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Abstract

Reconstructing the 3D model of a physical object typ-

ically requires us to align the depth scans obtained from

different camera poses into the same coordinate system. So-

lutions to this global alignment problem usually proceed in

two steps. The first step estimates relative transformations

between pairs of scans using an off-the-shelf technique. Due

to limited information presented between pairs of scans, the

resulting relative transformations are generally noisy. The

second step then jointly optimizes the relative transforma-

tions among all input depth scans. A natural constraint used

in this step is the cycle-consistency constraint, which allows

us to prune incorrect relative transformations by detecting

inconsistent cycles. The performance of such approaches,

however, heavily relies on the quality of the input relative

transformations. Instead of merely using the relative trans-

formations as the input to perform transformation synchro-

nization, we propose to use a neural network to learn the

weights associated with each relative transformation. Our

approach alternates between transformation synchroniza-

tion using weighted relative transformations and predicting

new weights of the input relative transformations using a

neural network. We demonstrate the usefulness of this ap-

proach across a wide range of datasets.

1. Introduction

Transformation synchronization, i.e., estimating consis-

tent rigid transformations across a collection of images or

depth scans, is a fundamental problem in various com-

puter vision applications, including multi-view structure

from motion [11, 37, 48, 45], geometry reconstruction from

depth scans [27, 15], image editing via solving jigsaw puz-

zles [14], simultaneous localization and mapping [10], and

reassembling fractured surfaces [22], to name just a few. A

common approach to transformation synchronization pro-

ceeds in two phases. The first phase establishes the rela-
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Figure 1: Reconstruction results from 30 RGBD images of an in-

door environment using different transformation synchronization

methods. (a) Our approach. (b) Rotation Averaging [12]. (c) Geo-

metric Registration[15]. (d) Ground Truth.

tive rigid transformations between pairs of objects in iso-

lation. Due to incomplete information presented in iso-

lated pairs, the estimated relative transformations are usu-

ally quite noisy. The second phase improves the relative

transformations by jointly optimizing them across all in-

put objects. This is usually made possible by utilizing

the so-called cycle-consistency constraint, which states that

the composite transformation along every cycle should be

the identity transformation, or equivalently, the data matrix

that stores pair-wise transformations in blocks is low-rank

(c.f. [23]). This cycle-consistency constraint allows us to

jointly improve relative transformations by either detecting

inconsistent cycles [14, 36] or performing low-rank matrix

recovery [23, 47, 39, 7, 9].

However, the success of existing transformation syn-

chronization [47, 11, 3, 26] and more general map syn-

chronization [23, 39, 38, 13, 42, 26] techniques heavily de-

pends on the compatibility between the loss function and

the noise pattern of the input data. For example, approaches

based on robust norms (e.g., L1 [23, 13]) can tolerate ei-

ther a constant fraction of adversarial noise (c.f.[23, 26])
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or a sub-linear outlier ratio when the noise is independent

(c.f.[13, 42]). Such assumptions, unfortunately, deviate

from many practical settings, where the majority of the in-

put relative transformations may be incorrect (e.g., when the

input scans are noisy), and/or the noise pattern in relative

transformations is highly correlated (there are a quadratic

number of measurements from a linear number of sources).

This motivates us to consider the problem of learning trans-

formation synchronization, which seeks to learn a suitable

loss function that is compatible with the noise pattern of

specific datasets.

In this paper, we introduce an approach that formu-

lates transformation synchronization as an end-to-end neu-

ral network. Our approach is motivated by reweighted least

squares and their application in transformation synchro-

nization (c.f. [11, 3, 15, 26]), where the loss function dic-

tates how we update the weight associated with each in-

put relative transformation during the synchronization pro-

cess. Specifically, we design a recurrent neural network that

reflects this reweighted scheme. By learning the weights

from data directly, our approach implicitly captures a suit-

able loss function for performing transformation synchro-

nization.

We have evaluated the proposed technique on two real

datasets: Redwood [16] and ScanNet [17]. Experimental

results show that our approach leads to considerable im-

provements compared to the state-of-the-art transformation

synchronization techniques. For example, on Redwood and

Scannet, the best combination of existing pairwise match-

ing and transformation synchronization techniques lead to

mean angular rotation errors 22.4◦ and 64.4◦, respectively.

