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Abstract

The role of pose invariance in image recognition and

retrieval is studied. A taxonomic classification of embed-

dings, according to their level of invariance, is introduced

and used to clarify connections between existing embed-

dings, identify missing approaches, and propose invariant

generalizations. This leads to a new family of pose invariant

embeddings (PIEs), derived from existing approaches by a

combination of two models, which follow from the interpre-

tation of CNNs as estimators of class posterior probabili-

ties: a view-to-object model and an object-to-class model.

The new pose-invariant models are shown to have interest-

ing properties, both theoretically and through experiments,

where they outperform existing multiview approaches. Most

notably, they achieve good performance for both 1) classifi-

cation and retrieval, and 2) single and multiview inference.

These are important properties for the design of real vision

systems, where universal embeddings are preferable to task

specific ones, and multiple images are usually not available

at inference time. Finally, a new multiview dataset of real

objects, imaged in the wild against complex backgrounds,

is introduced. We believe that this is a much needed com-

plement to the synthetic datasets in wide use and will con-

tribute to the advancement of multiview recognition and re-

trieval.

1. Introduction

Convolutional neural networks (CNNs) are frequently

used for classification and metric learning, among other

tasks. Classification is the central problem of important

computer vision applications, such as object and action

recognition or detection. Metric learning plays a similar

role for image retrieval, face recognition and identification,

or zero shot learning. Despite the many different applica-

tions, the two tasks are closely related, since they both learn

an embedding g : X → G that maps images x ∈ X into

features g(x) ∈ G and are implemented with several CNN

layers. Classification aims to produce a discriminant feature

space F , which separates the different classes, while metric

Figure 1. Taxonomy of embeddings learned by different methods

according to different level of invariance. Green solid boxes rep-

resent methods in the literature and yellow dashed boxes repre-

sent methods proposed in this work. The proposed pose invariant

embedding incorporates single view and multiview invariance and

can be applied to different methods, including CNN, proxy-NCA

and triplet center. While CNN is designed for classification, the

other two aim for metric learning (retrieval task).

learning aims to produce a feature space F with a certain

metric structure, where similarity can be captured by some

distance function, typically the Euclidean distance.

As shown in the bottom row of Figure 1, classification

and metric learning have evolved in lockstep. While details

of the architecture of g(.) may favor one or the other, ap-

proaches to the two problems have differed mostly in the

subsequent network layers and loss function. Classifiers

complement the embedding g with a softmax layer trained

with the logistic loss. Classic metric learning uses no ad-

ditional layers and a different loss. While several variants

have been proposed [5, 10, 21, 15], the most popular is the

triplet loss of [27, 26, 1, 19]. In practice, however, the dif-

ferences can be significant. Since triplets raise the dataset

size to its cube, metric learning networks are more difficult

to train than classifiers. To address this, much of the embed-

ding literature has been devoted to triplet sampling strate-

gies [26, 1, 19, 17, 21], aimed to increase training speed.

Recently however, [15] has shown that much faster training

is possible by using proxy embeddings, which make metric

learning a lot more like classification. Inspired by a met-

ric learning approach known as neighborhood component

analysis (NCA) [9], it adds a layer that resembles a soft-
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max classifier to the embedding and uses the logistic loss

for training. A similar generalization of triplet embeddings

has been proposed in [11], and denoted as triplet center em-

beddings.

Ideally, an embedding should map all the images of an

object collected from multiple views, depths or under dif-

ferent illuminations, into a single point, known as the ob-

ject invariant to these transformations. However, this is

hard to achieve on datasets such as ImageNet, which tend

to emphasize class diversity and maximize the number of

objects imaged per class. They do not provide a dense cov-

ering of the transformations (imaged from different cam-

era positions, variable lighting, etc) where an object may

be subjected to. Recently, this problem has received sig-

nificantly more attention, with the introduction of datasets

such as ModelNet [29] or ShapeNet [4]. Being datasets of

synthetic images rendered from 3D CAD models, these al-

low the generation of many views of each object labelled

for view angle, also known as object pose.

The introduction of these multiview synthetic datasets

motivated a new wave of algorithms for multiview [22, 12,

6] classification and retrieval, as shown in the middle row of

Figure 1. These methods have been shown competitive, if

not superior, to many methods based on 3D representations,

such as voxels [29, 14, 3, 28] or point clouds [7, 31, 30].

