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Abstract

Benefit from large-scale training datasets, deep Convo-

lutional Neural Networks(CNNs) have achieved impressive

results in face recognition(FR). However, tremendous scale

of datasets inevitably lead to noisy data, which obviously

reduce the performance of the trained CNN models. Kick-

ing out wrong labels from large-scale FR datasets is stil-

l very expensive, although some cleaning approaches are

proposed. According to the analysis of the whole process of

training CNN models supervised by angular margin based

loss(AM-Loss) functions, we find that the θ distribution of

training samples implicitly reflects their probability of be-

ing clean. Thus, we propose a novel training paradigm that

employs the idea of weighting samples based on the above

probability. Without any prior knowledge of noise, we can

train high performance CNN models with large-scale FR

datasets. Experiments demonstrate the effectiveness of our

training paradigm. The codes are available at https:

//github.com/huangyangyu/NoiseFace.

1. Introduction

Large-scale datasets are crucial for training deep CNNs

in FR, and the scale of training datasets is growing tremen-

dously. For example, a widely used FR training dataset,

MS-Celeb-1M [11], contains about 100K celebrities and

10M images. However, a previous work [42] points out

that a million scale FR dataset typically has a noise rate

higher than 30% (about 50% in the original MS-Celeb-1M).

The presence of noisy training data may adversely affec-

t the final performance of trained CNNs. Though a recent

work [35] reports that deep CNNs still perform well even on

noisy datasets containing sufficient clean data, this conclu-

sion cannot be transferred to FR, and experiments demon-

strate that noisy data apparently decrease the performance

of the trained FR CNNs [42].

Large-scale datasets with high-quality label annotation-

s are very expensive to obtain. Cleaning large-scale FR

datasets with automatic or semi-automatic approaches [11,

49, 5] cannot really solve this problem. As can be seen,

existed large-scale FR datasets, such as MS-Celeb-1M and

MegaFace [19], still consist considerable incorrect labels.

To obtain a noise-controlled FR dataset, manual annota-

tion is inevitable. Although an approach is introduced to

effectively build a high-quality dataset IMDB-Face [42], it

actually further demonstrates the difficulties of obtaining a

large-scale well-annotated FR dataset. For example, it took

50 annotators one month to clean the IMDB-Face dataset,

which only contains 59K celebrities and 1.7M images.

Numerous training approaches have been investigated

aiming to train classification CNNs with noisy dataset-

s [31, 50, 38, 10, 41, 12, 21, 9], but most of them are

not suitable for training FR models, because of the spe-

cial characters of FR datasets (discussed in the Section 2).

Recently, weighting training samples is a promising direc-

tion [18, 13, 26] to deal with noisy data. However, ex-

tra datasets or complex networks are required in these ap-

proaches, limiting the use of them in FR.

The CNN models in FR are usally trained with loss func-

tions, which aim to maximize inter-identity variation and

minimize intra-identity variation under a certain metric s-

pace. Very recently, some angular margin based loss(AM-

Loss for short in the paper) functions [24, 5, 45, 43] are

proposed and achieve the state-of-the-art performance.

In this paper, we propose a noise-tolerant paradigm to

learn face features on a large-scale noisy dataset directly,

different from other related approaches [49, 5] which aim

to clean the noisy dataset firstly. When training an AM-

Loss supervised CNN model, the θ histogram distribution

of training samples(the θ distribution for short, described in

Section 3.2) is employed to measure the possibility that a

sample is correctly labeled, and this possibility is then used

to determine the training weight of the sample. Through-

out the training process, the proposed paradigm can allevi-

ate the impact of noisy data by dynamically adjusting the

weight of samples, according to their θ distribution at that

time.

To summarize, our major works are as follows:

1. We observe that the θ value of a clean sample has high-
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er probability to be smaller than that of a noisy sample

for an AM-Loss function. In other word, the possibil-

ity that a sample is clean can be dynamically reflected

by its position in the θ distribution.

