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Abstract

We focus on the problem of predicting future states of

entities in complex, real-world driving scenarios. Previous

research has used low-level signals to predict short time

horizons, and has not addressed how to leverage key as-

sets relied upon heavily by industry self-driving systems:

(1) large 3D perception efforts which provide highly accu-

rate 3D states of agents with rich attributes, and (2) detailed

and accurate semantic maps of the environment (lanes, traf-

fic lights, crosswalks, etc). We present a unified representa-

tion which encodes such high-level semantic information in

a spatial grid, allowing the use of deep convolutional mod-

els to fuse complex scene context. This enables learning

entity-entity and entity-environment interactions with sim-

ple, feed-forward computations in each timestep within an

overall temporal model of an agent’s behavior. We propose

different ways of modelling the future as a distribution over

future states using standard supervised learning. We intro-

duce a novel dataset providing industry-grade rich percep-

tion and semantic inputs, and empirically show we can ef-

fectively learn fundamentals of driving behavior.

1. Introduction

A crucial component of real-world robotic systems is

predicting future states of other actors in the environment.

In the general setting, other actors’ intents are unobserved,

thus the challenge is to produce a likely distribution over

possible futures, given current and past observations. A

motivating application for this work is a self-driving robot

operating in an unconstrained urban environment; one of

the most impactful yet challenging real-world robotics ap-

plications today. It requires a deep understanding of the
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preparing the dataset for release.

Figure 1: Entity future state prediction task on a top-down

scene: A target entity of interest is shown in red, with a

real future trajectory shown in pink. The most likely pre-

dicted trajectory is shown in cyan, with alternate trajectories

shown in green. Uncertainty ellipses showing 1 standard de-

viation of uncertainty are displayed for the most likely tra-

jectory only. Other entities are rendered in magenta (pedes-

trians), blue (vehicles) and orange (bicycles). The ego vehi-

cle which captured the scene is shown in green. Velocities

are shown as orange lines scaled proportional to 1m/s. Ex-

amples of underlying semantic map information shown are

lane lines, crosswalks and stop lines.

semantics of the static and dynamic environment, including

understanding traffic laws, unspecified driving conventions,

and interactions between human and robot actors.

While there is a large amount of research dedicated to

real-world perception in this domain [15, 25, 26, 12, 35,

29, 13, 9], there is a surprising lack of work on entity state

prediction in the same domain (see Section 2), which we

attribute to two main causes:

One, most previous research [25, 22] takes as input only

raw sensor information (a combination of camera, lidar or
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radar). Thus the research effort by necessity requires a

heavy emphasis on extracting high-level representations of

entities. In contrast, in real-world systems in industry, low-

level perception systems provide entity states and attributes

from sensor data via detection and tracking in 2d and 3d.

These systems are have matured over the past few years and

have high fidelity output in the common case.

Two, publicly available datasets for learning and evalu-

ating state prediction models are inadequately small and/or

unrealistic. A good prediction dataset should include a

diverse set of real-world locations and a large number of

unique agent 3d tracks over meaningful time intervals.

These criteria are necessary to develop models which can

generalize to new scenarios and leverage past behavior to

make meaningful future predictions out to 5 seconds or

more. A final omission in previous prediction research

is a key asset relied upon heavily by industry self-driving

robots: semantic maps of the driving environment, as shown

in Fig. 1.

In this paper, we introduce a vehicle prediction dataset

which is significantly richer and larger than existing

datasets—9,659 unique vehicles in 83,880 prediction sce-

narios (173 hours), in 88 physically-distinct locations—and

includes semantic map information (see Figure 1).

We propose a model which encodes a history of world

state (both static and dynamic) and semantic map informa-

tion in a unified, top-down spatial grid. This allows us to use

a deep convolutional architecture to model entity dynamics,

entity interactions, and scene context jointly.