This is important because view-based representations can

be easily deployed in the real world, where 3D representa-

tions are much more expensive, if not completely infeasi-

ble. The most popular architecture for view-based classifi-

cation is the multiview-CNN (MV-CNN) [22], which com-

plements a standard CNN embedding with a view pooling

mechanism that produces a shape descriptor. The shape de-

scriptor is then fed to the softmax layer for classification.

Similarly, [11] have introduced the triplet-center loss for

multiview metric learning. This is a generalization of the

triplet loss and center loss to a multiview level for NCA

style metric learning.

While these approaches have been shown to be effec-

tive for multiview classification and retrieval, which can

be performed easily in the CAD world (e.g ModelNet and

ShapeNet), their usefulness for real vision systems is more

questionable, for two reasons. First, it is not known how

well they work on real images due to the absence of datasets

of real images in the wild, with coverage of pose trajecto-

ries. While some dense pose datasets exist [2, 12, 8, 16],

they are small and tend to depict objects on turntables, with-

out complex backgrounds. Second, and more important,

these approaches do not really learn pose invariant embed-

dings. While the shape descriptor is a summary of all the

views of the object, the embedding of a single image is not

constrained to be similar to this descriptor. In result, these

methods tend not to perform well for single view recogni-

tion or retrieval, where they frequently have weaker perfor-

mance than standard CNNs. This is important because the

multiview setting is not realistic for most real world appli-

cations. While multiview training is of interest to enable

learning algorithms to capture object variability under var-

ious transformations, applications frequently constrain in-

ference to single views. To support the latter, multiview

training must produce truly pose invariant embeddings.

In this work, we address these limitations through a com-

bination of contributions. First we perform a review of

various approaches in the literature, placing various meth-

ods on equal footing and enabling a better understanding

of their relative strengths and weaknesses. This results in

Figure 1, which groups embeddings by their level of invari-

ance. Existing methods are identified by green boxes. It

is clear that no truly pose invariant embeddings are avail-

able. While view-based embeddings have little invariance,

multiview embeddings produce a shape descriptor that rep-

resents multiple views, but do not map individual views to

this descriptor.

Second, we propose a number of new approaches,

showed as yellow boxes in Figure 1. Some of these just fill

holes in the layers populated by existing methods. For ex-

ample, MV-Proxy is simple variants of [15] for multiview

level and triplet center is variants of [11] for single view

level. Other yellow boxes in pose invariant level (top row)

are based on new loss functions that encourage embeddings

that cluster individual images in the neighborhood of shape

descriptors. This makes the shape descriptors truly invari-

ant and enables better performance on single view retrieval

and recognition tasks. Finally, we introduce a new multi-

view dataset for object recognition in the wild. This dataset

is composed of objects belonging to ImageNet, and are in

all aspects similar to ImageNet images. However, each ob-

ject is imaged under a set of pre-defined poses, which are

provided as additional labels. Similarly to ShapeNet and

ModelNet, this enables the learning of pose invariant repre-

sentations. However, because the images are real, the new

dataset enables the testing of invariance in a more realistic

setting. Experiments on both the proposed dataset and syn-

thetic datasets show that the proposed pose invariant embed-

ding is more robust to a variable number of views provided

for inference.

2. Related work

Many works have addressed embeddings for classifica-

tion and retrieval. We review the literature in this section,

emphasizing the ideas that are directly relevant to this work.

Classification: Given observations and class labels drawn

from random variables X ∈ R
m and Y ∈ {1, . . . , C}

the classifier of minimum probability of error is y∗ =
argmaxy PY |X(y|x). A CNN is a model for the posterior
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probabilities

PY |X(y|x) = hy(x;W,b) =
ew

T
y g(x)+by

∑C

k=1 e
wT

k
g(x)+bk

(1)

composed of two stages. The first is an embedding g(x) ∈
F ⊂ R

d, implemented by the layers of the network up to the

last one, where g is a d dimension feature extractor. Usu-

ally, g consists of a combination of convolutions, pooling,

and a ReLU non-linearity. The second is a softmax layer

that resides at the top of the network and computes (1) us-

ing a layer of weights W ∈ R
d×C and biases b ∈ R

C . To

minimize notational clutter, we will omit the bias vector in

many of the expressions below. This follows the common

practice of absorbing it in W and using homogeneous coor-

dinates. CNNs are trained by cross-entropy minimization.

