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Abstract

Classifiers used in the wild, in particular for safety-
critical systems, should not only have good generaliza-
tion properties but also should know when they don’t
know, in particular make low confidence predictions far
away from the training data. We show that ReL U type
neural networks which yield a piecewise linear classi-
fier function fail in this regard as they produce almost
always high confidence predictions far away from the
training data. For bounded domains like images we
propose a new robust optimization technique similar
to adversarial training which enforces low confidence
predictions far away from the training data. We show
that this technique is surprisingly effective in reducing
the confidence of predictions far away from the training
data while maintaining high confidence predictions and
test error on the original classification task compared
to standard training.

1. Introduction

Neural networks have recently obtained state-of-the-
art performance in several application domains like ob-
ject recognition and speech recognition. They have be-
come the de facto standard for many learning tasks.
Despite this great success story and very good predic-
tion performance there are also aspects of neural net-
works which are undesirable. One property which is
naturally expected from any classifier is that it should
know when it does not know or said more directly:
far away from the training data a classifier should not
make high confidence predictions. This is particu-
larly important in safety-critical applications like au-
tonomous driving or medical diagnosis systems where
such an input should either lead to the fact that other
redundant sensors are used or that a human doctor is
asked to check the diagnosis. It is thus an important
property of a classifier which however has not received
much attention despite the fact that it seems to be a
minimal requirement for any classifier.
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There have been many cases reported where high
confidence predictions are made far away from the
training data by neural networks, e.g. fooling images
[30], for out-of-distribution images [15] or in a medical
diagnosis task [23]. Moreover, it has been observed
that, even on the original task, neural networks of-
ten produce overconfident predictions [12]. A related
but different problem are adversarial samples where
very small modifications of the input can change the
classifier decision [34, 11, 32]. Apart from methods
which provide robustness guarantees for neural net-
works [14, 37, 31, 26] which give still only reasonable
guarantees for small networks, up to our knowledge the
only approach which has not been broken again [6, 5, 2]
is adversarial training [25] using robust optimization
techniques.

While several methods have been proposed to adjust
overconfident predictions on the true input distribution
using softmax calibration [12], ensemble techniques [20]
or uncertainty estimation using dropout [10], only re-
cently the detection of out-of-distribution inputs [15]
has been tackled. The existing approaches basically ei-
ther use adjustment techniques of the softmax outputs
[9, 24] by temperature rescaling [12] or they use a gener-
ative model like a VAE or GAN to model boundary in-
puts of the true distribution [22, 36] in order to discrim-
inate in-distribution from out-of-distribution inputs di-
rectly in the training process. While all these ap-
proaches are significant steps towards obtaining more
reliable classifiers, the approaches using a generative
model have been recently challenged by [28, 16] which
report that generative approaches can produce highly
confident density estimates for inputs outside of the
class they are supposed to model. Moreover, note that
the quite useful models for confidence calibration on
the input distribution like [10, 12, 20] cannot be used
for out-of-distribution detection as it has been observed
in [23]. Another approach is the introduction of a rejec-
tion option into the classifier [35, 4], in order to avoid
decisions the classifier is not certain about.

In this paper we will show that for the class of ReLU
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networks, that are networks with fully connected, con-
volutional and residual layers, where just ReLU or
leaky ReLU are used as activation functions and max
or average pooling for convolution layers, basically any
neural network which results in a piecewise affine classi-
fier function, produces arbitrarily high confidence pre-
dictions far away from the training data. This implies
that techniques which operate on the output of the clas-
sifier cannot identify these inputs as out-of-distribution
inputs. On the contrary we formalize the well known
fact that RBF networks produce almost uniform confi-
dence over the classes far away from the training data,
which shows that there exist classifiers which satisfy
the minimal requirement of not being confident in areas
where one has never seen data. Moreover, we propose
a robust optimization scheme motivated by adversarial
training [25] which simply enforces uniform confidence
predictions on noise images which are by construction
far away from the true images. We show that our tech-
nique not only significantly reduces confidence on such
noise images, but also on other unrelated image clas-
sification tasks and in some cases even for adversarial
samples generated for the original classification task.
The training procedure is simple, needs no adaptation
for different out-of-distribution tasks, has similar com-
plexity as standard adversarial training and achieves
similar or marginally worse generalization performance
on the original classification task.