An additional important contribution of this work is di-

rectly predicting distributions of future states, rather than a

single point estimate at each future timestep. Representing

multimodal uncertainty is crucial in real-world planning for

driving, which must consider vehicles taking different pos-

sible trajectories, or assessing the expected risk of collision

within some spatial extent.

We explore a variety of parametric and non-parametric

output distribution representations, and show strong perfor-

mance on predicting vehicle behavior up to 5 seconds in

the future. We demonstrate that our model leverages road

information and other agents’ state to improve predicted be-

havior performance.

2. Related Work

This paper focuses on predicting future distributions of

entity state. This requires implicitly or explicitly modeling

entity intent, dynamics, and interactions, as well as incor-

porating semantic environmental context.

Activity/motion forecasting Early work by Kitani et

al. [19] formulated this setting as a Partially-Observable

Markov Decision Process, and cast the solution as recov-

ering a policy via Inverse Optimal Control (IOC). More

recently, Rhinehart et al. [31] also learn one-step control

policy distributions within a reinforcement learning frame-

work, specifically trained (via symmetric KL-divergence

loss) to generate a set of trajectories with a balance between

the notions of diversity and precision. DESIRE [22] also

generates trajectories out to 4s by iteratively rolling out a

one-step policy, via sampling in a Conditional Variational

Auto Encoder / Decoder module trained end-to-end in con-

junction with a trajectory-ranking module. Other work also

concentrates on multimodal distribution modeling [16, 34],

but do so outside the self-driving domain.

Fast and Furious [25] and follow-on work IntentNet [10]

take a standard supervised regression approach; so-called

behavior cloning in the RL literature. These works empha-

size joint detection (from lidar), tracking and motion fore-

casting in one model. The recently published IntentNet uses

a semantic road map information as an input. It proposes

single trajectories per entity out to 3s.

Relatedly, ChaufferNet [4] fuses high-level agent infor-

mation (as we do) with a road map. This work focuses on

the robot planning setting where the intent is known and fed

as input. The model employs behavior cloning to regress the

best motion plan, and employs a number of domain-specific

losses to encourage road rule-following and collision avoid-

ance. Other notable behavior-cloning approaches in the au-

tonomous vehicle industry are [28, 8, 11].

Another line of work attempts forecasting from ego-

centric viewpoints (moving camera frame), either of the

ego-entity [30] or of other entities [6]. This introduces the

additional challenge of needing to recover the ego-position

and/or velocity, a problem these works address. There is

a wealth of other forecasting work which we don’t review

here, limiting this discussion to the state prediction in multi-

agent environments, although there are connections to unsu-

pervised video prediction (e.g. [24]) and activity prediction

(e.g. [20]).

Modeling entity interactions Much of the above research

models interactions implicitly by encoding them as sur-

rounding dynamic context. Other works explicitly model

interactions: SocialLSTM [1] pools hidden temporal state

between entity models, [2] is one example modeling ex-

plicit graph structure over entities to infer semantic ac-

tions, and [21] is an earlier work posing the structure as

a Bayesian network.

Vehicle Forecasting Datasets We evaluate on vehicles in

this work, and propose a new dataset of roughly 80K exam-

ples / 170 hours of data. Related datasets are Kitti [15], pri-

marily a detection and tracking benchmark, which has about

50 examples / 10 minutes of data; IntentNet’s dataset [10]

(unpublished) is roughly 5000 examples / 35 hours, and

CaliForecasting [31] (as yet unreleased) is 10K examples

/ 1.5 hours.

Contrast with our method Our method is, to our knowl-

edge, the only end-to-end method that both (1) encodes se-
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mantic scene context and entity interactions from a mature

perception stack, as well as (2) predicts multimodal future

state distributions.

Most similar to our work, the recent IntentNet [10] and

ChaufferNet [4] papers propose encoding static and dy-

namic scene context in a top-down rasterized grid. A main

difference in our work is that we explicitly model multi-

modal distributions for other entities, rather than regress

single trajectories. This is an important and challenging

task.