In contrast, the corresponding statistics of our approach are

6.9◦ and 42.9◦, respectively. We also perform an ablation

study to evaluate the effectiveness of our approach.

Code is publicly available at https://github.

com/xiangruhuang/Learning2Sync.

2. Related Works

Existing techniques on transformation synchronization

fall into two categories. The first category of methods [27,

22, 49, 36, 52] uses combinatorial optimization to select a

subgraph that only contains consistent cycles. The second

category of methods [47, 31, 25, 23, 24, 13, 53, 42, 33, 26,

7, 39, 38, 2, 9, 4, 5, 41, 19, 46, 6, 21] can be viewed from

the perspective that there is an equivalence between cycle-

consistent transformations and the fact that the map collec-

tion matrix that stores relative transformations in blocks is

semidefinite and/or low-rank (c.f.[23]). These methods for-

mulate transformation synchronization as low-rank matrix

recovery, where the input relative transformations are con-

sidered noisy measurements of this low-rank matrix. In the

literature, people have proposed convex optimization [47,

23, 24, 13], non-convex optimization [11, 53, 33, 26], and

spectral techniques [31, 25, 39, 38, 42, 44, 7, 2, 9] for solv-

ing various low-rank matrix recovery formulations. Com-

pared with the first category of methods, the second cate-

gory of methods is computationally more efficient. More-

over, tight exact recovery conditions of many methods have

been established.

A message from these exact recovery conditions is that

existing methods only work if the fraction of noise in the

input relative transformations is below a threshold. The

magnitude of this threshold depends on the noise pattern.

Existing results either assume adversarial noise [23, 26] or

independent random noise [47, 13, 42, 8]. However, as rel-

ative transformations are computed between pairs of ob-

jects, it follows that these relative transformations are de-

pendent (i.e., between the same source object to different

target objects). This means there are a lot of structures in

the noise pattern of relative transformations. Our approach

addresses this issue by optimizing transformation synchro-

nization techniques to fit the data distribution of a particular

dataset. To best of our knowledge, this work is the first to

apply supervised learning to the problem of transformation

synchronization.

Our approach is also relevant to utilizing recurrent neural

networks for solving the pairwise matching problem. Re-

cent examples include learning correspondences between

pairs of images [35], predicting the fundamental matrix be-

tween two different images of the same underlying environ-

ment [40], and computing a dense image flow between an

image pair [30]. In contrast, we study a different problem

of transformation synchronization in this paper. In partic-

ular, our weighting module leverages problem specific fea-

tures (e.g., eigen-gap) for determining the weights associ-

ated with relative transformations. Learning transformation

synchronization also poses great challenges in making the

network trainable end-to-end.

3. Problem Statement and Approach Overview

In this section, we describe the problem statement of

transformation synchronization (Section 3.1) and present an

overview of our approach (Section 3.2).

3.1. Problem Statement

Consider n input scans S = {Si, 1 ≤ i ≤ n} captur-

ing the same underlying object/scene from different camera

poses. Let Σi denote the local coordinate system associ-

ated with Si. The input to transformation synchronization

can be described as a model graph G = (S, E) [28]. Each

edge (i, j) ∈ E of the model graph is associated with a

relative transformation T in
ij = (Rin

ij , t
in
ij ) ∈ R

3×4, where

Rin
ij ∈ R

3×3 and t
in
ij ∈ R

3 are rotational and transla-

tional components of T in
ij , respectively. T in

ij is usually pre-

computed using an off-the-shelf algorithm (e.g., [34, 50]).

For simplicity, we impose the assumption that (i, j) ∈ E if

and only if (i) (j, i) ∈ E , and (ii) their associated transfor-

mations are compatible, i.e.,

Rin
ji = Rin

ij

T
, t

in
ji = −Rin

ij

T
t
in
ij .
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Figure 2: Illustration of our network design.

It is expected that many of these relative transformations

are incorrect, due to limited information presented between

pairs of scans and limitations of the off-the-shelf method

being used. The goal of transformation synchronization

is to recover the absolute pose Ti = (Ri, ti) ∈ R
3×4 of

each scan Si in a world coordinate system Σ. Without

losing generality, we assume the world coordinate system

is given by Σ := Σ1. Note that unlike traditional trans-

formation synchronization approaches that merely use T in
ij

(e.g.,[11, 47, 3]), our approach also incorporates additional

information extracted from the input scans Si, 1 ≤ i ≤ n.

