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Abstract

Visual-to-auditory sensory substitution devices can as-

sist the blind in sensing the visual environment by trans-

lating the visual information into a sound pattern. To im-

prove the translation quality, the task performances of the

blind are usually employed to evaluate different encoding

schemes. In contrast to the toilsome human-based assess-

ment, we argue that machine model can be also develope-

d for evaluation, and more efficient. To this end, we first-

ly propose two distinct cross-modal perception model w.r.t.

the late-blind and congenitally-blind cases, which aim to

generate concrete visual contents based on the translated

sound. To validate the functionality of proposed models, t-

wo novel optimization strategies w.r.t. the primary encoding

scheme are presented. Further, we conduct sets of human-

based experiments to evaluate and compare them with the

conducted machine-based assessments in the cross-modal

generation task. Their highly consistent results w.r.t. differ-

ent encoding schemes indicate that using machine model to

accelerate optimization evaluation and reduce experimen-

tal cost is feasible to some extent, which could dramatically

promote the upgrading of encoding scheme then help the

blind to improve their visual perception ability.

1. Introduction

There are millions of blind people all over the world,

how to help them to “re-see” the outside world is a signif-

icant but challenging task. In general, the main causes of

blindness come from various eye diseases [35]. That is to

say, the visual cortex should be largely unwounded. Hence,

it becomes possible to use other organs (e.g., ears) as the

sensor to “visually” perceive the environment according to

the theory of cross-modal plasticity [4]. In the past decades,

there have been several projects attempting to help the dis-

abled to recover their lost senses via other sensory channels,
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Figure 1. An illustration of the vOICe device. A camera mounted

on forehead captures the scene in front of the blind, which is then

converted to sound and transmitted to headphones. After 10-15

hours of training, the regions of visual cortex become active due

to cross-modal plasticity. Best viewed in color.

and the relevant equipments are usually named as Sensory

Substitution (SS) devices. In this paper, we mainly focus on

the visual-to-auditory SS device of vOICe1 (The upper case

of OIC means “Oh! I See!”).

The vOICe is an auditory sensory substitution device that

encodes 2D gray image into 1D audio signal. Concretely, it

translates vertical position to frequency, left-right position

to scan time, and brightness to sound loudness, as shown

in Fig. 1. After training with the device, both blindfolded

sighted and blind participants can identify different objects

just via the encoded audio signal [33]. More surprisingly,

neural imaging studies (e.g., fMRI and PET) show that the

visual cortex of trained participants are activated when lis-

tening to the vOICe audio [1, 28]. Some participants, espe-

cially the late-bind, report that they can “see” the shown ob-

jects, even the colorful appearance [18]. As a consequence,

the vOICe device is considered to provide a novel and effec-

tive way to assist the blind in “visually” sensing the world

via hearing [36].

However, the current vOICe encoding scheme is identi-

1www.seeingwithsound.com
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fied as a primary solution [33]. More optimization efforts

should be considered and evaluated to improve the transla-

tion quality. Currently, we have to resort to the cognitive

assessment of participants. However, two characteristics

make it difficult to be adopted in practice. First, the human-

based assessment consists of complicated training and test-

ing procedures, during which the participants have to keep

high-concentration and -pressure for a long period of time.

Such toilsome evaluation is unfriendly to the participants,

and it is also inefficient. Second, amounts of control ex-

periments are required to provide convincing assessments,

which therefore need much efforts as well as huge employ-

ment cost. As a result, there is few works focusing on the

optimization of current encoding scheme, while it indeed

plays a crucial role in improving the visual perception abil-

ity of the blinds [33, 18].