DESIRE [22] and R2P2 [31] address multimodality, but

both do so via 1-step stochastic policies, in contrast to ours

which directly predicts a time sequence of multimodal dis-

tributions. Such policy-based methods require both future

roll-out and sampling to obtain a set of possible trajectories,

which has computational trade-offs to our one-shot feed-

forward approach. Also, knowing how many samples are

required to be confident in your empirical distribution is a

hard problem, and depends on the scenario.

3. Method

Our method consists of (1) a novel input representation

of an entity and it’s surrounding world context, (2) a neu-

ral network mapping such past and present world represen-

tation to future behaviors, and (3) one of several possible

output representations of future behavior amenable to in-

tegration into a robot planning system. Note our model is

an entity-centric model, meaning it models a single “target

entity”, but takes all other world context, including other

entities, into account1.

3.1. Input representation: modeling the world as a
convolutional grid

A complete model of trajectory prediction requires not

only past history of the target entity, but also dynamics of

other entities and semantic scene context.

Road network representation We have access to road net-

work data which includes lane and junction extent and con-

nectivity, as well as other relevant features necessary for

driving: crosswalks, traffic light-lane permissibility, and

stop and yield lines2. We map this information to geometric

primitives, and render it in a top-down grid representation

as an RGB image with unique colors corresponding to each

element type.

This top-down grid establishes the common coordinate

space with which we register all additional features. Note

that through rendering, we lose the true graph structure of

1At run time, straightforward extensions can enable inference for all

entities in the scene efficiently, with most of the computation re-used for

each agent (since each differs only in a translation of the input).
2This type of content is freely available as open source data, e.g. at

www.openstreetmap.org, but we use a proprietary source in this

work.

the road network, leaving it as a modeling challenge to learn

valid road rules like legal traffic direction, and valid paths

through a junction. We denote the rendered tensor of static

road information R of size W × H × 3. Traffic light in-

formation is added to a tensor of perception information per

timestep described below.

Entity representation We assume access to a black-box

perception module which maps from low-level sensor in-

formation to 3D tracked entities3. For each timestep t,
we have measured quantities for each tracked entity i in-

cluding 2D position xt
i, velocity vti , and acceleration ati.

Our perception module also gives us state estimation uncer-

tainty in the form of covariance matrices, and we include

this information in our representation via covariance norms

||Σt
i{x,v,a}||F . All feature dimensions are scaled by an esti-

mate of their 99th percentile magnitude to have comparable

dynamic ranges near [−1, 1].

We form a tensor for the target entity i at any timestep

t denoted Et
i , that has a channel for each state dimen-

sion above, encoding the scalar at the center of the en-

tity position, which is in spatial correspondence with road

graph tensor R. To model entity interactions, we aggregate

all other entities in a tensor encoded in a the same way:

Et
−i =

∑

j 6=i E
t
j . These tensors are W ×H × 7.

Additional dynamic context We encode additional scene

context as an RGB image Dt of size W ×H×3. It contains

oriented bounding boxes for all entities in the scene colored

by class type (one of cyclist, vehicle, pedestrian), to encode

extents and orientations of objects. It also contains a ren-

dering of traffic light permissibility in junctions: we render

permitted (green light), yield (unprotected), or prohibited

(red light ) by masking road connections in a junction that

exhibit each permissibility.

Temporal modeling All inputs at timestep t and target en-

tity i are concatenated (in the third channel dimension) into

a tensor:

Ct
i =

[

Et
i , E

t
−i, D

t, R
]

which is W × H × 20. See Fig. 2 for an illustration. We

concatenate all Ct
i over past history along a temporal di-

mension. We fix the coordinate system for a static R for all

timestamps by centering the reference frame at the position

of the target entity at the time of prediction.

This top-down representation is simple to augment with

additional entity features in the future. For example: vehicle

brake lights and turn signals, person pose and gestures, and

even audio cues could all be integrated as additional state

channel dimensions.

3This is a reasonable assumption for large companies where such mod-

ules are relatively mature.
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Figure 2: Entity and world context representation. For an example scene (visualized left-most), the world is represented with

the tensors shown, as described in the text.