2. Based on the above observation, we employ the idea

of weighting training samples, and present a novel

noise-tolerant paradigm to train FR CNN models with

a noisy dataset end-to-end. Without any prior knowl-

edge of noise in the training dataset (noise rate, small

clean sets, etc.), the models can achieve comparable,

or even better performance, compared with the model-

s trained by traditional methods with the same dataset

without noisy samples.

3. Although many approaches are proposed to train clas-

sification models with noisy datasets, none of them

aims to train FR CNN models. To the best of our

knowledge, the proposed paradigm is the first to study

the method to significantly eliminate adverse effects

of extremely noisy data with deep CNN models in FR.

Our paradigm is also the first to estimate the noise rate

of a noisy dataset accurately in FR. Furthermore, our

trained models can also achieve good performance on

clean datasets too.

2. Related Works

2.1. Training with Noisy Data

Learning with noisy datasets has been widely explored

in image classification training [7]. In classic image classi-

fication datasets, the real-world noisy labels exhibit multi-

mode characteristics. Therefore, many approaches use pre-

defined knowledge to learn the mapping between noisy

and clean annotations, and focus on estimating the noise

transition matrix to remove or correct mis-labeled sam-

ples [27, 23, 30]. Recently, it has also been studied in the

context of deep CNNs. [50] relies on manually labeling

to estimate the matrix. [38, 10] add layer in CNN mod-

els to learn the noise transition matrix. [41, 14] use a s-

mall clean dataset to learn a mapping between noisy and

clean annotations. [31, 9] use noise-tolerant loss functions

to correct noisy labels. Li et al. [21] construct a knowledge

graph to guide the learning process. Han et al. [12] propose

a human-assisted approach which incorporates an structure

prior to derive a structure-aware probabilistic model. Dif-

ferent from the common classification datasets, FR datasets

always contain a very large number of classes(persons), but

each class contains relatively small number of images, mak-

ing it difficult to find relationship patterns from noisy da-

ta. Furthermore, noisy labels behave more like independent

random outliers in FR datasets. Therefore, the transition

matrix or the relationship between noisy and clean labels is

very hard to be estimated from FR datasets.

Some approaches attempt to update the trained CNNs

only with separated clean samples, instead of correcting

the noisy labels. A Decoupling technique [26] trains two

CNN models to select samples that have different predic-

tions from these two models, but it cannot process heavy

noisy datasets. Very recently, weighting training samples

becomes a hot topic to learn with noisy datasets.

2.1.1 Weighting Training Samples

Weighting training samples is a well studied technique and

can be applied to adjust the contributions of samples for

training CNN models [8, 22, 20]. Huber loss [8] reduces the

contribution of hard samples by down-weighting the loss of

them. In contrast, Focal loss [22] adds a weighting factor

to emphasize hard samples for training high accurate detec-

tor. Multiple step training is adopted in [20] to encourage

learning easier samples first.

The idea of weighting training samples is employed to

train models with noisy datasets too, since clean/noisy sam-

ples are usually corresponding to easy/hard samples. The

key of weighting samples is an effective method to measure

the possibility that a sample is easy/clean. Based on Cur-

riculum learning [2], MentorNet [18] and Coteaching [13]

try to select clean samples using the small-loss strategy, but

the noise level should be provided in advanced in [13], and

a small clean set and a pre-training model are suggested in

[18]. Ren et al. [34] also employ the clean validation set to

help learning sample weights. Although FR can be regard-

ed as a classification problem, its small subset/validation

dataset is usually uncertain to be clean, even not available

at all. To conclude, weighting samples is a promising di-

rection to train CNN models with noisy datasets, but esti-

mating sample weights usually requires complex techniques

and extra knowledge.