By contrast, with the rapid development of machine

learning techniques, the artificial perception models have

taken the advantages of efficiency, economical, and conve-

nience, which exactly settle the above problems of human-

based evaluation. Hence, can we design proper machine

model for cross-modal perception like human, and view

it as an assessment reference for different audio encod-

ing schemes? In this paper, to answer these questions,

we develop two cross-modal perception models w.r.t. the

distinct late- and congenitally-blind case, respectively. In

the late-blind case, as they have seen the environments be-

fore they were blind. The learned visual experiences could

help them imagine the corresponding objects when listen-

ing to the translated sound via the vOICe [1, 18]. Based

on this, we propose one Late-Blind Model (LBM), where

the visual generative model is initialized from abundan-

t visual scene for imitating the conditions before blind-

ness, then employed for visual generation based on the au-

dio embeddings of separated visual perception. While the

congenitally-blind have never seen the world before, there-

fore the absence of visual knowledge makes them difficult

to imagine the shown objects. In this case, we propose a

novel Congenitally-Blind Model (CBM), where the visu-

al generation depends on the feedback of audio discrim-

inator via a derivable sound translator. Without any pri-

or knowledge in the visual domain, the CBM can generate

concrete visual contents related to the audio signal. Finally,

we employ the proposed model to evaluate different encod-

ing schemes presented by us and compare the assessments

with sets of conducted human-based evaluations. Briefly,

our contributions are summarized as follows,

• We propose a novel computer-assisted evaluation task

about the encoding schemes of visual-to-auditory SS

devices for the blind community, which aims to vastly

improve the efficiency of evaluation.

• Two novel cross-modal perception models are devel-

oped for the late-blind and congenitally-blind condi-

tions, respectively. The generated proper visual con-

tent w.r.t. the audio signal confirm their effectiveness.

• We present two novel optimization strategies w.r.t. the

current encoding schemes, and validate them on the

proposed model.

• We conduct amounts of human-based evaluation ex-

periments for the presented encoding schemes. The

highly consistent results with the machine-model veri-

fy the feasibility of machine-based assessments.

2. Related Works

2.1. Sensory Substitution

To remedy the disabled visual perception ability of the

blind, many attempts have been made to covert the visual

information into other sensory perception, where the visual-

to-auditory sensory substitution is the most attractive and

promising fashion. The early echolocation approaches pro-

vide a considerable conversion manner [16, 17], but the re-

quired sound emission makes it impractical in many scenar-

ios, such as the noisy environment. Another important at-

tempt is to convert the visual information into speech, e.g.,

the Seeing-AI project2. However, such direct semantic de-

scription is just developed for the low vision community, as

it is hard to imagine the concrete visual shape for the blind

people, especially the congenitally blind ones. And it al-

so suffers from limited object and scene categories of the

training set. Hence, more researchers suggest to encode the

visual appearance into sequential audio signal according to

specific rules, such as the vOICe.

Most researchers consider that cross-modal plasticity is

the essential reason to the success of the SS devices [1, 21,

5, 34, 29], which is also the neurophysiological criterion

for judging the effectiveness of these devices [28]. Cross-

modal plasticity refers that the sensory deprivation of one

modality can have an impact on the cortex development of

remaining modalities [4]. For example, the auditory cortex

of deaf subjects is activated by visual stimulate [9], while

the visual cortex is activated by auditory messages for the

blind people [34]. To explore the practical effects, Arno et

al. [2] proposed to detect the neural activations via Positron

Emission Tomography (PET) when the participants are re-

quired to recognize patterns and shapes with the visual-to-

auditory SS devices. For both blindfolded sighted and con-

genitally blind participants, they found a variety of cortex

regions related to visual and spatial imagery were activat-

ed relative to the baselines of audition. More related works

can be found in [1, 21]. These evidences show that region-

s of the brain normally dedicated to vision can be used to

process visual information passed by sound [36, 25]. In ad-

dition, the above studies also show that there exit effective

interactions among modalities in the brain [4, 14].

2https://www.microsoft.com/en-us/seeing-ai
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In view that cross-modal plasticity provides a convincing

explanation for sensory substitution, how to effectively uti-

lize it for the disabled people in practice becomes the key

problem. The visual-to-auditory SS device of vOICe has

provided one feasible encoding scheme that has been ver-

ified in the practical usage. But it is difficult to guarantee

that whether the current scheme is the most effective one.