2. ReLU networks produce piecewise
affine functions

We quickly review in this section the fact that ReLU
networks lead to continuous piecewise affine classifiers,
see [1, 8], which we briefly summarize in order to set
the ground for our main theoretical result in Section 3.

Definition 2.1. A function f : RY — R is called
piecewise affine if there exists a finite set of polytopes
{Q.}M.| (referred to as linear regions of f) such that
UM.Q, = R? and f is an affine function when re-
stricted to every Q.

Feedforward neural networks which use piecewise
affine activation functions (e.g. ReLU, leaky ReLU)
and are linear in the output layer can be rewritten as
continuous piecewise affine functions [1]. This includes
fully connected, convolutional, residual layers and even
skip connections as all these layers are just linear map-
pings. Moreover, it includes further average pooling
and max pooling. More precisely, the classifier is a
function f : R? — R, where K are the number of
classes, such that each component f; : R? — R, is a
continuous piecewise affine function and the K compo-
nents (f;)X, have the same set of linear regions. Note

that explicit upper bounds on the number of linear re-
gions have been given [27].

In the following we follow [3]. For simplicity we just
present fully connected layers. Denote by ¢ : R —
R, o(t) = max{0,t}, the ReLU activation function,
by L + 1 the number of layers and W ¢ R™*m-1
and b() € R™ respectively are the weights and offset
vectors of layer [, for [ = 1,...,L 4+ 1 and ny = d.
For € R? one defines ¢»(z) = z. Then one can
recursively define the pre- and post-activation output
of every layer as

f(k)(x) - W(k)g(kfl)(z) A0S
g ¥ () =o(fP (), k=1,...,L,

so that the resulting classifier is
f(LJrl)(x) _ W(L+1)g(L) (x) 4 p(L+1)

Let AW ©® ¢ Rmxm for [ = 1,..., L be diagonal
matrices defined elementwise as

AD(a); = {sign(ff”(x))

0 else.
e )
50 ()5 = {1 if i =jand f;”(z) >0, .

and

obtained as

ifi=j,

0 else.

Note that for leaky ReLU the entries would be 1 and
o instead. This allows to write f(*)(x) as composition
of affine functions, that is

F® (z) =R £ =1 () (Wocfl)E(kfz) ()

X ( (W(l)x—i—b(l)) ) +b(k—1>) k),

We can further simplify the previous expression as
f®(2) = Vg 4+ a® | with VF) € Rxd and o) €
R™ given by

v = ) (kﬁ SED(@WED)  and

=1
k—I1

a® = pk) 4 i ( I1 W(k+1—m>z(k—m>(x))b<1>.
=1 m=1

The polytope Q(z), the linear region containing x, can
be characterized as an intersection of N = ZZL:I n; half
spaces given by

Iy = {2 € R AV @) (V"2 + ") > 0},

forl=1,...,L,i=1,...,n;, namely

Q(CL‘) = ﬂ ﬂ Fm.

I=1,....Li=1,...,n
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Note that NV is also the number of hidden units of the
network. Finally, we can write

f(L+1) o — I+, 4 a(LH),
Q(x)

which is the affine restriction of f to Q(z).

3. Why ReLU networks produce high
confidence predictions far away from
the training data

With the explicit description of the piecewise lin-
ear classifier resulting from a ReLU type network from
Section 2, we can now formulate our main theorem.
It shows that, as long a very mild condition on the
network holds, for any € > 0 one can always find for
(almost) all directions an input z far away from the
training data which realizes a confidence of 1 — € on z
for a certain class. However, before we come to this
result, we first need a technical lemma needed in the
proof, which uses that all linear regions are polytopes
and thus convex sets.