3.2. Approach Overview

Our approach is motivated from iteratively reweighted

least squares (or IRLS)[18], which has been applied to

transformation synchronization (e.g. [11, 3, 15, 26]). The

key idea of IRLS is to maintain an edge weight wij , (i, j) ∈
E for each input transformation T in

ij so that the objective

function becomes quadratic in the variables, and transfor-

mation synchronization admits a closed-form solution. One

can then use the closed-form solution to update the edge

weights. One way to understand reweighting schemes is

that when the weights converged, the reweighted square loss

becomes the actual robust loss function that is used to solve

the corresponding transformation synchronization problem.

In contrast to using a generic weighting scheme, we propose

to learn the weighting scheme from data by designing a re-

current network that replicates the reweighted transforma-

tion synchronization procedure. By doing so, we implicitly

learn a suitable loss function for transformation synchro-

nization.

As illustrated in Figure 2, the proposed recurrent module

combines a synchronization layer and a weighting module.

At the kth iteration, the synchronization layer takes as input

the initial relative transformations T in
ij ∈ R

3×4, ∀(i, j) ∈

E and their associated weights w
(k)
ij ∈ (0, 1) and outputs

synchronized poses T
(k)
i : Σi → Σ for the input objects

Si, 1 ≤ i ≤ n. Initially, we set w
(1)
ij = 1, ∀(i, j) ∈ E . The

technical details of the synchronization layer are described

in Section 4.1.

The weighting module operates on each object pair in

isolation. For each edge (i, j) ∈ E , the input to the pro-

posed weighting module consists of (1) the input relative

transformation T in
ij , (2) features extracted from the initial

alignment of the two input scans, and (3) a status vector

v
(k) that collects global signals from the synchronization

layer at the kth iteration (e.g., spectral gap). The output is

the associated weight w
(k+1)
ij at the k + 1th iteration.

The network is trained end-to-end by penalizing the dif-

ferences between the ground-truth poses and the output of

the last synchronization layer. The technical details of this

end-to-end training procedure are described in Section 4.3.

4. Approach

In this section, we introduce the technical details of our

learning transformation synchronization approach. In Sec-

tion 4.1, we introduce details of the synchronization layer.

In Section 4.2, we describe the weighting module. Finally,

we show how to train the proposed network end-to-end in

Section 4.3. Note that the proofs of the propositions in-

troduced in this section are deferred to the supplementary

material.

4.1. Synchronization Layer

For simplicity, we ignore the superscripts k and in when

introducing the synchronization layer. Let Tij = (Rij , tij)
and wij be the input relative transformation and its weights

associated with the edge (i, j) ∈ E . We assume that this

weighted graph is connected. The goal of the synchro-

nization layer is to compute the synchronized pose T ⋆
i =

(R⋆
i , t

⋆
i ) associated with each scan Si. Note that a correct

relative transformation Tij = (Rij , tij) induces two sepa-
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Algorithm 1 Translation Synchronization Layer.

function SYNC((wij , Tij), ∀(i, j) ∈ E)

Form the connection Laplacian L and vector b;

Compute first 3 eigenvectors U of L;

Perform SVD on blocks of U to obtain {R⋆
i , 1 ≤ i ≤

n} via (2);

Solve (4) to obtain {t⋆i , 1 ≤ i ≤ n};
return T ⋆

i = (R⋆
i , t

⋆
i ), 1 ≤ i ≤ n;

end function

rate constraints on the rotations R⋆
i and translations t⋆i , re-

spectively:

RijR
⋆
i = R⋆

j , Rijt
⋆
i + tij = t

⋆
j .

We thus perform rotation synchronization and translation

synchronization separately.

Rotation synchronization. Our rotation synchroniza-

tion approach adapts a Laplacian rotation synchroniza-

tion formulation proposed in the literature [1, 2, 9, 4].