Given a dataset D = {(xi, yi)}
n
i=1 this consists of finding

W and the parameters of g that minimize the risk

R(D) =
∑

i

L(xi, yi), (2)

defined by the logistic loss L(x, y) = − log hy(x;W).
Metric learning: Metric learning aims to endow the feature

space F with a metric, usually the Euclidean distance

d(g(x), g(y)) = ||g(x)− g(y)||2, (3)

so as to allow the geometric implementation of operations

like classification, e.g. using nearest neighbors. While

many losses have been proposed [5, 10, 21], this is usually

done with a loss function that operates on example triplets,

pulling together (pushing apart) similar (dissimilar) exam-

ples [27, 26, 1, 19]. Given an anchor x, a similar x+ and a

dissimilar example x−, the triplet loss is defined as

L(x,x+,x−) = φ
(

d(g(x), g(x−))− d(g(x), g(x+))
)

,
(4)

where φ(.) is a margin loss, e.g. the hinge loss φ(v) =
max(0,m− v) or the logistic loss φ(v) = log(1+ e−v). In

general, similar and dissimilar examples are determined by

the class labels of D. We refer to these methods as triplet

embeddings.

Modern CNNs are learned by stochastic gradient descent

(SGD), processing the data in batches of relatively small

size, e.g. b = 32. On a dataset of size n there are O(n) ex-

amples and O(n3) triplets. Similarly, there are O(b) exam-

ples and O(b3) triplets in a batch. Hence, while the number

of batches needed to cover the dataset is O(n/b) for exam-

ples, it becomes O((n/b)3) for triplets [15]. Since n/b is

in the tens of thousands, triplet learning is cubically more

complex than example-based learning. While many sam-

pling strategies have been proposed to address this prob-

lem [19, 26, 17, 23], metric learning methods are substan-

tially harder to use and slower to converge than classifica-

tion methods.

Recently, [15] has shown that this problem can be over-

came using a loss function inspired by neighborhood com-

ponent analysis (NCA) [9]. This consists of defining a proxy

py per class, adding a softmax-like layer

sy(x;P) =
e−d(g(x),py)

∑

k 6=y e
−d(g(x),pk)

, (5)

where P is the matrix of proxies pk, and learning both P

and g(x) by minimizing the risk of (2) with the logistic loss

L(x, y) = − log sy(x;P). We refer to this method as proxy

embedding.

Multiview classification: In multiview classification, each

observation consists of a set of V views X = {xk}
V
k=1

and parameters are learned from a multiview dataset Dm =
{(Xi, yi)}

n
i=1 = {(xi1, . . . ,xiV , yi)}

n
i=1. The goal is to

jointly classify all these views. A popular approach is the

multiview-CNN (MV-CNN) [22], which implements two

embeddings. Each individual image xk, where xk is imaged

at kth predefined viewpoint, is processed by a shared fea-

ture extractor g and all the resulting view descriptors g(xk)
is then averaged to produce a shape descriptor

gm(X) =
1

V

V
∑

k=1

g(xk), (6)

where subscript m denotes multiview. The embedding pa-

rameters are learned from a multiview dataset Dm by using

gm with softmax layer (1), the risk of (2), and the logis-

tic loss. Several variants of this approach have been pro-

posed, either making specific architectural enhancements

to the embedding g [25, 18], or using weighted versions

of (6) [6]. Similar enhancements are possible for all meth-

ods discussed in this work.

Multiview metric learning: Substantially less work has

been devoted to multiview metric learning. [11] combined

the MV-CNN embedding with the proxy-based idea of [15],

but applied to the triplet loss. They denote proxies as cen-

ters and define the multiview triplet-center loss

L(X, y,P) = φ

(

min
j 6=y

d(gm(X),pj)− d(gm(X),py)

)

(7)

where P is the matrix of centers pj and gm is defined as

in (6). We refer to this method as multiview triplet center

(MV-TC) embedding.

3. Bringing object invariants to the real world

In this section, we discuss a number of contributions that

follow from the above review.