Lemma 3.1. Let {Q;}, be the set of linear regions
associated to the ReLU-classifier f : RY — RX. For
any x € R? there exists a € R with a > 0 and t €
{1,..., R} such that Bz € Q¢ for all B > a.

All the proofs can be found in the supplementary
material. Using Lemma 3.1 we can now state our first
main result.

Theorem 3.1. Let RY = UR Q) and f(x) = Vlz +ad!
be the piecewise affine representation of the output of a
ReL U network on Q;. Suppose that V' does not contain
identical rows for alll =1,..., R, then for almost any

x € R? and € > 0 there exists an a > 0 and a class
ke {l,...,K} such that for z = ax it holds

efr(2)

—— >1—c.
Zle efﬂ"(z) -

efk(am)
ZK efr(am)
r=1

Please note that the condition that for a region the
linear part V! need not contain two identical rows is
very weak. It is hardly imaginable that this is ever true
for a normally trained network unless the output of the
network is constant anyway. Even if it is true, it just
invalidates the assertion of the theorem for the points
lying in this region. Without explicitly enforcing this
condition it seems impossible that this is true for all
possible asymptotic regions extending to infinity (see
Figure 1). However, it is also completely open how

Moreover, lim =1.
a—r 00

10

o 2 4 & 8 10

Figure 1: A decomposition of R? into a finite set of polytopes for
a two-hidden layer ReLU network. The outer polytopes extend to
infinity. This is where ReLU networks realize arbitrarily high confi-
dence predictions. The picture is produced with the code of [17].

this condition could be enforced during training of the
network.

The result implies that for ReLU networks there
exist infinitely many inputs which realize arbitrarily
high confidence predictions of the networks. It is easy
to see that the temperature rescaling of the softmax,
%, for temperature T > 0, as used in [24],
will not be able to detect these cases, in particular since
the first step of the method in [24] consists of going in
the direction of increasing confidence. Also it is obvious
that using a reject option in the classifier, see e.g. [3],
will not help to detect these instances either. The result
is negative in the sense that it looks like that without
modifying the architecture of a ReLLU network it is im-
possible to prevent this phenomenon. Please note that
from the point of view of Bayesian decision theory the
softmax function is the correct transfer function [21]
for the cross-entropy loss turning the classifier output

fx(z) into an estimate P(Y =k |z, f) = eft®

the conditional probability at z.

While the previous result seems not to be known,
the following result is at least qualitatively known [11]
but we could not find a reference for it. In contrast
to the ReLU networks it turns out that Radial Basis
Function (RBF) networks have the property to pro-
duce approximately uniform confidence predictions far
away from the training data. Thus there exist classi-
fiers which satisfy the minimal requirement which we
formulated in Section 1. In the following theorem we
explicitly quantify what “far away” means in terms of
parameters of the RBF classifier and the training data.

for

Theorem 3.2. Let fi(z) = Yo apeMe—als | =
1,..., K be a RBF-network trained with cross-entropy
loss on the training data (z;,y;)Y.,. We define rmn =
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. N
,in |z — x|l and o = Irrlilezl lary — ag]. If

€ >0 and

T2 > E log (L>
Ty log(1+ Ke)/’
then for allk=1,..., K,
1 efr(@) 1
K “SSF @ K ©
We think that it is a very important open problem
to realize a similar result as in Theorem 3.2 for a class
of neural networks. Note that arbitrarily high confi-
dence predictions for ReLLU networks can be obtained
only if the domain is unbounded e.g. R%. However,
images are contained in [0,1]¢ and thus Theorem 3.1
does not directly apply, even though the technique can
in principle be used to produce high-confidence predic-
tions (see experiments in the supplement). In the next
section we propose a novel training scheme enforcing
low confidence predictions on inputs far away from the
training data.

