets we evaluate.

Output Specification. We evaluate the influence of the

model output specification, e.g. top-k, numerical proba-

bilities and digit precision. We list the missing rates cor-

responding to different output specifications (columns) and

NS (rows) in Table 4 against neural network trojan attacks.

More results against other attacks are shown in the extended

version [22]. “top-k” means the model outputs the k top la-

bels. “p-dec-n” means the model outputs probabilities in

addition to labels, with n digits after the decimal point. For

example, “Top-1-p-dec-2” means the model outputs top-1

probability with the precision of 2 digits after the decimal

point. Table 4 shows that, a large k, numerical probability

and high precision of the probabilities embed more infor-

mation in the output, and decrease the missing rate.

Table 4: Missing rates (%) w.r.t to the output specifications.

# of samples NS top-1 top-3 top-5 top-1-p-dec2 p-dec-1 p-dec-2

1 5.93 0.00 0.00 0.43 0.21 0.00

2 0.22 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00

5.3. SensitiveSample Efficiency

In addition to the effectiveness in model integrity ver-

ification, our proposed approach is also highly efficient.

We specifically consider minimizing the cost of verification,

by reducing the number of required samples (model infer-

ences). We show the required number of samples to achieve

a given missing rate α against four real attacks in Table 5.

We define the Efficiency as the ratio between the re-

quired number of samples (model inferences) between Non-

Sensitive Samples and Sensitive-Samples + MANC. In or-
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Figure 5: Missing rate comparisons of different methods against (a) Neural Network Trojan Attack, (b) Error-Generic Poi-

soning Attack, (c) Error-Specific Poisoning Attack and (d) Model Compression Attack.

der to reveal subtle missing rates, we repeat our experiments

in Section 5.2 108 times. Our proposed method significantly

reduces the required number of samples, regardless of α,

by up to 103×. Especially, our proposed approach is more

comparatively efficient under small α, demonstrating it is

of more obvious advantages in security-critical applications

which require strict integrity verification.

Table 5: Required number of samples to achieve a given

missing rate α against four real attacks. Our proposed

method reduces required samples by up to 103x.

Neural Network Trojan Attack

Missing rate α 10−8 10−7 10−6 10−5 10−4 10−3 10−2

Non-Sensitive Sample 74 65 56 47 38 28 21

Sensitive Sample 10 9 8 7 6 4 3

Sensitive Sample + MANC 4 4 3 3 3 2 2

Efficiency 18.5x 16.5x 18.7x 15.6x 12.6x 14.0x 12.5x

Error-Generic Poisoning Attack

Missing rate α 10−8 10−7 10−6 10−5 10−4 10−3 10−2

Non-Sensitive Sample 332 291 249 208 166 125 83

Sensitive Sample 14 12 11 9 7 6 4

Sensitive Sample + MANC 4 4 4 4 3 2 2

Efficiency 83.0x 72.8x 62.3x 52.0x 55.3x 62.5x 41.5x

Error-Specific Poisoning Attack

Missing rate α 10−8 10−7 10−6 10−5 10−4 10−3 10−2

Non-Sensitive Sample 309 270 232 193 155 116 77

Sensitive Sample 11 9 8 7 6 4 3

Sensitive Sample + MANC 3 3 3 3 3 2 2

Efficiency 103.0x 90.0x 77.3x 64.3x 51.6x 58.0x 38.5x

Model Compression Attack

Missing rate α 10−8 10−7 10−6 10−5 10−4 10−3 10−2

Non-Sensitive Sample 502 439 376 314 252 189 126

Sensitive Sample 78 70 59 51 40 29 20

Sensitive Sample + MANC 31 31 30 28 25 18 8

Efficiency 16.2x 14.2x 12.5x 11.2x 10.1x 10.5x 15.8x

5.4. Resistance against Adversarial Finetuning

The adversary may attempt to evade our detection

methodology. One possible strategy is that the adversary

can generate the Sensitive-Samples from the intact

model, and use these samples to fine-tune the compromised

model. Then this fine-tuned model might make the cus-

tomers’ Sensitive-Samples used for verification in-

sensitive. We call this potential evasive attack Adversarial

Fine-tuning (AF).

We evaluate this evasive strategy with two model in-

tegrity attacks: error-generic poisoning and error-specific

poisoning. Table 6 shows the detection missing rate using

different numbers of verification Sensitive-Samples

before and after fine-tuning. Note that because the cus-

tomer can generate fingerprint from any arbitrary normal

images, we assume the adversary fine-tunes the model with

Sensitive-Samples different from the customer’s.

It is interesting to note that the fine-tuning strategy can-

not help the adversary evade the detection, and it actu-

ally makes the integrity checking easier. This is because

Sensitive-Samples are designed to output very dif-

ferently from the original model, thus fine-tuning on the

Sensitive-Samples makes the tuned model deviate

even more from the original model. This extra deviation can

be more easily captured by other Sensitive-Samples.

Table 6: Missing rate (%) decreases as the attacker ad-

versarial fine-tunes (AF) on Sensitive-Samples. It demon-

strates that our proposed method is robust against more so-

phisticated attacks.

Attacks \ NS 1 2 3 4 5

Error-generic poisoning (before AF) 12.26 0.04 0.01 0.00 0.00

Error-generic poisoning (after AF) 4.82 0.01 0.00 0.00 0.00

Missing rate increase -7.44 -0.03 -0.01 – –

Error-specific poisoning (before AF) 2.20 0.01 0.00 0.00 0.00

Error-specific poisoning (after AF) 0.02 0.00 0.00 0.00 0.00

Missing rate increase -2.18 -0.01 – – –

6. Conclusion

In this paper, we show that the integrity of remote

black-box deep learning model can be dynamically veri-

fied by querying the deployed model with a few carefully-

designed human unnoticeable inputs and observing their

outputs. Our proposed detection method defines and uses

Sensitive-Samples, which introduce sensitivity of

DNN outputs corresponding to the weights. Any small

modification of the model parameters can be reflected in the

outputs. Our evaluation on different categories of real DNN

integrity attacks shows that our detection mechanism can

effectively and efficiently detect DNN integrity breaches.
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