3.1. New viewbased and mutiview embeddings

Figure 1 provides a functional organization of embed-

dings for classification and metric learning. The bottom two
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a) view-based b) multi-view c) invariant

Figure 2. Embeddings produced by methods at the three levels of invariance of Figure 1. In all plots, there are three classes, two objects

per class, and each dot represents the embedding of an image. Dots of the same color correspond to different views of the same object. In

b) and c), a ′
+

′ is used to denote the shape descriptor and a dashed circle to denote the distribution of views of the associated object. Only

the invariant embedding of c) guarantees a good clustering of both shape descriptors per class and individual views per object.

rows summarize the state of the literature, with green boxes

identifying the approaches that have been proposed. They

group these methods according to whether they embed sin-

gle or multiple views. One immediate contribution is that

there are a number of “missing” approaches (e.g multiview

proxy and single view triplet center). We propose to fill

the gaps, introducing several new embeddings, which are

extensions of those available: the triplet center embedding

is the view-based equivalent of the multiview triplet center

embedding[11], replacing multiview triplet-center loss (7)

with single view

L(x, y,P) = φ

(

min
j 6=y

d(g(x),pj)− d(g(x),py)

)

, (8)

and the MV-proxy generalizes the single view proxy embed-

ding (5) to multiview

smy (X;P) =
e−d(gm(x),py)

∑

k 6=y e
−d(gm(x),pk)

, (9)

where superscript m denotes multiview.

3.2. The need for invariant embeddings

A second, and practically more important, contribution

of Figure 1 is to show that no attention has been given to

the design of truly invariant embeddings. This is important

for many real-world systems, where one would like to lever-

age multiview data for training but perform classification or

retrieval on single views. In general, it is not realistic to

expect that multiple views of an object will be available at

classification or retrieval time. We refer to this problem as

pose invariant classification and retrieval. Figure 2 illus-

trates the limitations of existing approaches to address this

problem.

View-based embeddings do not leverage multiple object

views during training, treating all views of all objects in

the same class equally. In result, as illustrated in Figure 2

a), there is no guarantee that these embeddings will clus-

ter views from same object. While clustering views into

classes, they are free to intertwine the views of different

objects in the same class. On the other hand, multiview em-

beddings (6) only constrain the shape descriptor, i.e. the av-

erage of single view embedding. As illustrated by Figure 2

b), where shape descriptors are denoted by a ’+’, this suf-

fices to produce a good shape descriptor clustering. How-

ever, it does not guarantee a good clustering of all individ-

ual views from an object. Note that the shape descriptors

are all correctly classified, but this is not the case for the

individual views, which can spread across class boundaries.

This is illustrated by the dashed circles, which identify the

distribution of images of each object. Due to this prob-

lem, multiview approaches tend to underperform the single

view embeddings of a) for single view classification and re-

trieval [12, 6].

In order to address these problem, a new form of em-

beddings is needed. Figure 2 c) shows the behavior desired

for a truly invariant embedding, which should be both sin-

gle view invariant and multiview invariant. We denote this

new form of embedding as pose invariant embedding (PIE).

PIE guarantees two properties: that 1) single view embed-

dings (image descriptors) of an object are clustered around

multiview embedding (shape descriptor) and 2) multiview

embedding is clustered around the descriptor of its labeled

class.

To guarantee the two properties, we return to the prob-

abilistic formulation and introduce an intermediate object

variable O, leading to

PY |X(y|x) =
∑

n

PY |O,X(y|n,x)PO|X(n|x)

=
∑

n

PY |O(y|n)PO|X(n|x) (10)

where we have used the fact that once the object is known

the class is independent of the view. This provides a decom-
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position of the posterior probabilities into an object-to-class

PY |O(y|n) and a view-to-object PO|X(n|x) model. This

decomposition can be exploited to enforce the two proper-

ties above. We next discuss how to do this for the various

approaches of Figure 1.

3.3. Pose invariant proxy embedding

We start by extending the proxy embedding [15] of (5)

with the conditional probabilities of (10). We then note that

the multiview form of proxy embedding, given by (9), is

an object-to-class model, if the shape descriptors is pro-

duced by averaging image descriptors associated with the

same object (6). Hence, the object-to-class model can be

identical to the multiview proxy embedding (9)

PY |O(y|n) = smy (Xn;P). (11)

The view-to-object model should be similar to single view

proxy (5) but use a set of object proxies. To encourages

the clustering of Figure 2 c), we propose adopting the shape

descriptor produced by (6) as the proxy for the associated

object. This leads to the model

PO|X(n|x) =
e−d(g(x),gm(Xn))

∑

j 6=n e
−d(g(x),gm(Xj))

. (12)

Pose invariant proxy (PI-Proxy) embedding can then be de-

rived by combining the two models with conditional prob-

ability (10). The approximated probabilities in [15] is then

used and we have

sinvy (x,P) =

∑

n e
−dinv(x,Xn,py)

∑

i 6=y,n e
−dinv(x,Xn,pi)

, (13)

where

dinv(x,Xn,py) = αd(g(x), gm(Xn)) + βd(gm(Xn),py)
(14)

is denoted as the pose invariant distance. α, β are two hy-

perparmeters that enable control over the contribution of the

two components of the distance. Note that the feature ex-

tractor g is exactly the same as in the MV-CNN, i.e. there is

no additional parameters and no change in the network.