4. Adversarial Confidence Enhanced

Training

In this section we suggest a simple way to adjust
the confidence estimation of a neural network far away
from the training data, not necessarily restricted to
ReLU networks studied in Theorem 3.1. Theorem 3.1
tells us that for ReLLU networks a post-processing of the
softmax scores is not sufficient to avoid high-confidence
predictions far away from the training data - instead
there seem to be two potential ways to tackle the prob-
lem: a) one uses an extra generative model either for
the in-distribution or for the out-distribution or b)
one modifies directly the network via an adaptation of
the training process so that uniform confidence predic-
tions are enforced far away from the training data. As
recently problems with generative models have been
pointed out which assign high confidence to samples
from the out-distribution [28] and thus a) seems less
promising we explore approach b).

We assume that it is possible to characterize a distri-
bution of data points pou; on the input space for which
we are sure that they do not belong to the true dis-
tribution p;, resp. the set of the intersection of their
supports has zero or close to zero probability mass.
An example of such an out-distribution poy; would be
the uniform distribution on [0, 1]**" (w x h gray scale
images) or similar noise distributions. Suppose that
the in-distribution consists of certain image classes like
handwritten digits, then the probability mass of all im-
ages of handwritten digits under the poyt is zero (if it
is really a low-dimensional manifold) or close to zero.

In such a setting the training objective can be writ-
ten as a sum of two losses:

N
%ZLCE(yhf(l’i))+)\E[Lpout(f,Z)], (1)

where (z;,v;)X, is the i.i.d. training data, Z has dis-
tribution poyt and

L 1 el 2

ce(yi, f(x;)) = —log (W) @
efi(2)

Lpou(f,2) = max, log (Zk efk<z>) ®)

L¢ g is the usual cross entropy loss on the original clas-
sification task and L, (f, z) is the maximal log con-
fidence over all classes where the confidence of class [

L () . .
is given by, —#% le NG with the softmax function as

the link function. The full loss can be easily minimized
by using SGD with batchsize B for the original data
and adding [AB] samples from po,; on which one en-
forces a uniform distribution over the labels. We call
this process in the following confidence enhancing data
augmentation (CEDA). We note that in a concurrent
paper [10] the same scheme has been proposed, where
they use as pout existing large image datasets, whereas
we favor an agnostic approach where po,; models a cer-
tain “noise” distribution on images.

The problem with CEDA is that it might take too
many samples to enforce low confidence on the whole
out-distribution. Moreover, it has been shown in the
area of adversarial manipulation that data augmen-
tation is not sufficient for robust models and we will
see in Section 5 that indeed CEDA models still pro-
duce high confidence predictions in a neighborhood of
noise images. Thus, we propose to use ideas from ro-
bust optimization similar to adversarial training which
[34, 11, 25] apply to obtain robust networks against
adversarial manipulations. Thus we are enforcing low
confidence not only at the point itself but actively min-
imize the worst case in a neighborhood of the point.
This leads to the following formulation of adversarial
confidence enhancing training (ACET)

*ZLCE (yi, f(z1)) +)\E[ max

P lu=Zl|, <

Lpout (fu ’LL)] 9
(4)

where in each SGD step one solves (approximately) for
a given z ~ poyt the optimization problem:

max_ Ly, (f,u). ()

llu—zl,<e



In this paper we use always p = co. Note that if the
distributions pout and pi, have joint support, the maxi-
mum in (5) could be obtained at a point in the support
of the true distribution. However, if p,y is a generic
noise distribution like uniform noise or a smoothed ver-
sion of it, then the number of cases where this happens
has probability mass close to zero under po,+ and thus
does not negatively influence in (4) the loss Loy on the
true distribution. The optimization of ACET in (4) can
be done using an adapted version of the PGD method
of [25] for adversarial training where one performs pro-
jected gradient descent (potentially for a few restarts)
and uses the wu realizing the worst loss for computing
the gradient. The resulting samples are more infor-
mative and thus lead to a faster and more significant
reduction of high confidence predictions far away from
the training data. We use ¢ = 0.3 for all datasets. We
present in Figure 2 and 3 for MNIST and CIFAR-10 a
few noise images together with their adversarial mod-
ification u generated by applying PGD to solve (5).
One can observe that the generated images have no
structure resembling images from the in-distribution.