By conducting sets of control experiments to the curren-

t scheme, such as reversing the encoding direction (e.g., the

highest pitch is set to the bottom instead of the top of im-

age), Stiles et al. [33] found that the primary scheme did not

hold the best performance in the task of matching images

and sounds, which indicates that better encoding scheme is

expected to improve the cross-modal perception ability of

the blind people further. However, the evaluation of encod-

ing schemes based on human feedback is relatively compli-

cated and inefficient. In this paper, a kind of machine model

is proposed to accelerate the assessment progress, which is

also convenient and economical.

2.2. Crossmodal Machine Learning

In the machine learning community, it is also expect-

ed to build effective cross-modal learning model similar to

the brain. And many attempts have been made in differen-

t cross-modal tasks. Ngiam et al. [24] introduced a novel

learning setting to effectively evaluate the shared represen-

tation across modalities, named as “hearing to see”. There-

into, the model was trained with one provided modality but

tested on the other modality, which later confirmed the ex-

isting semantic correlation across modalities. Inspired by

this, Srivastava et al. [32] proposed to generate the miss-

ing text for a given image, where the shared semantic pro-

vided the probability to predict corresponding description-

s. Further, Owens et al. [27] focused on the more compli-

cated sound generation task. They presented an algorith-

m to synthesize sound for silent videos about hitting ob-

jects. To make the generated sound realistic enough, they

resorted to a feature-based exemplar retrieval strategy in-

stead of direct generation [27]. While more recent work

proposed an immediate way in generating natural sound for

wild videos [38]. On the contrary, Chung et al. [7] pro-

posed to generate visually talking face based on an initial

frame and speech signal. For a given audio sequence, the

proposed model could generate a determined image frame

that best represents the speech sample at each time step [7].

Recently, the impressive Generation Adversarial Networks

(GANs) [12] provide more possibilities in the cross-modal

generation. The early works focused on the text-based im-

age generation [30, 37], which were all developed based on

the conditional GAN [22]. Moreover, it becomes possible

to generate images that did not exist before. Chen et al. [6]

extended above model into more complicated audiovisual

perception task. The proposed model [6] showed noticeable

performance in generating musical sounds based on the in-

put image and vice versa.

Although the cross-modal machine learning models

above have shown impressive generation ability for the

missing modality, they do not satisfy the blind condition.

This is because the blind people cannot receive the visual

information, while the above models have to utilize these in-

formation during training. By contrast, we focus on this in-

tractable cross-modal generation problem, where the miss-

ing modalities are unavailable in the whole lifecycle.

3. Cross-modal Machine Perception

3.1. Lateblind Model

People who had visual experience of outside world but

go blind because of diseases or physical injury are called

late-blind people. Hence, when wearing the SS device of

the vOICe to perceive objects, the pre-existing visual ex-

perience in their brain can provide effective reference for

cross-modal perception. The relevant cognitive experiments

also confirm this, especially some blind participants could

unconsciously color the objects while the color information

was not encoded into sound [18]. This probably comes

from the participants’ memory of object color [18]. Such

significant character inspires us to build one three-stage

Late-Blind Model (LBM), as shown in Fig. 2. Concrete-

ly, we propose to model the late-blind case by decoupling

the cross-modal perception into separated sound perception

and out-of-sample visual perception, then coupling them for

visual generation. In the first stage, as the category labels of

translated sound are available, the audio convolutional net-

work of VGGish [13] is employed as the perception model

to learn effective audio embeddings via a typical sound clas-

sification task, where the input sound are represented in log-

mel spectrogram3. For the visual modality, to achieve diver-

siform visual experience, the perception model is trained to

model abundant visual imageries via adversarial mechanis-

m in the second stage, which aims to imitate the circum-

stances of before going blind. Further, the learned audio

embeddings are viewed as the input to visual generation,

and the whole cross-modal perception model is fine-tuned

by identifying the generated images with an off-the-shelf vi-

sual classifier4. Obviously, the generated images w.r.t. the

translated sound should be much similar to the ones used to

train the visual generator, which accordingly provides the

possibilities to automatically color the shown objects.