3.4. Properties of pose invariant distance

The pose invariant distance of (14) has several properties

of interest. First, setting α = 0 and β = 1 results in the

distance of the MV-proxy embedding (9), which leads to

Figure 2 b). Second, for α = β = 1, it becomes Figure 2 c)

and follows from the triangle inequality that

dinv(x,Xn,py) = d(g(x), gm(Xn)) + d(gm(Xn),py)

≥ d(g(x),py), (15)

i.e. the invariant distance is an upper bound on the distance

of the single view proxy. While the α term encourages clus-

tering of individual views around the object (shape descrip-

tor), the β term encourages clustering of objects into object

class. Hence, the PI-Proxy embedding offers a range of so-

lutions between the behaviors of Figure 2 b) and c).

3.5. Generating pose invariant embeddings

The procedure above can be generalized to all ap-

proaches of Figure 1 that use proxies. This is also true

for classifiers, where the weights wy of (1) play the role

of proxies . The procedure for producing a pose invariant

model is as follows.

1. use the multiview model as object-to-class model

PY |O(y|n).

2. use the view-based model as view-to-object model

PO|X(n|x).

3. replace the proxies of PO|X(n|x) by the shape descrip-

tors of (6). Use the shape descriptor of object O as

proxy for this object.

4. use the conditional probability (10) to combine the two

models into a pose invariant model.

Applying this procedure to the CNN of (1) leads to the pose

invariant-CNN (PI-CNN)

hinv
y (x, y;W) =

∑

n e
dinv(x,Xn,py)

∑

n,j e
dinv(x,Xn,pj)

, (16)

where dinv(x,Xn,py) is defined as in (14). This is iden-

tical to the MV-CNN when (α, β) = (0, 1). For larger α,

the classifier also discriminates between objects in the same

class, assigning each view to the corresponding object de-

scriptor. only assigns views to objects.

Applying the procedure to the triplet center approach,

leads to the pose invariant triplet center (PI-TC) embed-

ding. This combines the multiview triplet center distance

of (7) and the triplet center loss of (8), using shape descrip-

tor as centers, leading to the loss function

L(x, y,P) =

= φ(α(min
k 6=n

d(x,Xk)− d(x,Xn))

+ β(min
i 6=y

d(Xn,pi)− d(Xn,py)))) (17)

3.6. Learning and inference

The models of (13), (16), and (17) are all functions of the

view and multiview embeddings, g and gm. However, since

view feature extractor g is shared by all views and gm is

the average over view features given by (6), the total num-

ber of parameters is equal to that of a single CNN. In this

aspect, all invariant embeddings of Figure 1 have the same
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Figure 3. Examples of the 8 viewpoints of ObjectPI, for 2 objects.

complexity. Training boils down to learning the parame-

ters of CNN, using (13), (16), and the logistic loss or (17)

in risk R (2). This is a standard backpropagation learning

problem. For inference, several modes are possible. In the

multiview mode, only the model PY |O(y|X) is used. This

is equivalent to using the multivew methods in the second

row of Figure 1, i.e. MV-CNN, MV-proxy (9), and MV-

triplet center (7). However, these models can still benefit

from invariant training. For pose invariant recognition and

classification, the models are those of (13), (16), and (17).

In the case where a single view x is available at inference

time, i.e. on = gm(Xn) is not available, all expressions

can be simplified. For example, the PI-CNN reduces to

hinv
y (x, y) = e−d(x,py)

∑
j
e
−d(x,pj)

. If partial views are available

at inference time, the multiview mode is again used, but (6)

is reformulated as gm(X) = 1
V ′

∑V ′

k=1 g(xk), where V ′ is

the number of views available.