5. Experiments

In the evaluation, we follow [15, 24, 22] by train-
ing on one dataset and evaluating the confidence on
other out of distribution datasets and noise images. In
contrast to [24, 22] we neither use a different parame-
ter set for each test dataset [24] nor do we use one of
the test datasets during training [22]. More precisely,
we train on MNIST, SVHN, CIFAR-10 and CIFAR-
100, where we use the LeNet architecture on MNIST
taken from [25] and a ResNet architecture [13] for the
other datasets. We also use standard data augmenta-
tion which includes random crops for all datasets and
random mirroring for CIFAR-10 and CIFAR-100. For
the generation of out-of-distribution images from poyt
we proceed as follows: half of the images are gener-
ated by randomly permuting pixels of images from the
training set and half of the images are generated uni-
formly at random. Then we apply to these images a
Gaussian filter with standard deviation o € [1.0,2.5] as
lowpass filter to have more low-frequency structure in
the noise. As the Gaussian filter leads to a contrast re-
duction we apply afterwards a global rescaling so that
the maximal range of the image is again in [0, 1].
Training: We train each model normally (plain),
with confidence enhancing data augmentation (CEDA)
and with adversarial confidence enhancing training
(ACET). It is well known that weight decay alone re-
duces overconfident predictions. Thus we use weight
decay with regularization parameter 5 - 10~ for all
models leading to a strong baseline (plain). For CEDA

(1) and ACET (4) we both use A = 1, that means 50%
of the samples in each batch are from the original train-
ing set and 50% are noise samples as described before.
For ACET we use p = oo and ¢ = 0.3 and optimize
with PGD [25] using 40 iterations and stepsize 0.0075
for all datasets. All models are trained for 100 epochs
with ADAM [18] on MNIST and SGD+momentum
for SVHN/CIFAR-10/CIFAR-100. The initial learning
rate is 1072 for MNIST and 0.1 for SVHN/CIFAR-10
and it is reduced by a factor of 10 at the 50th, 75th and
90th of the in total 100 epochs. More results and de-
tails can be found in the supplementary material. The
code is available at https://github.com/max-andr/
relu_networks_overconfident.

Evaluation: We report for each model (plain, CEDA,
ACET) the test error and the mean maximal confi-
dence (for each point this is maxp—1,. K %),
denoted as MMC, on the test set. In order to eval-
uate how well we reduce the confidence on the out-
distribution, we use four datasets on CIFAR-10 [19]
and SVHN [29] (namely among CIFAR-10, CIFAR-
100, SVHN, ImageNet-, which is a subset of ImageNet
where we removed classes similar to CIFAR-10, and
the classroom subset of LSUN [39] we use the ones on
which we have not trained) and for MNIST we eval-
uate on EMNIST [7], a grayscale version of CIFAR-
10 and Fashion MNIST [38]. Additionally, we show
the evaluation on noise, adversarial noise and adver-
sarial samples. The noise is generated in the same
way as the noise we use for training. For adversar-
ial noise, where we maximize the maximal confidence
over all classes (see Ly, . (f,z) in (3)), we use PGD
with 200 iterations and stepsize 0.0075 in the € ball
wrt the ||-[| -norm with € = 0.3 (same as in training).
Note that for training we use only 40 iterations, so that
the attack at test time is significantly stronger. Fi-
nally, we check also the confidence on adversarial sam-
ples computed for the test set of the in-distribution
dataset using 80 iterations of PGD with € = 0.3, step-
size 0.0075 for MNIST and € = 0.1, stepsize 0.0025 for
the other datasets. The latter two evaluation modali-
ties are novel compared to [15, 24, 22]. The adversarial
noise is interesting as it actively searches for images
which still yield high confidence in a neighborhood of a
noise image and thus is a much more challenging than
the pure evaluation on noise. Moreover, it potentially
detects an over-adaptation to the noise model used dur-
ing training in particular in CEDA. The evaluation on
adversarial samples is interesting as one can hope that
the reduction of the confidence for out-of-distribution
images also reduces the confidence of adversarial sam-
ples as typically adversarial samples are off the data
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Figure 2: Top row: our generated noise images based on uniform noise resp. permuted MNIST together with a Gaussian filter and contrast
rescaling. Bottom row: for each noise image from above we generate the corresponding adversarial noise image using PGD with 40 iterations
maximizing the second part of the loss in ACET for the plain model. Note that neither in the noise images nor in the adversarially modified
ones there is structure similar to a MNIST image. For ACET and CEDA it is very difficult to generate adversarial noise images for the fully