(a) One-shot (b) with RNN decoder

Figure 3: Two different network architectures for occupancy grid maps (predicting Gaussian trajectories instead is done by

simply replacing the convolutional-transpose network with a fully-connected layer).

3.2. Output representation: modeling uncertainty
and multiple modes

We seek to model an entity’s future states. We believe a

good output representation must have the following charac-

teristics, which differs from some previous work [10, 31].

It should be: (1) A probability distribution over the entity

state space at each timestep. The future is inherently uncer-

tain, and a single most-likely point estimate isn’t sufficient

for a safety-critical system. (2) Multimodal, as it is impor-

tant to cover a diversity of possible implicit actions an entity

might take (e.g., which way through a junction). (3) One-

shot: For efficiency reasons, it is desirable to predict full

trajectories (more specifically: time sequences of state dis-

tributions) without iteratively applying a recurrence step.

We explore these desiderata by proposing a variety

of output distribution representations. The problem can

be naturally formulated as a sequence-to-sequence gen-

eration problem. For a time instant t, we observe

X = {Ct−ℓ+1, Ct−ℓ+2, . . . , Ct} of past scenes, and pre-

dict future xy-displacements from time t, denoted Y =
{(xt+1, yt+1), (xt+2, yt+2), . . . , (xt+m, yt+m)}, for a tar-

get entity4, where ℓ and m are the time range limits for past

observations and future time horizon we consider. We dis-

cuss a variety of approaches to model P (Y |X) next.

3.3. Parametric regression output with uncertainty

In this representation, we predict sufficient statistics

for a bivariate Gaussian for each future position (xt, yt):
the mean µt = (µx,t, µy,t), standard deviation σt =
(σx,t, σy,t), and spatial correlation scalar ρt. This has ben-

efits of being a richer and more useful output than vanilla

regression. In addition, during learning, the model can at-

tenuate the effect of outlier trajectories in the data to have

a smaller effect on the loss, an observation made in other

problem domains [18].

We train the model to predict log standard deviation

st = log σt, as it has a larger numerically-stable range for

optimization. We learn parameters via via maximum likeli-

4We ignore modeling future entity orientation, but we believe it is

straightforward to extend the ideas here to 3-dof or 6-dof state estimation

in future work.
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hood estimation

logP (Y | X) =

t+m
∑

t′=t+1

log p(xt′ , yt′ | µt′ , st′ , ρt′), (1)

where p is the density function of a bivariate Gaussian pa-

rameterized by N (µt, σt, ρt).
Multi-modal regression with uncertainty We can extend

this to predict up to k different Gaussian trajectories, in-

dexed by (µi, ŝi, ρi), and a weight wi associated with the

probability of a trajectory,

P (Y | X) =

k
∑

i=1

wiP (Y | µi, ŝi, ρi).

However, we run into two major problems with this naive

method: (1) exchangeability, and (2) collapse of modes.

For (1), we see that the output is invariant to permu-

tations, namely {(µi, si, ρi)} = {(µπ(i), sπ(i), ρπ(i))} for

some permutation π of {1, 2, . . . , k}. To illustrate (2), we

consider a mixture of two distributions with equal covari-

ance, or Y ∼ 1
2N (y1, σ2) + 1

2N (y2, σ2). It can be shown

that if yi are not far enough, specifically | y1−y2 |≤ 2σ [5],

then the mixture has a single mode at 1
2 (y

1 + y2), and thus

can be approximated by a single Gaussian parameterized by

N ( 12 (y
1 + y2), σ2 + 1

2 (y
1 − y2)2). This allows the learn-

ing to center the k Gaussians on a single state with large

variance (“mode collapse”), with nothing to encourage the

modes to be well-separated.