4. Pose invariance dataset

Existing multiview object datasets can be grouped in two

classes. The first includes synthetic datasets such as Mod-

elNet [29] or ShapeNet [4]. These are large and popular,

but only depict computer graphics rendered objects. The

second includes “turntable datasets”, i.e. datasets imaged in

the lab, by collecting images placed on a turntable, as it is

rotated [2, 8, 16]. These are more realistic, but still lack nat-

ural backgrounds. In this work, we introduce a new dataset

that addresses these limitations. It consists of images col-

lected in the wild, by placing each object in a scene and

taking pictures with a camera, which is moved around the

object. An example of the views collected for an object is

shown in Figure 3. The dataset contains 8 views per object,

for 500 objects from 25 classes. These classes are chosen

from ImageNet, to enable the use of CNNs pre-trained on

the latter. The dataset is split into a training and test set,

containing 16 and 4 objects respectively for each class. We

refer to the dataset as the object pose invariance (ObjectPI)1

dataset.

5. Experiments

In this section, we report on an experimental evaluation

of the methods of Figure 1 on 5 different tasks, covering

classification and retrieval at different levels of invariance.

5.1. Experimental setup

Dataset All experiments are based on three datasets.

ModelNet40 [29] is a 3D CAD dataset, of 40 object classes

and 3183 objects . We use the training and testing splits

of [22, 11], with 80 training and 20 test objects. For each

object, 12 views are rendered uniformly (viewpoint interval

30 degree), identical to [22] and case (i) of [12]. Note that

all reported results are for instance accuracy.

MIRO [12] is a dataset of real world objects. Each object

is imaged from 10 elevations and 16 azimuths, to produce

160 images. We use the 16 images of 0o elevation.

ObjectPI is described in Section 4.

Tasks All embeddings are tested on retrieval and classi-

fication and trained with all object views. Both single and

multi-view inference are considered.

Classification: For CNN based methods, class is deter-

mined by the probabilities generated by the network, while

for proxy and triplet center (TC) based methods, a nearest

neighbor classifier is used. Classification accuracy is re-

ported. Single view classification predicts the class of one

image. Multiview classification predicts the class of a set

of object views. For a CNN, this is done by averaging class

probabilities over all views. For proxy and triplet center

methods, a nearest neighbor classifier compares the shape

descriptors extracted from the set of views to the class de-

scriptors obtained from the training set.

Retrieval: Retrieval results are reported in terms of mean

average precision (mAP). Three retrieval tasks are consid-

ered. Single view retrieval aims to retrieve images in the

class of a query view. Object retrieval aims to retrieve

other views of the object in the query view. These methods

compare view descriptors. Multiview retrieval compares

shape descriptors, aiming to retrieve the objects in the same

class of the object used to generate a set of query views.

Implementation All experiments use a VGG16 [20] model

implemented on Pytorch. For MV approaches, view pool-

ing is performed before the softmax function. Learning rate

is 1e-5 and Adam[13] optimizer is used in all experiments.

5.2. Joint classification and retrieval

The development of representations for joint classifica-

tion and retrieval has shown to be difficult. Most methods

1All data collected in this work will be made available publicly.
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Proxy MV-Proxy PI-Proxy (α = β = 1)

Figure 4. TSNE visualization of proxy based embeddings on ObjectPI. Each dot is an object view,

objects are identified by color, and their shape descriptors by ’x’s.

Task Proxy MV-Proxy PI-Proxy

Class.
Single 68.5 63.2 68.7

Multi 78.8 78.3 80.0

(Acc.) Avg 73.7 70.7 74.4

Retr.

Object 47.7 49.3 49.4

Single 59.7 57.9 62.6

Multi 76.8 74.7 78.2

(mAP) Avg 61.4 60.6 63.4

Table 1. Proxy based methods on Ob-

jectPI. α = β = 1 for PI-Proxy.

specialize on one of the tasks, to the point that the papers

do not even present results for the other. For example, [12]

only addresses classification, while [11] is mainly designed

for retrieval. The few works that report both classification

and retrieval results use additional steps to prop at least one

of the tasks. For example, [6, 22] train an additional low

rank Mahalanobis metric to boost retrieval performance. In

addition, only few methods report single image retrieval and

classification result on classifier trained with multiview. It

is simply accepted that view based embeddings have bet-

ter performance for view classification and retrieval, while

multiview embeddings are better for multiview classifica-

tion and retrieval. It has so far not been shown that a single

embedding can perform well on both tasks for both single

and multiview.