trained models thus we omit them.
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Figure 3: Top row: our generated noise images based on uniform noise resp. permuted MNIST together with a Gaussian filter and contrast
rescaling (similar to Figure 2). Bottom rows: the corresponding adversarial images for the plain, CEDA, and ACET models. Neither the noise

nor the adversarial noise images show similarity to CIFAR-10 images.

manifold [33] and thus are also out-of-distribution sam-
ples (even though their distance to the true distribution
is small). Note that our models have never seen ad-
versarial samples during training, they only have been
trained using the adversarial noise. Nevertheless our
ACET model can reduce the confidence on adversarial
samples. As evaluation criteria we use the average con-
fidence, the area under the ROC curve (AUC) where
we use the confidence as a threshold for the detection
problem (in-distribution vs. out-distribution). More-
over, we report in the same setting the false positive
rate (FPR) when the true positive rate (TPR) is fixed
to 95%. All results can be found in Table 1.

Main Results: In Table 1, we show the results of
plain (normal training), CEDA and ACET. First of all,
we observe that there is almost no difference between
the test errors of all three methods. Thus improving
the confidence far away from the training data does

not impair the generalization performance. We also
see that the plain models always produce high confi-
dence predictions on noise images and completely fail
on adversarial noise. CEDA produces low confidence
on noise images but mostly fails on adversarial noise
which was to be expected as similar findings have been
made for the creation of adversarial samples. Only
ACET consistently produces low confidence predictions
on adversarial noise and has high AUROC. For the
out-of-distribution datasets CEDA and ACET improve
most of the time the maximum confidence and the AU-
ROC, sometimes with very strong improvements like
on MNIST evaluated on FMNIST or SVHN evaluated
on LSUN. However, one observes that it is more dif-
ficult to reduce the confidence for related tasks e.g.
MNIST evaluated on EMNIST or CIFAR-10 evaluated
on LSUN, where the image structure is more similar.
Finally, an interesting outcome is that ACET reduces
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Trained on Plain (TE: 0.51%) CEDA (TE: 0.74%) ACET (TE: 0.66%)
MNIST | MMC | AUROC | FPR@95 | MMC | AUROC | FPR@95 | MMC | AUROC | FPRGY5
MNIST 0.991 - - 0.987 - - 0.986 - -
FMNIST 0.654 0.972 0.121 0.373 0.994 0.027 0.239 0.998 0.003
EMNIST 0.821 0.883 0.374 0.787 0.895 0.358 0.752 0.912 0.313
grayCIFAR-10 0.492 0.996 0.003 0.105 1.000 0.000 0.101 1.000 0.000