2.2. Loss functions in FR

Deep face recognition has been one of the most active

field in these years. Usually, FR is trained as a multi-class

classification problem in which the CNN models are usual-

ly supervised by the softmax loss [40, 39, 46]. Some met-

ric learning loss functions, such as contrastive loss [51, 4],

triplet loss [15, 36] and center loss [47], are also applied

to boost FR performance greatly. Other loss function-

s [6, 53] also demonstrate effective performance on FR. Re-

cently, some normalization [25, 44, 54] and angular mar-

gin [24, 5, 43, 45] based methods are proposed and achieve

outperforming performance, and get more attention.
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3. Preliminaries

3.1. Angular Margin based Losses

Recently, the angular margin based loss functions, which

have intrinsic consistency with Softmax loss, greatly im-

proves the performance of FR. The traditional Softmax loss

is presented as

L = −
1

N

N∑

i=1

log
eW

T
yi

xi+byi

∑C
j=1 e

WT
j
xi+bj

, (1)

where xi denotes the feature of the i-th sample which be-

longs to the yi-th class. Wj denotes the j-th column of the

weights W in the layer and b is the bias term. N and C is

the batch size and the class number. In all AM-Losses, the

bias bj is fixed to be 0 and ‖Wj‖ is set to 1, then the target

logit [32] can be reformulated as

W
T
j xi = ‖xi‖cos θi,j , (2)

where θi,j is the angle between Wj and xi. We can further

fix ‖xi‖ = s, and the Softmax loss can be reformulated as

L = −
1

N

N∑

i=1

log
es cos θi,yi

∑C
j=1 e

s cos θi,j
, (3)

and we refer this loss as L2-Softmax in this paper. Actu-

ally, other AM-Losses have similar loss functions, but with

slightly different decision boundaries.

In all AM-Losses, Wj can be regarded as the anchor of

the j-th class. During training, the angle θi,j will be min-

imized for an input feature xi belonging to the j-th class,

and the angle θi,k(k 6=j) will be maximized at the same time.

As discussed in [5], the θi,j of an input xi belonging to the

j-th class reflects the difficulty of training the corresponding

sample for a full trained CNN model, and the θ distribution

of all training samples can implicitly demonstrate the per-

formance of the model. We firstly investigate the effect of

noisy data on the θ distributions.

3.2. Effect of Noise on θ Distributions

To investigate the effect of noise, WebFace-Clean1 con-

taining 10K celebrities and 455K images is chosen as the

clean dataset. It is cleaned by manually removing incorrect

images from the original CASIA-WebFace [51] containing

494K images. [42] estimates that there are about 9.3%-13%

mis-labeled images in the original CASIA-WebFace, so we

can regard WebFace-Clean as a noise-free dataset. Sever-

al experiments are performed, and their input and training

settings are described in the Section 5.

We firstly build another new noise-free FR dataset,

named WebFace-Clean-Sub, which contains 60% images

1github.com/happynear/FaceVerification

randomly chosen from all celebrities in WebFace-Clean.

The remaining 40% images are used to synthesis noisy data,

named WebFace-Noisy-Sub. Noise in FR datasets mainly

fall into two types: label flips, where an image has been

given a label of another class within the dataset, and out-

liers, where an image does not belong to any of the classes,

but mistakenly has one of their labels, or non-faces can be

found in the image. To generate Web-Noisy-Sub, we syn-

thesize label flips noise by randomly changing face label-

s into incorrect classes, and simulate outlier noise by ran-

domly polluting data with images from MegaFace [19], and

we keep the ratio of label flips and outliers at 50%:50%.

Therefore, we get a new noisy dataset WebFace-All con-

taining WebFace-Clean-Sub and WebFace-Noisy-Sub, and

its noise rate is 40%.

A ResNet-20 model(CNN-All-L2) [24] supervised with

L2-Softmax(s = 32) is trained with WebFace-All. For

comparison, we also train another ResNet-20 model(CNN-

Clean-L2) with WebFace-All, but with a small modifica-

tion: a sample will be dropped in training if it belongs

to WebFace-Noisy-Sub. Therefore, CNN-Clean-L2 can be

considered to be trained only with clean samples.