Visualization: To study this issue in more detail, we

consider the proxy based approaches of Figure 1, namely

Proxy, MV-Proxy, and PI-Proxy. We start by visualizing, in

Figure 4, the embeddings produced by the three approaches,

using TSNE [24]2. To simplify the plots, only 12 classes

and 1 object per class are shown. Objects are identified

by dots of the same color, which correspond to individual

views. The shape descriptor of (6) is also shown as an ’x’.

The classes and objects used in the visualization were cho-

sen randomly. This plot confirms the predictions of Fig-

ure 2. While all methods succeed at separating the shape

descriptors, the placement of individual views is very dif-

ferent. For Proxy and MV-Proxy, these may be embed-

ded far away from the shape feature. MV-Proxy, which

only optimizes the shape embedding (ignores the placement

of views) produces the most scattered distribution. Proxy

methods have more clustered embeddings, but the cluster-

ing is significantly inferior to that of PI-Proxy. In this case,

most views cluster around the shape embedding produce ob-

ject clusters of very small overlap. This is a direct conse-

quence of the use of the pose invariant distance of (14).

Classification & Retrieval: Table 1 shows that PI-Proxy

achieves the best performance of the three methods on all

retrieval and classification tasks. While this is not surpris-

ing, given the clusterings of Figure 4, the differences can

be quite significant, depending on the the task. Note that

2Similar TSNE visualizations of all approaches of Fig 1 can be found

in the supplementary materials.
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Figure 5. Classification accuracy of proxy based embedding on

ObjectPI as a function of number of views at inference time.

MV-Proxy is particularly poor for single view classification.

This is explained by the poor view clustering and is a well

known limitation of multiview methods [6]. Proxy, is com-

petitive with PI-Proxy on image classification, but inferior

(2-3% points weaker) on the other tasks.

Robustness to number of views: Although multiview

training improves classification accuracy [22], the latter of-

ten decreases dramatically for single view inference [6, 12].

In this setting multiview CNNs frequently underperform a

standard single view classifier. This is unlike the proposed

pose invariant embeddings, as shown in Figure 5.

The PI-Proxy embedding has performance comparable

to that of MV-Proxy for multiple views, but much supe-

rior performance as the number of views decreases. This is

again justified by the improved view clustering of Figure 4.

5.3. Comparison to the state of the art

We next performed a comparison of all embeddings of

Figure 1 to other methods in the literature, on ModelNet,

MIRO and ObjectPI datasets. Since most previous work

has been done on ModelNet, we used the results on this

dataset as guidance to select some state of the art mod-

els. It should be said that this is not easy, because the

existing methods vary along many dimensions. This in-

cludes the use of different backbone network architectures

(e.g. VGG-M instead of the more popular VGG16 that we

adopt), architectural enhancements (e.g. view pooling lay-

ers that implement operations different from averaging view

descriptor (6)) and complementary steps (e.g. optimizing

the distance metric used for retrieval after the embedding is

learned). All these variations are orthogonal to the invari-
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Table 2. Comparison with state of the art methods on 3 different dataset for 5 different tasks on VGG16. The best result of each task is

marked in bold and shadow denotes that the result of pose invariant based method is better or comparable than that of multiview based.

Method

ModelNet (12 views) MIRO (16 views) ObjectPI (8 views)
Classification Retrieval Classification Retrieval Classification Retrieval
(Accuracy %) (mAP %) (Accuracy %) (mAP %) (Accuracy %) (mAP %)

Single Multi Avg. Object Single Multi Avg. Single Multi Avg. Object Single Avg. Single Multi Avg. Object Single Multi Avg.
RN[12] 80.2 89.0 84.6 22.6 20.2 63.9 35.6 93.2 100 96.6 33.0 33.0 33.0 37.5 63.2 50.3 40.1 25.2 41.9 35.7

MV-CNN[22] 71.0 87.9 79.4 29.6 41.7 71.5 47.6 100 100 100 92.0 92.0 92.0 62.1 74.1 68.1 42.6 53.8 72.3 56.2
PI-CNN 85.4 88.0 86.7 50.8 77.5 81.8 70.0 100 100 100 100 100 100 66.5 76.5 71.5 60.7 58.9 72.1 63.9

MV-TC[11] 77.3 88.9 83.1 36.6 63.5 84.0 61.4 100 100 100 99.8 99.8 99.8 65.7 79.2 72.4 51.8 59.5 77.3 62.9
PI-TC 81.2 88.9 85.1 41.4 71.5 84.2 65.7 100 100 100 100 100 100 69.3 77.5 73.2 61.8 63.8 76.7 67.4

MV-Proxy 79.7 89.6 84.7 35.0 66.1 85.1 62.1 100 100 100 99.8 99.8 99.8 63.2 78.3 70.7 49.3 57.9 74.7 60.6
PI-Proxy 85.1 88.7 86.9 40.6 79.9 85.1 68.6 100 100 100 100 100 100 68.7 80.0 74.4 49.4 62.6 78.2 63.4

ance issue studied in this work, and could be applied to any

of the embeddings of Figure 1.