Results. To evaluate the proposed LBM, we start with the

simple handwritten digits generation task. Concretely, the

MNIST images [20] are firstly translated into sounds via

the vOICe for training the audio subnet and the cross-modal

3The mel-scale depicts the characteristics of human hearing.
4The visual classifier is trained with the same dataset used in the second

stage but fixed when fine-tuning.
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Figure 2. The diagram of the proposed late-blind model. The image and vOICe translator outside the dashed boxes indicate the circumstance

of blindness when using SS devices, while the three-stage perception model within the boxes is constituted by sound embedding, visual

knowledge learning, and cross-modal generation. Best viewed in color.

generation model, while the more challenging dataset of Ex-

tension MNIST (EMNIST) Digits [8] is employed for train-

ing the visual generator and classifier. And the official train-

ing/testing splits on both datasets are adopted [20, 8]. Fig. 3

shows some generated digit examples w.r.t. the translated

sounds in the testing set of MNIST5. Obviously, the gener-

ated digit contents can be easily recognized and also corre-

sponding to the labels of translated sounds, which confirm-

5Network settings and training details are in the materials.

TwoZero One Three Four
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BirdAirplane Automobile Cat Deer

HorseDog Frog Ship Truck

None

Figure 3. Generated visual examples using our late-blind model.

Top two rows are digit images generated from the translated sound

of MNIST and visual knowledge of EMNIST, while bottom two

rows are object images generated from the sound of CIFAR-10

and visual knowledge of ImageNet.

s that the visual experience learned from EMNIST indeed

helps to build visual content with audio embeddings. Fur-

ther, we attempt to generate realistic objects by training LB-

M with more difficult datasets, i.e., using CIFAR-10 [19]

for cross-modal generation and ImageNet [10] for visual

knowledge learning. To improve the complexity of visu-

al experiences, apart from the nine categories of CIFAR-

106, we randomly select another ten classes from ImageNet

for training the visual networks. As expected, although

the translated sounds do not encode the color information

of original object, the generated objects are automatical-

ly colored due to the priori visual knowledge from Ima-

geNet, which provides a kind of confirmation to the theory

of experience-driven multi-sensory associations [18]. But

on the other hand, due to the absence of real images, our

generated images are not as good as the ones generated by

directly discriminating images. It exactly confirms the dif-

ficulty of cross-modal generation in the blind case.

3.2. Congenitallyblind Model

Different from late-blind people, congenitally-blind peo-

ple were born blind. Their absent visual experience makes

them extremely difficult to imagine the visual appearance

of shown objects. However, cross-modal plasticity provides

the possibility to effectively sense concrete visual content

via the audio channel [18, 36], which depends on specific

image-to-sound translation rules. In practice, before train-

ing the blinds to “see” objects with the vOICe device, they

should learn the translation rules firstly by identifying sim-

ple shapes, which could make them sense the objects more

precisely [33]. In other words, the cross-modal translation

6The deer class of CIFAR-10 is removed due to its absence in the Ima-

geNet dataset.
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Figure 4. The diagram of the proposed congenitally-blind model. The image and vOICe translator outside the dashed boxes represent

the circumstance of blindness with SS devices, while the two-stage model within the boxes consists of preliminary sound embedding and

cross-modal generative adversarial perception.

helps to bridge the visual and audio perception in the brain.

Based on this, we propose a two-stage Congenitally-Blind

Model (CBM), as shown in Fig. 4. Similarly with LBM,

the VGGish network is firstly utilized to model the trans-

lated sound via a classification task, and the extracted em-

beddings are then used as the conditional input to cross-

modal generation. In the second stage, without resorting to

the prior visual knowledge, we propose to directly gener-

ate concrete visual contents by a novel cross-modal GAN,

where the generator and discriminator deal with differen-

t modalities. By encoding the generated images into the

sound modality with derivable cross-modal translation, it

becomes feasible to directly compare the generated visu-

al image and the original translated sound. Meanwhile, to

generate correct visual content to the translated sound, the

visual generator takes the audio embeddings as the condi-

tional input and the audio discriminator takes the softmax

regression as an auxiliary classifier, which accordingly con-

stitute a variant auxiliary classifier GAN [26].