In each training iteration, we use Wj to compute θi,j
for all samples belonging to the j-th class. For simplifi-

cation, only cosθ is computed in our implementation. We

refer the cos θ histogram distributions(the bin size is 0.01)

of all training samples as Histall. Moreover, we compute

the distributions of clean and noisy samples separately as

Histclean and Histnoisy .

Figure 1 shows the distributions of CNN-Clean-L2 and

CNN-All-L2. The test accuracy on LFW [16] is used to

demonstrate the performance of the trained CNNs. From

Figure 1, we have following observations:

1. Histclean and Histnoisy are all Gaussian-like distri-

butions throughout the training process for CNN-All-

L2 and CNN-Clean-L2. Experiments in ArcFace [5]

also demonstrate this phenomenon. The Gaussian-like

distributions should be caused by similar quality dis-

tributions [42] in FR datasets.

2. At the beginning of training,Histclean and Histnoisy
are largely overlapping, making them impossible to be

separated from each other, since the CNNs are initially

untrained.

3. After a short period, Histclean starts to move to the

right. If noisy samples are involved in training (CNN-

All-L2), Histnoisy moves to the right too, but it has

been always on the left side of Histclean. Therefore,

the samples with larger cosθ values have larger proba-

bility to be clean. This phenomenon is mainly because

that the CNNs memorize easy/clean samples quickly,

and can also memorize hard/noisy samples eventual-

ly [1].
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(a) CNN-Clean-L2

(b) CNN-All-L2

Figure 1. The cosθ histogram distributions of CNN-Clean-L2 (top) and CNN-All-L2 (bottom). Histclean, Histnoisy and Histall are

colored with Green, Red and Yellow respectively. The curve edge of each distribution is smoothed with a mean filter with size = 5 to

remove noise (described in the Section 4.2.1).

4. In the latter stage of training process, the cosθ of a

sample in Histclean reflects the quality of the corre-

sponding face image. Some face images of easy, semi-

hard, and hard clean samples are provided in Figure 1.

5. The performance of CNN-All-L2 is adversely affected

by noisy data. From the distribution in Figure 1(b), we

can observe the negative impact in two aspects: (1)

Histclean and Histnoisy have large overlapping re-

gions throughout the training process; (2) Compared

with the Histclean in Figure 1(a), the Histclean in

Figure 1(b) is on the left side.

These observations can be explained in theory, and more

experiments are further performed to confirm them: (1)We

increase the noise rate from 40% to 60%; (2)ArcFace [5]

is employed to supervise the CNNs; (3) we replace the

ResNet-20 with a deeper ResNet-64 [24]; (4) Another clean

dataset IMDB-Face [42]2 is chosen to replace WebFace-

Clean. Their final cosθ distributions shown in Figure 2 fur-

ther approve our observations.

CNN-Clean-L2 is actually trained by using a ideal

paradigm: ignoring all noisy sample in training. However, it

is difficult to predict if a sample is noisy in real training. In

this paper, we propose a paradigm to minimize the impact

of noisy samples based on the cosθ distributions.

4. The Proposed Paradigm

We propose a new training paradigm for learning face

features from large-scale noisy data based on above obser-

2We only downloaded 1.2M images of total 1.7M images with the pro-

vided URLs
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(d) IMDB-Face dataset

Figure 2. The final cosθ distributions of other four models. These

distributions further confirm our observations.

vations. In each mini-batch training, we compute cosθ for

all training samples, and the current distribution Histall.
We define δl and δr are the leftmost/rightmost cosθ values

in Histall. Based on the first observation in Section 3.2, no

more than 2 peaks can be detected in Histall. µl and µr

denote the cosθ values of the left/right peaks respectively,

and µl = µr if there is only one peak.

The target of the paradigm is to correctly evaluate the

probability of a sample being clean in training, and then

adjust the weight of the sample according to this probability.

The key idea of our paradigm can be briefly introduced as:
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(a) All samples are equally treated (b) Clean samples are emphasized (c) Semi-hard clean samples are emphasized

Figure 3. The cosθ distributions and the corresponding ω of three strategies.