Noise 0.463 0.998 0.000 || 0.100 1.000 0.000 0.100 1.000 0.000
Adv. Noise 1.000 0.031 1.000 || 0.102 0.998 0.002 0.162 0.992 0.042
Adv. Samples 0.999 0.358 0.992 0.987 0.549 0.953 0.854 0.692 0.782
Trained on Plain (TE: 3.53%) CEDA (TE: 3.50%) ACET (TE: 3.52%)
SVHN || MMC | AUROC | FPR@95 | MMC | AUROC | FPR@95 | MMC | AUROC | FPRG95
SVHN 0.980 - - 0.977 - - 0.978 - -
CIFAR-10 0.732 0.938 0.348 0.551 0.960 0.209 0.435 0.973 0.140
CIFAR-100 0.730 0.935 0.350 0.527 0.959 0.205 0.414 0.971 0.139
LSUN CR 0.722 0.945 0.324 0.364 0.984 0.084 0.148 0.997 0.012
Imagenet- 0.725 0.939 0.340 0.574 0.955 0.232 0.368 0.977 0.113
Noise 0.720 0.943 0.325 || 0.100 1.000 0.000 0.100 1.000 0.000
Adv. Noise 1.000 0.004 1.000 0.946 0.062 0.940 0.101 1.000 0.000
Adv. Samples 1.000 0.004 1.000 0.995 0.009 0.994 0.369 0.778 0.279
Trained on Plain (TE: 8.87%) CEDA (TE: 8.87%) ACET (TE: 8.44%)
CIFAR-10 || MMC | AUROC | FPR@95 | MMC | AUROC | FPR@95 | MMC | AUROC | FPR@95
CIFAR-10 0.949 - - 0.946 - - 0.948 - -
SVHN 0.800 0.850 0.783 0.327 0.978 0.146 0.263 0.981 0.118
CIFAR-100 0.764 0.856 0.715 || 0.761 0.850 0.720 0.764 0.852 0.711
LSUN CR 0.738 0.872 0.667 || 0.735 0.864 0.680 0.745 0.858 0.677
Imagenet- 0.757 0.858 0.698 0.749 0.853 0.704 0.744 0.859 0.678
Noise 0.825 0.827 0.818 || 0.100 1.000 0.000 0.100 1.000 0.000
Adv. Noise 1.000 0.035 1.000 0.985 0.032 0.983 0.112 0.999 0.008
Adv. Samples 1.000 0.034 1.000 1.000 0.014 1.000 0.633 0.512 0.590
Trained on Plain (TE: 31.97%) CEDA (TE: 32.74%) ACET (TE: 32.24%)
CIFAR-100 || MMC | AUROC | FPR@95 | MMC | AUROC | FPR@95 | MMC | AUROC | FPR@95
CIFAR-100 0.751 - - 0.734 - - 0.728 - -
SVHN 0.570 0.710 0.865 0.290 0.874 0.410 0.234 0.912 0.345
CIFAR-10 0.560 0.718 0.856 0.547 0.711 0.855 0.530 0.720 0.860
LSUN CR 0.592 0.690 0.887 0.581 0.678 0.887 0.554 0.698 0.881
Imagenet- 0.531 0.744 0.827 0.504 0.749 0.808 0.492 0.752 0.819
Noise 0.614 0.672 0.928 0.010 1.000 0.000 0.010 1.000 0.000
Adv. Noise 1.000 0.000 1.000 0.985 0.015 0.985 0.013 0.998 0.003
Adv. Samples 0.999 0.010 1.000 0.999 0.012 1.000 0.863 0.267 0.975

Table 1:

On the four datasets MNIST, SVHN, CIFAR-10, and CIFAR-100, we train three models: Plain, CEDA and ACET. We evaluate

them on out-of-distribution samples (other image datasets, noise, adversarial noise and adversarial samples built from the test set on which was
trained). We report test error of all models and show the mean maximum confidence (MMC) on the in- and out-distribution samples (lower is
better for out-distribution samples), the AUC of the ROC curve (AUROC) for the discrimination between in- and out-distribution based on
confidence value (higher is better), and the FPR at 95% true positive rate for the same problem (lower is better).