Inspired by Latent Dirichlet Allocation (LDA) [7], we

introduce a latent variable z such that (µi, si, ρi) are identi-

cally and independently distributed conditioned on z,

P (Y | X) =

K
∑

i=1

P (zi | X)P (Y | µi, si, ρi, zi), (2)

where (µi, si, ρi) is some fixed function of both the input

X and latent variable z, resolving the mode exchangeabil-

ity problem. To address mode collapse, we choose z to be

k-dimensional with small k, and the model is encouraged

through the learning procedure to output a diverse set of

modes.

To train such a model, we use a conditional variational

autoencoder (CVAE) approach, and model P (z|X) as a cat-

egorical distribution, using a Gumbell-Softmax distribution

with the reparameterization trick [17] to sample and back-

propagate gradients through z. In our experiments, we use

P (z|X) as our discrete, k-Gaussians mixture distribution

over state at future timesteps, and refer to this method in

our experiments (loosely) as “GMM-CVAE”.

3.4. Non­parametric output distributions

As an alternative to parametric forms, we consider oc-

cupancy grid maps [33] as an output representation, where

there is an output grid for each future modeled timestep, and

each grid location holds the probability of the correspond-

ing output state.

This representation trades off the compactness of the

parametric distributions discussed above with arbitrary ex-

pressiveness: non-parametric distributions can capture non-

elliptical uncertainty and a variable number of modes at

each timestep. Furthermore, they offer alternative ways of

integrating into robot planning systems (simple to combine

with other non-parametric distributions; fast approximate

integration for, e.g., collision risk calculation).

We discretize any future state to 2D grid coordinates

(it, jt). We train a model to maximize log-likelihood on the

predicted grid maps gt[i, j] ≡ P (Y = (it, jt)|X), which

are discrete distributions over the discretized state space at

each timestep. Thus the training loss is a sum of cross-

entropy losses for t′ ∈ [t+ 1, t+m].

Diverse Trajectory Sampling: While occupancy maps

have intrinsic representational benefits discussed above, it

is still useful in many planning applications to extract a dis-

crete set of trajectories. We discuss an optimization frame-

work to obtain a variable number of trajectories derived

from a future occupancy map, with the ability to impose

hard and soft constraints on geometric plausibility and di-

versity / coverage of the trajectory set.

Let ξt = (it, jt) be a sampled discretized state at time

t, and ξ = {ξt+1, . . . , ξt+m} be a sampled trajectory. We

define a pairwise-structured score for a sampled trajectory

as:

s(ξ) =

t+m
∑

t′=t+1

logP (Y = ξt′ |X)− λ · φ(ξt′ , ξt′−1). (3)

where φ(·, ·) can be an arbitrary score function of the com-

patibility of consecutive states. We designed a hard-soft

constraint cost

φ(ξt, ξt−1) =

{

‖ξt − v(ξt−1)‖
2
2 if ‖·‖∞ ≤ 5

∞ otherwise,

where λ = 0.1 was set by hand in our experiments and v(ξt)
is the state transitioned to under a constant velocity motion

from time t to t + 1. This serves as a Gaussian next-state

prior centered on a constant velocity motion model, with a

cut-off disallowing unreasonable deviations.

This is an instance of a standard chain graphical

model [14], and we can solve for the best trajectory ξ⋆ =
argmaxξ s(ξ) efficiently using a max-sum message passing

dynamic program.

Beyond ξ⋆, we are interested in extracting a set of trajec-
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tories which satisfy:

{ξ⋆1 , . . . , ξ⋆k} = argmax
{ξ1,...,ξk}

k
∑

i=1

s(ξi) (4)

subject to: ||ξi − ξj || > 1. (5)

This seeks to find a set of k trajectories which maximizes

s(·) but are sufficiently far from each other, for some norm

|| · ||. Following [27], we solve this by iteratively extracting

trajectories by solving s(ξ) and then masking regions of gt
to guarantee the distance constraint on the next optimization

of s(ξ) for the next trajectory.

Note this framework is employed only during inference.

Incorporating it into a learned end-to-end system is an in-

teresting avenue for future work.