1. At the beginning of training process, all samples are

treated equally.

According to the 2nd observation in Section 3.2, at the

beginning of training process, the trained CNN does

not have the ability for face recognition. Therefore, all

samples should have the same weight for training.

2. After a short period of training, samples with larger

cosθ have larger weight.

According to the 3rd observation in Section 3.2, af-

ter a short period of training, samples with larger cosθ
should have larger weight for training.

3. In the end of training, semi-hard clean samples are em-

phasized to further promote the performance.

According to the 4th observation in Section 3.2, easy,

semi-hard and hard clean samples can be distinguished

according to their cosθ in Histclean at this time.

The pre-condition of training semi-hard clean sam-

ples is that the trained CNN already has good per-

formance, and the overlapping area of Histclean and

Histnoisy is relatively small. In this circumstance,

semi-hard clean samples will have larger weight than

other samples for training. Training semi-hard clean

samples is also implicitly adopted in ArcFace [5] and

FaceNet [36].

We present three corresponding strategies to compute

sample weights as following:

Strategy One In this strategy (see Figure 3(a)), all sam-

ples have the same weight as

ω1,i = 1, (4)

where ω1,i is the weight of an input sample xi.

Strategy Two In this strategy (see Figure 3(b)), the sam-

ples with larger cosθ have larger weight as

ω2,i =
softplus(λz)

softplus(λ)
, (5)

where z =
cosθi,j−µl

δr−µl
, and softplus(x) = log(1 + ex) is

a smooth version of the RELU activation[29]. λ is used to

normalize the function, and λ = 10 in all experiments.

Strategy Three In this strategy (see Figure 3(c)), the

semi-hard clean samples are emphasized. We define µr as

the cosθ value of the right peak in Histall (µl correspond-

ing to the left peak), which can be consider as the center of

Histclean (according to the 5-th and the 2-th observation).

The sample weight is computed as

ω3,i = e−(cosθi,j−µr)
2/2σ2

, (6)

where σ2 is the variance of the Histclean, which can be

approximated by using the part to the right of µr. We set

σ = (δr − µr)/2.576 to cover 99% samples in Histclean.

4.1. Compute Time­Varying Fusion Weight

Three weighting sample strategies are introduced as

above, but how to select the applied strategy in training?

There is no clear criteria. Inspired by the gradually learn-

ing technique in Co-teaching [13], we compute the sample

weight in a fusion way.

According to our observations, δr is a good signal to

approximately reflect the performance of the trained CNN.

As the CNN achieves better performance, δr will gradually

move to the right. We define a threshold ζ to divide possible

δr values into two ranges: [0, ζ] and (ζ, 1]. The selected s-

trategy is changed from the 1st one to the 2nd one in the first

range, and from 2nd one to the 3rd one in the second range.

In all experiments, we set ζ = 0.5. Then, we compute the

sample weight as

ωi = α(δr)ω1,i + β(δr)ω2,i + γ(δr)ω3,i, (7)

where

α(δr) = (2−
1

1 + e5−20δr
−

1

1 + e20δr−15
)⌈0.5−δr⌉, (8)

, β(δr) = 1− α(δr)− γ(δr) and γ(δr) = α(1.0− δr). As

shown in Figure 4, at first, ω1,i has the greatest impact. As

δr gradually moves to right, ω2,i and then ω3,i begin to play

more important roles.
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(a) α(δr), β(δr), and γ(δr) (b) Two fusion examples

Figure 4. The left figure demonstrates three functions: α(δr), β(δr), and γ(δr). The right figure shows two fusion examples. According

to the ω, we can see that the easy/clean samples are emphasized in the first example(δr < 0.5), and the semi-hard clean samples are

emphasized in the second example(δr > 0.5).

4.1.1 Discussion on Weight Computation

Equation 4, Equation 5 and Equation 6 are used to compute

the sample weight during training. These 3 equations di-

rectly reflect the key idea of our paradigm, but they are on-

ly introduced empirically and have some free parameters.