Results. As the visual experience is not required in the

congenitally-blind case, the datasets employed for pre-

training the visual generator are not needed any more.

Hence, our proposed CBM is directly evaluated on MNIST

and CIFAR-10 by following the traditional training/testing

splits in [20, 19]. As the vOICe translation just deals with

gray images, the images discriminated by sound do not con-

tain RGB information, as shown in Fig. 5. Obviously, these

image samples on both datasets are not as good as the ones

of LBM, due to the compressed visual content by the sound

translator and the absent visual experience. Even so, our

CBM can still generate concrete visual content according to

the input sound, e.g, the distinct digit forms. As the objects

in CIFAR-10 suffer from complex background that distracts

the sound translation for objects, the generated appearances

TwoZero One Three Four

SevenFive Six Eight Nine

BirdAirplane Automobile Cat Deer

HorseDog Frog Ship Truck

Figure 5. Generated visual examples using our congenitally-blind

model. Top two rows are digit images generated from the translat-

ed sound of the MNIST dataset, while bottom two rows are object

images generated from the sound of the CIFAR-10 dataset.

become low-quality while the outlines can be still captured,

such as horse, airplane, etc. On the contrary, clean back-

ground can dramatically help to generate high-quality ob-

ject images, and more examples can be found in the follow-

ing sections.

4. Evaluation of Encoding Schemes

In view that Stiles et al. has shown the current encoding

scheme can be further optimized to improve its applicability

for the blind community [33], it becomes indispensable to

efficiently evaluate different schemes according to the task
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performance of cross-modal perception. Traditionally, the

evaluation has to be based on the inefficient participants’

feedback. In contrast, as the proposed cross-modal percep-

tion model has shown impressive visual generation ability,

especially the congenitally-blind one, it is worth consider-

ing whether the machine model can be used to evaluate the

encoding scheme. More importantly, such machine-based

assessment is more convenient and efficient compared with

the manual fashion. Hence, in this section, we make a com-

parison between machine- and human-based assessment,

which is performed with modified encoding schemes.

Different from the simple reversal of the encoding direc-

tion [33], we aim to explore more possibilities in optimiz-

ing the primary scheme. First of all, a well-known fact is

that there exist large differences in bandwidth between vi-

sion and audition [18]. When 2D images are projected into

1D audio sequence with limited length, amounts of image

content and details are compressed or declined. One direct

approach is to increase the audio length, which accordingly

makes the vOICe encode more detailed visual contents with

more audio frames. Meanwhile, the blind people can also

have more time to imagine the corresponding image con-

tent. But on the other hand, such augmentation cannot be

unlimited for efficiency. Hence, the time length is doubled

from the primary setting of 1.05s to 2s in the first modified

encoding scheme.

Apart from the bandwidth discrepancy, another crucial

but previously neglected fact should be also paid attention

to. Generally, humans are most sensitive (i.e. able to dis-

cern at the lowest intensity) to the sound frequencies be-

tween 2K and 5K Hz [11]. As the blind participants per-
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Figure 6. Different position-frequency functions of the vOICe

translation.

ceive the image content via their ears, it is necessary to

provide high-quality audio signal that should exist in the

sensitive frequency area. However, due to the bandwidth

discrepancy between modalities, it is difficult to precisely

perceive and imagine all the visual contents in front of the

blind via the translated sound. To address this issue, we

argue that the center of the visual field should be more im-

portant than other visual areas for the convenience of prac-

tical use. Hence, we aim to effectively project the central

areas to the sensitive frequencies of human ears. Inspired

by [15], a novel rectified tanh distribution is proposed for

Position-Frequency (PF) projection, i.e.,

frequency = s/2 · tanh (α · (i− rows/2))+s/2, (1)