the confidence on adversarial examples, see Figure 4 for
an illustration, and achieves on MNIST very high AU-
ROC values so that one can detect adversarial exam-
ples via thresholding the confidence. Obviously, plain
and CEDA fail on this task. The good performance
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of ACET is to some extent unexpected as we just bias
the model towards uniform confidence over all classes
far away from the training data, but adversarial exam-
ples are still close to the original image. In summary,
ACET does improve confidence estimates significantly




Plain ACET
MNIST \ SVHN \ CIFAR-10 \ CIFAR-100 || MNIST \ SVHN \ CIFAR-10 \ CIFAR-100

Median o 1.5 28.1 8.1 9.9 > 108 49.8 45.3 9.9

% overconfident 98.7% | 99.9% 99.9% 99.8% 0.0% | 50.2% 3.4% 0.0%

Table 2: We evaluate all trained models on uniform random inputs scaled by a constant a > 1 (note that the resulting inputs will not
constitute valid images anymore, since in most cases they exceed the [0, 1]? box). We find the minimum « such that the models outputs 99.9%
confidence on them, and report the median over 10 000 trials. As predicted by Theorem 3.1 we observe that it is always possible to obtain
overconfident predictions just by scaling inputs by some constant «, and for plain models this constant is smaller than for ACET. For MNIST
the value of o was so high that we ran into numerical problems. Second row: we show the percentage of overconfident predictions (higher than
95% confidence) when projecting back the a-rescaled uniform noise images back to [0,1]%¢. One observes that there are much less overconfident
predictions for the ACET models compared to standard training.

Plain CEDA ACET
10° 10° 10°
10° 10° 10°
102 10? 10?
10 10 10t
10° I 10° 10°
00 02 04 06 08 10 00 02 04 06 08 10 0.0

Figure 4: Histogram of confidence values (logarithmic scale) of adversarial samples for MNIST test points. ACET is the only model where
most adversarial samples have very low confidence. Note, however that the ACET model has not been trained on adversarial samples of MNIST,
but only on adversarial noise.

compared to the plain but also compared to CEDA, in 6. Conclusion
particular on adversarial noise and adversarial exam-

ples. In particular, its very good effect also on adver- We have shown in this paper that the problem of ar-
sarial examples is an interesting side effect and shows bitrarily high confidence predictions of ReLU networks
in our opinion that the models have become more reli- far away from the training data cannot be avoided even
able. with modifications like temperature rescaling [12]. It is

an inherent problem of the neural network architecture
and thus can only be resolved by changing the archi-
tecture. On the other hand we have shown that CEDA
and in particular ACET are a good way to reach much
better confidence estimates for image data. CEDA and
ACET can be directly used for any model with lit-
tle implementation overhead. For the future it would
be desirable to have network architectures which have
provably the property that far away from the training
data the confidence is uniform over the classes: the
network knows when it does not know.

Far away high confidence predictions: Theo-
rem 3.1 states that ReLU networks always attain high
confidence predictions far away from the training data.
The two network architectures used in this paper are
ReLU networks. It is thus interesting to investigate
if the confidence-enhanced training CEDA or ACET
makes it harder to reach high confidence than for the
plain model. We do the following experiment: we take
uniform random noise images = and then search for the
smallest a such that the classifier attains 99.9% con-
fidence on ax. This is exactly the construction from
Theorem 3.1 and the result can be found in Table 2.

We observe in Table 2 that indeed the required up- Acknowledgements
scaling factor « is significantly higher for CEDA and
ACET than for the plain model which implies that M.H. and J.B. acknowledge support from the BMBF

our models also influence the network far away from through the Tiibingen AI Center (FKZ: 01IS18039A)
the training data. Moreover, this also shows that even and by the DFG TRR 248, project number 389792660
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phenomenon of high confidence predictions far away New Perspectives for Science”, EXC 2064/1, project
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