The same situation also exists in Equation 7. The key con-

tribution of our approach is the ideas of training paradigm

and weight fusion. We also perform some experiments, and

found that good performance can be achieved as long as the

used equations can correctly reflect the key ideas. There-

fore, these equations are provided for reference, and more

exploration could be conducted to find other theoretical jus-

tified equations.

4.2. Implementation Details

4.2.1 Histall Related Variables

According to the Equation 7, cosθi,j , δr, δl and µr are re-

quired to compute the final weight of the sample xi belong-

ing to the j-th class. Except cosθi,j , other variables are

computed based on Histall.

In theory, Histall should be computed in each mini-

batch training, which is very time-consuming because the

number of samples is usually very large in FR datasets. In

our implementation, the cosθ values of recent K training

samples are stored to compute another distribution HistK .

The training samples are pre-shuffled, HistK can be con-

sidered as an approximate Histall with a suitable K. We

set K = 64, 000 (1000 batches) in our experiments.

To resist noise, a mean filter with size 5 is firstly ap-

plied to HistK to remove noise. We select the top 0.5%

leftmost/rightmost cosθ values as δl and δr. A very simple

method is applied to find all peaks in HistK : the number

of frequency in a bin is larger than all of its left/right neigh-

bour bins (Radius = 5). Theoretically, we can only find

one or two peaks during training. However, we sometimes

find more than two peaks, or find no peak at all, because

Histclean and Histnoisy are actually not always Gaussian-

like distributions. We employ a simple technique to find µr:

if there is only one peak ∈ (ζ, 1], its cosθ is the µr, and if

more than one peaks are found, we choose the highest one.

Similar method can be used to find µl.

When the noise rate is very high, µr may become dif-

ficult to detect. In this circumstance, the key is to train

easy/clean samples as much as possible, and ω2,i should

play more important role than ω3,i. Therefore, missing µr

may have few impact on the final performance. In the con-

trary, if the noise rate is very low, missing µl may also have

few impact on the final performance.

4.2.2 Weighting in AM-Losses

Method 1 Usually, the weight is applied to minimize the

loss and the weighted loss function of L2-Softmax is

L1 = −
1

N

N∑

i=1

ωilog
es cos θi,yi

∑C
j=1 e

s cos θi,j
. (9)

Moreover, there is another method to apply sample weights.

Method 2 In AM-Losses, an input xi is normalized and

re-scaled with a parameter s (‖xi‖ can be regarded as s in

SphereFace). The scaling parameter s is better to be a prop-

erly large value as the hypersphere radius, according to the

discussion in [45, 5]. A small s can lead to insufficient con-

vergence even no convergence. The lower bound of s is also

discussed in [45, 33]. Inspired by the effect of s, we can

also apply the weights ωi to the scaling parameter during

training CNNs. Therefore, the loss function of L2-Softmax

can be formulated as

L2 = −
1

N

N∑

i=1

log
eωis cos θi,yi

∑C
j=1 e

ωis cos θi,j
. (10)

Similar method can be applied in other AM-Losses too.

Two methods all can be employed to train CNNs with noisy

datasets. According to our experiments, the latter one shows

better performance in most cases.
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Figure 5. The cosθ distributions of our CNN model trained with 40% noisy samples.

5. Experiments

To verify the effectiveness of our method, several exper-

iments are performed. In these experiments, face images

and landmarks are detected by MTCNN [52], then aligned

by similar transformation as [49], and cropped to 128×128
RGB images. Each pixel in RGB images is normalized by

subtracting 127.5 then dividing by 128. We use Caffe [17]

to implement CNN models. For fair comparison, all CN-

N models are trained with SGD algorithm with the batch

size of 64 on 1 TitanX GPUs. The weight decay is set to

0.00005. The learning rate is initially 0.1 and divided by

10 at the 80K, 160K iterations, and we finish the training

process at 200K iterations.