where s is the frequency range of the encoded sound, α is

the scaling parameter, i is the position of translated pix-

el, and rows is the image height. As shown in Fig. 6,

it is obvious that the image centers (row 20-40) fall into

the most sensitive frequencies area, where the highest pitch

corresponds to the top position of image. More important-

ly, compared with the suppressed frequency response of the

peripheral regions of images, the central regions enjoy larg-

er frequency range and are accordingly given more atten-

tion. In contrast, the exponential function adopted in the

primary setting takes no consideration of the auditory per-

ception characteristics of humans. The translated sound of

most image areas are suppressed in the low-frequency area

of below 2K Hz, which neither focus on the sensitive fre-

quencies area nor highlight the central regions of images.

Hence, such function could be not an appropriate choice.

To effectively evaluate the proposed encoding schemes,

amounts of evaluation tests should be conducted with par-

ticipants. Accordingly, if more modified schemes are

provided, much more training and testing efforts will be

required, which could go beyond what we can support.

Hence, we choose to focus on these two modifications w.r.t.

audio length and position-frequency function, as well as the

primary one.

4.1. Machine Assessment

The quality of generated modality depends on the quality

of the other encoded modality in the cross-modal generative

model [38, 30, 6]. Hence, it can be expected to evaluate d-

ifferent encoding schemes by comparing the generated im-

ages. In this section, the proposed CBM is chosen as the

evaluation reference, as the encoding scheme directly im-

pacts the quality of translated sound for the audio discrimi-

nator, then further affects the performance of visual gener-

ator, as shown in Fig. 4. However, the adopted MNIST and

CIFAR-10 dataset suffer from absent real object or quite

complex background. These weaknesses make it quite hard

to effectively evaluate the practical effects of different en-

coding schemes. Therefore, we choose the Columbia Ob-
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Original images

The primary encoding scheme

The modified scheme w.r.t. longer audio length

The modified scheme w.r.t. the position-frequency function of tanh

Figure 7. Comparison among the generated image examples using our congenitally-blind model in terms of different encoding schemes.

ject Image Library (COIL-20) [23] as the evaluation dataset,

which consists of 1,440 gray-scale images that belong to 20

objects. These images are taken by placing the objects in

the frame center in front of a clean black background, mean-

while a fixed rotation of 5 degree around the objects is also

performed, which leads to 72 images per object. Consider-

ing that this dataset will be also adopted by human-based

assessment, we select 10 object categories from COIL-20

for efficiency (i.e., COIL-10), where the testing set consist-

s of 10 selected images of each object, and the remaining

ones constitute the training set.

Results. To comprehensively evaluate the generated im-

ages, qualitative and quantitative evaluation are both con-

sidered. As shown in Fig. 7, in general outlook, as well as

in matters of detail, the images of the modified schemes are

superior to the primary ones. Obviously, the images gener-
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Figure 8. Evaluation of the generated images by our CBM, where

different encoding schemes are compared in human evaluation and

inception score.

ated by the primary scheme suffer from horizontal texture

noise. This is because most image area are suppressed in the

low-frequency domain, which makes the audio network dif-

ficult to achieve effective embeddings for visual generation.

By contrast, longer audio track or more effective PF func-

tion can contribute to settle such issue. In addition, com-

pared with longer audio signal, the improvement attainable

with the proposed PF function of tanh is more significant,

such as the details of toy car and fortune cat. And such su-

periority comes from the effective frequency representation

of pixel positions.

For the quantitative evaluation, we choose to compute

inception score [31] and human-based evaluation, as shown

in Fig. 8. Concretely, we ask 18 participants to grade the

quality of generated images from 1 to 5 for each scheme,

which correspond to {beyond recognition, rough outline,

clear outline, certain detail, legible detail}. Then, mean

value and standard deviation are computed for comparison.

In Fig. 8, it is clear that the qualitative and quantitative e-

valuation show consistent results. In particular, both of the

inception score and human evaluation show that the modi-

fied encoding scheme of PF function enjoys the largest im-

provements, which further confirms the significance of the

projection function. And the enlarged audio length indeed

helps to refine the primary scheme.