3.5. Model

We employ an encoder-decoder architecture for mod-

elling, where the encoder maps the 4D input tensor (time

× space × channels) into some internal latent representa-

tion, and the decoder uses that representation to model the

output distribution over states at a pre-determined set of fu-

ture time offsets.

Encoder: We use a convolutional network (CNN) back-

bone of 2D convolutions similar to VGG16 [32], on each

3D tensor of the input sequence. Following [3], we found

that temporal convolutions acheived better performance and

significantly faster training than a recurrent neural network

(RNN) structure. To incorporate the temporal dimension,

we add in two 3D convolutions – one towards the beginning

of the backbone, and one at the end – of kernel size 3×3×3
and 4× 3× 3 without padding, respectively.

Decoder: We experiment with two different decoding ar-

chitectures: (1) “one-shot” prediction of the entire output

sequence, and (2) an RNN-decoder which emits a distribu-

tion at each inference recurrence step.

One-shot prediction simply requires a two-layer network

to regress all the distribution parameters at once, or a 2D

convolutional-transpose network with channels equal to the

sequence length. For our RNN-decoder, we use only a sin-

gle GRU cell, whose hidden output is used to regress the

true output, which is then fed in as next input.

For the occupancy grid map output representation, the

semantic road map R is fed through a separate, shallow

CNN tower (16 → 16 → 1 filters), yielding a spatial grid.

This grid intuitively acts as a prior heatmap of static infor-

mation that is appended to the decoder before applying soft-

max. This should allow the model to easily penalize posi-

tions corresponding to obstacles and non-drivable surfaces.

See Fig. 3 for a depiction of the architecture.

Dataset Methods
Mode
type

Road
info

# tracks
> 3s

#
scenes

ETH+UCY SocialLSTM∗ [1] Peds no 1,536 4

Stanford Drone DESIRE [22] Peds no 19,564 100

KITTI DESIRE [22] Cars no 309 20

CaliForecasting† R2P2 [31], C3PO† Cars no 10,000 —

Ours Ours Cars yes 72,878 79

private FaF [25] Cars no — —

private IntentNet [10] Cars yes — —

private ChauffeurNet† Cars yes — —

∗: Code is publicly available.

†: Method or dataset not yet published.

Table 1: Overview of related public datasets’ training set

statistics.

3.6. Implementation Details

Spatio-temporal dimensions: We chose ℓ = 2.5s of past

history, and predict up to m = 5s in the future. To re-

duce the problem space complexity, we also subsample the

past at 2 Hz and predict future control points at 1s inter-

vals. We chose the input frames to be 128 × 128 pix-

els, and chose the corresponding real-world extents to be

50 × 50m2. The output grid size was set to 64 × 64 pix-

els, so that each pixel covers 0.78m2. For sampling a di-

verse trajectory set, we choose the norm in Equation 5 to

be ||diag([0, 1/3, 1/3, 1/5, 1/5])x||∞, in pixel coordinates,

which forces greater spatial diversity in later time steps be-

tween trajectories.

Model: To conserve memory in our CNN backbone, we use

separable 2D convolutions for most of the backbone with

stride 2 (see Fig. 3). We employ batch-normalization layers

to deal with the different dynamic ranges of our input chan-

nels (e.g., binary masks, RGB pixel values, m/s, m/s2).

We use CoordConv [23] for all 2D convolutions in the en-

coder, which aids in mapping spatial outputs to regressed

coordinates. We chose a 512-dimensional latent representa-

tion as the final layer of the encoder, and for all GRU units.

Training: For training, we started with a learning rate of

10−4 and Adam optimizer, and switched to SGD with a

learning rate of 10−5 after convergence with Adam. For

training Gaussian parameters we found that pretraining the

model on mean-squared error produced better trajectories.

All models were trained on a single NVIDIA Maxwell Ti-

tan X GPU with Tensorflow Keras. On the dataset described

next, training models took approximately 14 hours5.