First, we perform a similar experiment as in the Sec-

tion 3.2, but using the proposed training paradigm. Figure 5

shows the cosθ distributions during training. It is obvious

that Histclean are separated from Histnoisy . According

to the final distributions in Figure 5, Figure 1(a) and Fig-

ure 1(b), the adverse effect from noisy samples is largely

eliminated this time.

Corresponding to 4 models in Figure 2, we re-train them

using the proposed paradigm, and the final distributions are

shown in Figure 6. Our method also gets better results.

We perform experiments with different noise rates, su-

pervised AM-Losses and computing weighted loss method-

s(see Section 4.2.2) with the experiment in the Section 3.2.

The models are evaluated on Labelled Faces in the Wild

(LFW) [16], Celebrities in Frontal Profile (CFP) [37], and

Age Database (AgeDB) [28]. As shown in Table 1, com-

petitive performance can be achieved using our paradigm,

without any prior knowledge about noise in training data.

We can surprisedly see that some results of CNNm2 are

even better than the results of CNNclean. This improve-

ment is mainly caused by semi-hard training in the final

stage. It can be seen that the 2nd method in Section 4.2.2

demonstrates a better performance.

For comparison, we also implemented a recently pro-

posed noise-robust method for image classification: Co-

teaching [13] (CNNct), which selects small-loss samples

from each mini-batch. Note the noise rate should be pre-

given in Co-teaching. The results prove that general noise-

robust approaches cannot achieve satisfied performance in
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(c) ResNet-64 model
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(d) IMDB-Face dataset

Figure 6. The final cosθ distributions of four models (correspond-

ing to four models Figure 2) using our paradigm.

FR.

5.1. Estimating Noise Rate

There is an interesting observation from Figure 5 and

Figure 6: at the end of training process, the region on the

left of µl approximately contains half of noisy samples, so

we can estimate the noise rate in the training dataset. If

the left peak (µl) is not detected, the region on the right of

µr, which contains about half of clean samples, also can

be used. The estimated rates in Table 1 further prove the

effectiveness of our method.

5.2. Learning from Original MS­Celeb­1M

The original MS-Celeb-1M [11] contains 99,892 celebri-

ties, and 8,456,240 images. For comparison, two ResNet-

64 [24], CNNours and CNNnormal, supervised with Ar-

cFace [5] are employed to learn face features from MS-

Celeb-1M, one using the proposed paradigm and the other

not. To accelerate convergence speed, these ResNet-64 are

firstly trained with Casia-WebFace [51], then finetuned with

MS-Celeb-1M. Other training parameters are similar with

the previous experiments. A refined MS-Celeb-1M, con-

taining 79,077 celebrities and 4,086,798 images, is provid-
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Loss
Noise CNNclean CNNnormal CNNct CNNm1 CNNm2 Estimated

Rate LFW AgeDB CFP LFW AgeDB CFP LFW LFW LFW AgeDB CFP Noise Rate

0% 94.65 79.95 82.04 94.65 79.95 82.04 - 95.00 96.28 84.05 87.88 2%

L2- 20% 94.18 79.33 81.00 89.05 66.83 71.55 92.12 92.95 95.26 81.91 84.77 18%

Softmax 40% 92.71 76.51 77.10 85.63 58.95 68.78 87.10 89.91 93.90 78.38 81.37 42%

60% 91.15 70.28 74.74 76.61 51.38 63.12 83.66 86.11 87.61 64.43 70.54 56%

ArcFace

0% 97.95 88.48 91.07 97.95 88.48 91.07 - 97.11 98.11 88.61 90.81 2%

20% 97.80 88.75 89.54 96.48 82.83 82.52 96.53 96.83 97.76 88.46 90.22 18%

40% 96.53 84.93 84.81 92.33 72.68 74.11 94.25 95.88 97.23 86.03 88.41 36%

60% 94.56 80.75 80.52 84.05 58.73 67.70 90.36 93.66 95.15 81.45 83.25 54%

Table 1. Comparison of accuracies(%) on LFW, AgeDB(30), and CFP(FP). ResNet-20 models are used. CNNclean is trained only

with clean data (WebFace-Clean-Sub) as Upper Bound. CNNnormal is trained with the noisy dataset WebFace-All using the traditional

method. CNNct is trained with WebFace-All using our implemented Co-teaching(with pre-given noise rates). CNNm1 and CNNm2

are all trained with WebFace-All but using the proposed approach, and they respectively use the 1st and 2nd method to compute loss(see