Furthermore, most existing methods only report results

for few, sometimes even only one, of the 5 tasks that we

consider. This allows for the detailed optimization of the

embeddings for these tasks. Such optimization is not fea-

sible under the experimental protocol now proposed, given

the need to compare many embeddings on the 5 tasks and

the goal of identifying embeddings that perform well across

the 5 tasks. We believe that this is a set-up of greater prac-

tical significance, which future works in this area should

adopt. Nevertheless, we used existing results to identify

two state of the art models on ModelNet: the RotationNet

(RN) [12] for classification and the triplet-center of [11] for

retrieval. The later is what we denote by MV-triplet center

(MV-TC) in Figure 1. For fair comparison, we re-trained

these models under our set-up and tested them on the 5 tasks

and 3 datasets that we now consider. For example, RN is re-

trained with VGG16 instead of AlexNet3. We also present

results for the other existing methods of Figure 1, namely

the MV-CNN [22] and the proxy embedding of [15].

Table 2 summarizes the results of multiview and PIE

based methods on the three datasets. Shadowed cells indi-

cate that the PI-embedding outperforms the MV-embedding

above it. Several conclusions can be drawn. First, pose

invariant embeddings (PIEs) are clearly more robust than

multiview embeddings (MVEs) on both classification and

retrieval tasks. Among the 60 results listed in the table, PIEs

outperformed MVEs on 46. In some cases, the difference

was drastic. For example, for single view classification on

ModelNet, the PI-CNN achieved 85.4% accuracy, outper-

forming the MVCNN by 14%. Second, one possibility to

compare the performance of the different PIEs is to count

the number of boldfaced entries. These indicate the num-

ber of ”wins,” i.e. how many times the method had equal

or better performance than all others. Under this metric PI-

proxy (12 wins) had slightly better performance, followed

by PI-TC (10 wins), and PI-CNN (9 wins). However, the

difference was not very significant. This shows that adding

PIEs increases robustness regardless the approaches being

used in the multiview level. Third, regarding classifica-

tion vs. retrieval, the methods behave somewhat differently.

3Results of AlexNet model provided by [12] are reported in supple-

mentary material.

While PI-Proxy achieved the best classification results on

all datasets, PI-CNN had the best retrieval results in Mod-

elNet and PI-TC on ObjectPI. However, the results of the

three PIEs were close in most cases. Again, the most sig-

nificant observation is how this differs from the behavior

of the embeddings in the literature. For example, the Ro-

tationNet(RN) is competitive for classification but has very

weak retrieval performance. Fourth, regarding datasets, best

results were obtained on MIRO, then ModelNet, with Ob-

jectPI posing the greatest challenge to most embeddings.

This is not totally surprising, since MIRO and ModelNet

have no backgrounds, MIRO is a relatively small dataset

(120 objects), and ModelNet has no object textures. Nev-

ertheless, these results confirm the need for a more realistic

dataset, such as ObjectPI.

6. Conclusion

This work makes several contributions to the study of

pose invariance for image classification and retrieval tasks.

We started by introducing a functional organization of

embeddings to elaborate the relationships between existing

methods. As the taxonomy is organized according to

different level of invariance, some missing approaches are

identified and existing approaches are further generalized.

A new family of pose invariant embeddings (PIEs) is then

derived from existing methods, by combining a view-to-

object model and a object-to-class model. We show that the

proposed PIEs have mathematically interesting properties

and have good performance for both 1) classification and

retrieval, and 2) single and multiview inference. The gen-

eralization of PIEs is important because such embeddings

can be applied to different tasks and circumstances, which

is a more realistic scenario for vision application. Finally,

we introduced a multiview dataset, ObjectPI, with images

of real objects captured with in the wild backgrounds.

We believe that the proposed dataset will complement the

synthetic datasets and contribute to the advancement of

multiview study.
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