4. Experiments

4.1. Dataset

We collected a substantial dataset to evaluate our meth-

ods. It is over an order of magnitude larger than [10] and

5Training time was heavily dominated by reading data from disk, which

could be significantly optimized with more efficient I/O strategies.
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mean L2 / hit-rate < 1m

Method Target Other Road RNN RMSE 1 sec 2 sec 5 sec

Gaussian Regression X 2.55 0.50 / 0.79 1.04 / 0.59 3.91 / 0.34

X X 2.12 0.48 / 0.80 0.96 / 0.60 3.36 / 0.35

X X X 1.90 0.47 / 0.84 0.94 / 0.64 3.03 / 0.35

X X X X 1.82 0.44 / 0.88 0.86 / 0.66 2.99 / 0.34

Grid map Top-1 X 3.53 0.87 / 0.63 1.31 / 0.52 5.04 / 0.42

X X 2.71 0.77 / 0.64 1.17 / 0.52 4.40 / 0.42

X X X 2.05 0.61 / 0.86 1.00 / 0.69 3.37 / 0.40

X X X X 1.99 0.55 / 0.87 0.97 / 0.67 3.23 / 0.42

Table 2: Ablation study on Gaussian Regression trajectories and Grid Map methods.

Method RMSE 1 sec 2 sec 5 sec

Linear 3.53 0.37 / 0.89 1.08 / 0.62 5.87 / 0.26

Industry 2.31 0.37 / 0.90 0.92 / 0.67 4.18 / 0.40

Gauss. Reg. 1.82 0.44 / 0.88 0.86 / 0.66 2.99 / 0.34

GMM 2.33 0.48 / 0.82 0.95 / 0.65 4.17 / 0.19

Grid map 1.99 0.55 / 0.87 0.97 / 0.67 3.23 / 0.42

GMM top-5 1.58 0.43 / 0.89 0.79 / 0.70 2.54 / 0.32

Grid top-5 1.25 0.47 / 0.87 0.82 / 0.69 1.39 / 0.56

Table 3: Results for multimodal prediction methods.

many orders of magnitude larger than KITTI [15]. Our

dataset consists of tracked vehicles in view of an ego data

collection vehicle driving in a dense urban area of San Fran-

cisco. A state-of-the-art perception and localization stack

processes multiple sensor modalities to produce top-down

projected 2D bounding boxes in world coordinates, as well

as vti , a
t
i and Σt

i{x,v,a}. We also include the high-definition

rendering of the road network, with detailed annotations de-

scribed in Section 3.1.

The dataset has more than 6.25 million frames from

more than 173 hours of driving in the period of June–July

2018. We split the data into non-overlapping events of 7.5
seconds, and extract 72, 878 train and 10, 473 test events.

Events are collected near intersections to skew the dataset

distribution towards non-trivial and non-straight driving be-

havior. To measure our methods’ generalization power to

new intersections, the test/train partition ensures no inter-

sections appear in both; there are 79 and 9 unique inter-

sections in train and test, respectively. To reduce the bias

of any one geographic location, we capped the number of

samples per intersection at 5, 000. Note that intersections

can be much more complex than simple 4-way junctions.

For an overview of related datasets’ attributes and sizes,

please refer to Table 1. Note that other vehicle datasets are

either quite small (e.g., KITTI [15]), or are not available for

comparison. The Stanford Drone dataset is comparable in

size and provides a natively top-down representation, which

allows us to extend our model to pedestrian prediction in the

future.

4.2. Results

We measure performance of all methods on root mean-

squared error (RMSE) over all future timesteps ∆t ∈
{1, 2, 3, 4, 5} seconds, as well as the following metrics on

1, 2, 5s futures: (1) L2 distance between the mean predic-

tions and ground truth, (2) hit-rate of L2 distance under a

1m threshold, and (3) oracle error, defined as the minimum

L2 distance (i.e. mini
∥

∥Y − ξi
∥

∥

2
) out of top-k predictions.