Section 4.2.2). CNNm1 and CNNct are only evaluated on LFW.

ed in LightCNN [49], so the noise rate is about 51.6%. We

also train a CNN (CNNclean) with the refined MS-Celeb-

1M for comparison. Histall, together with Histclean and

Histnoisy approximated according to the refined dataset,

are presented in Figure 7. According to Histnoisy , we es-

timate that the noise rate of the original MS-Celeb-1M is

about 43%.
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Figure 7. The final cosθ distributions of CNNnormal (left) and

CNNours (right).

The trained CNNs are then evaluated on LFW, AgeDB-

30, CFP-FP, YTF [48] and MegaFace Challenge 1 [19], as

shown in Table 2. CosFace [45] and ArcFace [5] are added

for comparison since they use the same network or AM-

Loss with ours. The competitive performance of CNNours

demonstrates the effectiveness of our training paradigm.

6. Conclusion and Future Work

In this paper, we propose a FR training paradigm, which

employs the idea of weighting training samples, to train

AM-Loss supervised CNNs with large-scale noisy data. At

different stages of training process, our paradigm adjust-

s the weight of a sample based on the cosθ distribution to

improve the robustness of the trained CNN models. Experi-

ments demonstrate the effectiveness of our approach. With-

out any prior knowledge of noise, the CNN model can be

directly trained with an extremely noisy dataset (> 50%
noisy samples), and achieves comparable performance with

the model trained with an equal-size clean dataset. More-

over, the noise rate of a FR dataset can also be approximated

Method LFW AgeDB CFP YTF MF1

CosFace [45] 99.73 - - 97.6 77.11

ArcFace [5] 99.83 98.08 96.82 - 83.27

CNNnormal 99.21 90.85 93.38 95.64 70.16

CNNclean 99.67 96.50 95.74 97.12 78.21

CNNours 99.72 96.70 96.40 97.36 78.69

Table 2. Comparison of accuracies(%) on several public bench-

marks. Accuracies of CosFace and ArcFace are cited from their

original papers. CosFace is trained with a clean dataset contain-

ing 90K identities and 5M images. ArcFace is trained with a

manually refined dataset containing 93K identities and 6.9M im-

ages. Their datasets all are composed of several public datasets

including refined VGG2 [3], MS-Celeb-1M, etc. CNNours and

CNNnormal are trained only with the original noisy MS-Celeb-

1M(noise rate ≈ 50%). CNNclean is trained with the refined

MS-Celeb-1M [49]. An improved ResNet-100 is used in ArcFace,

and other 4 methods all use a ResNet-64 CNN model.

with our approach.

The proposed paradigm also has its limitations. First-

ly, it shares the same limitations with most of noise-robust

training methods: the hard clean samples also have smal-

l weight, which might affect the performance. However,

reducing effects of noisy samples should have higher pri-

ority while learning with a heavy noisy dataset. Secondly,

Guassian-like distributions cannot be guaranteed through-

out the whole training process. Fortunately, our method to

find left/right peaks and end points does not heavily depend

on this assumption. Lastly, we need to study the reason

that the 2nd method is superior to the 1st method in Sec-

tion 4.2.2.

To conclude, this work will greatly reduce the require-

ment for clean datasets when training FR CNN models, and

makes constructing huge-scale noisy FR datasets a valuable

job. Moreover, our approach also can be employed to help

refine a large-scale noisy FR dataset.
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