4.2. Cognitive Assessment

The blind participants’ feedback or task performance is

usually served as the indicator to the quality of encoding

schemes in the conventional assessment [3, 33]. Follow-

ing the conventional evaluation strategy [33], 9 participants

are randomly divided into three groups (3 participants per

group). Each group corresponds to one of the three encod-
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translated sound via different encoding schemes.

ing schemes. The entire evaluation process takes about 11

hours. Before the formal evaluation, the participants are

firstly asked to complete the preliminary training lessons

to be familiar with the translation rules and simple visual

concepts. The preliminary lessons include: identification

of simple shape, i.e., triangle, square, and circle; recogni-

tion of complex shape, e.g., a normal “L”, an upside-down

“L”, a backward “L”, and a backward and upside-down “L”;

perception of orientation, e.g., straight white line of fixed-

length in different rotation angles; estimation of lengths,

e.g., horizonal white line with different lengths; localiza-

tion of objects, i.e., circles in different places of images.

During training, the assistant of each participant plays the

pre-translated sound for them, then tell them the concrete

visual content within the corresponding image7. After fin-

ishing amounts of repetitive preliminary lessons, the par-

ticipants are scheduled to achieve advanced training of rec-

ognizing real objects. Concretely, the COIL-10 dataset is

adopted for training and testing the participants, where the

training procedure is the same as the preliminary lessons.

Note that the evaluation test is conducted after finishing the

training of each object category instead of all the categories.

Finally, the evaluation results are viewed as the quality es-

timation of the encoded sound and used as the reference for

machine-based assessment.

Results. Fig. 9 shows the evaluation results in precision, re-

call and F1-score w.r.t. different encoding schemes. Specif-

ically, the scheme with modified PF function performed sig-

nificantly better than the primary scheme (p < 0.005, with

Bonferroni multiple comparisons correction) in precision,

and the recall bars indicate that the scheme with modified

PF function performed significantly better than the primary

scheme (p < 0.01, with Bonferroni multiple comparisons

correction). Similar results are observed on F1-score. Ac-

cording to the conventional criterion [33], it can be conclud-

ed that the introduced modifications indeed help to improve

7The training details and image samples can be found in material.

the quality of cross-modal translation. And it further con-

firms the assumptions about audio length and the character-

istics of human hearing. Nevertheless, there still remains

a large disparity of classification performance between nor-

mal visual and indirect auditory perception. Hence, more

effective encoding schemes are expected for the blind com-

munity.

Correlation Coefficient Machine (IS) Machine (Eva.)

Human (Recall) 0.947 1.000

Human (Precision) 0.952 0.805

Human (F1-score) 0.989 0.889

Table 1. The comparison analysis between machine- and human-

based assessment in terms of correlation coefficient.

4.3. Assessment Analysis

The main motivation of designing the cross-modal per-

ception model is to liberate the participants from the bor-

ing and inefficient human assessments. According to the

shown results above, we can find that the modified scheme

of PF function gets the best performance while the primary

scheme is the worst one on both assessments. Further, quan-

titative comparison is also provided in Table 1. Obvious-

ly, both assessments have reached a consensus in terms of

correlation coefficient, especially the column of Inception

Score (IS), which confirms the validity of machine-based

assessments to some extent.

5. Conclusion

In this paper, we propose a novel and effective machine-

assisted evaluation approach to the visual-to-auditory SS

scheme. Compared with the conventional human-based as-

sessments, the machine fashion performs more efficiently

and conveniently. On the other hand, this paper gives a new

direction for the auto-evaluation of SS devices through lim-

ited comparisons, more possibilities should be explored in

the future, including more optimization schemes and more

effective machine evaluation model. Further, the evalua-

tion should be combined with derivable encoding module

to constitute a completely automated solver of the encoding

scheme without any human intervention, just like seeking

high-quality models via AutoML.
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