Models: We compare the following methods:

· Linear: Baseline that extrapolates trajectories using the

most recent velocity and acceleration, held constant.

· Industry: Closed-source industry method used in real-

world autonomous vehicle driving. It consists of a hybrid of

physics, hand-designed rules, and targeted machine learn-

ing classification models. Specific problem modes are mod-

eled in a custom fashion, requiring multiple person-years of

modeling effort.

· Regression with Gaussian Uncertainty: Our method to

regress a Gaussian distribution per future timestep.

· Multi-modal Gaussian Regression (GMM-CVAE): Our

described method to predict a set of Gaussians, sampling

from a categorial latent variable.

· Grid map: Our method to predict occupancy grid maps.

To compare to the other methods, we extract trajectories

using the described trajectory sampling procedure.

Ablation study: To determine the efficacy of different input

channels, we group them and evaluate their performance as

follows:

· Target state: State of the entity of interest including its

rendered past and present bounding boxes.

· Other state: Features for other dynamic entities including

their bounding boxes rendered.

· Road map: Road map and traffic light rendering.

As shown in Table 2, each feature type contributes to im-

proved model performance: Adding the dynamic context of

other entities improves 5s prediction by 0.55m in average
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(a) Gaussian Regression (b) GMM-CVAE

Figure 4: Examples of Gaussian Regression and GMM-CVAE methods. Ellipses represent a standard deviation of uncertainty, and are

only drawn for the top trajectory; only trajectories with probability > 0.05 are shown, with cyan the most probable.We see that uncertainty

ellipses are larger when turning than straight, and often follow the direction of velocity. In the GMM-CVAE example, different samples

result in turning into different lanes in a junction.

Figure 5: Examples of trajectories sampled from the Grid Map method. The rightmost example is a failure case, as the method predicts

a mode that turns into oncoming traffic; however, such traffic rules may be hard to discern from only a road map. The method predicts

sophisticated behavior such as maneuvering around vehicles and changing lanes.

L2-error, and including the road map adds another 0.33m

improvement. See the supplementary material for qualita-

tive visualizations of how ablated features contribute to per-

formance.

Quantitative method comparison: In Table 3, we com-

pare all methods using all features. Evaluating the best-in-

top-5 trajectory performed better than the single MAP tra-

jectory in all metrics, indicating some value of probabilistic

prediction over multiple modes.

In general our mixture of sampled Gaussian trajectories

underperformed our other proposed methods; we observed

that some samples were implausible. We leave it to future

work to determine better techniques for obtaining a diverse

set of trajectory samples directly from a learned model.

Interestingly, both Linear and Industry baselines per-

formed worse relative to our methods at larger time off-

sets, but better better at smaller offsets. This can be at-

tributed to the fact that predicting near futures can be ac-

curately achieved with classical physics (which both base-

lines leverage)—more distant future predictions, however,

require more challenging semantic understanding.

Note that while all models are evaluated here in terms of

L2-error, none of the models directly optimize this quan-

tity but instead optimize the likelihood of distributions

over the future state space, which has other benefits over

regression—this is demonstrated in the top-5 metric, as well

as in the qualitative results below.

Qualitative Analysis: We show examples of the Gaus-

sian Regression and GMM-CVAE trajectories in Fig. 4, and

sampled Grid Map trajectories in Fig. 5. Please see the

supplementary material for more examples and visualiza-

tions. Overall, trajectories have plausibly learned traffic

rules: lane-keeping, traffic light obeyance, following behav-

ior, and even the illegal ones are specious.

5. Conclusion

We present a unified framework for multimodal future

state prediction. Our novel input encoding encapsulates

static and dynamic scene context, taking advantage of mea-

surements from sensor modalities and a high-definition road

map. We experiment with continuous and discrete output

representations, and arrive at solutions that address the un-

certainty and multi-modality of future prediction. Empirical

and qualitative evaluation show that our methods improve

on baselines that do not encode scene context, and success-

fully create diverse samples in complex driving scenarios.
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