More precisely, we introduce a connection Laplacian L ∈
R

3n×3n [43], whose blocks are given by

Lij :=











∑

j∈N (i)

wijI3 i = j

−wijR
T
ij (i, j) ∈ E

0 otherwise

(1)

where N (i) collects all neighbor vertices of i in G.

Let U = (UT
1 , · · · , UT

n )T ∈ R
3n×3 collect the eigen-

vectors of L that correspond to the three smallest eigen-

values. We choose the sign of each eigenvector such that
∑n

i=1 det(Ui) > 0. To compute the absolute rotations, we

first perform singular value decomposition (SVD) on each

Ui = ViΣiW
T
i .

We then output the corresponding absolute rotation estimate

as

R∗
i = ViW

T
i (2)

It can be shown that when the observation graph is con-

nected and Rij , (i, j) ∈ E are exact, then R∗
i , 1 ≤ i ≤ n re-

cover the underlying ground-truth solution (c.f.[1, 2, 9, 4]).

In Section C.3 of the supplementary material, we present

a robust recovery result that R⋆
i approximately recover the

underlying ground-truth even when Rij are inexact.

Translation synchronization solves the following least

square problem to obtain ti:

minimize
ti,1≤i≤n

∑

(i,j)∈E
wij‖Rijti + tij − tj‖

2 (3)

Let t = (tT1 , · · · , t
T
n )

T ∈ R
3n collect the translation com-

ponents of the synchronized poses in a column vector. In-

troduce a column vector b = (bT1 , · · · , b
T
n )

T ∈ R
3n where

bi := −
∑

j∈N (i)

wijR
T
ijtij .

Then an1 optimal solution t
⋆ to (3) is given by

t
⋆ = L+

b. (4)

Similar to the case of rotation synchronization, we can

show that when the observation graph is connected, and

Rij , tij , (i, j) ∈ E are exact, then t
⋆ recovers the under-

lying ground-truth rotations. Section C.4 of the supplemen-

tary material presents a robust recovery result for transla-

tions.

4.2. Weighting Module

We define the weighting module as the following func-

tion:

w
(k+1)
ij ←Weightθ(Si, Sj , T

in
ij , s

(k)
ij ) (5)

where the input consists of (i) a pair of scans Si and Sj ,

(ii) the input relative transformation T in
ij between them, and

(iii) a status vector s
(k)
ij ∈ R

4. The output of this weighting

module is given by the new weight w
(k+1)
ij at the k + 1th

iteration. With θ we denote the trainable weights of the

weighting module. In the following, we first introduce the

definition of the status vector s
(k)
ij .

Status vector. The purpose of the status vector s
(k)
ij is to

collect additional signals that are useful for determining the

output of the weighting module. Define

s
(k)
ij1 := ‖Rin

ij −R
(k)
j R

(k)
i

T

‖F , (6)

s
(k)
ij2 := ‖Rin

ij t
(k)
i + t

in
ij − t

(k)
j ‖. (7)

s
(k)
ij3 := λ4(L

(k))− λ3(L
(k)), (8)

s
(k)
ij4 :=

∑

(i,j)∈E
w

(k)
ij ‖t

(k)
ij ‖

2 − b
(k)TL(k)+

b
(k), (9)

Essentially, s
(k)
ij1 and s

(k)
ij2 characterize the difference be-

tween current synchronized transformations and the input

relative transformations. The motivation for using them

comes from the fact that for a standard reweighted scheme

for transformation synchronization (c.f. [26]), one simply

sets w
(k+1)
ij = ρ(s

(k)
ij1, s

(k)
ij2) for a weighting function ρ

(c.f. [18]). This scheme can already recover the underly-

ing ground-truth in the presence of a constant fraction of

adversarial incorrect relative transformations (Please refer

to Section C.7 of the supplementary material for a formal

analysis). In contrast, our approach seeks to go beyond this

limit by leveraging additional information. The definition of

s
(k)
ij3 captures the spectral gap of the connection Laplacian.

s
(k)
ij4 equals to the residual of (3). Intuitively, when s

(k)
ij3 is

large and s
(k)
ij4 is small, the weighted relative transforma-

tions w
(k)
ij · T

in
ij will be consistent, from which we can re-

1When L is positive semidefinite, then the solution is unique, and (4)

gives one optimal solution.
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Figure 3: Illustration of network design of the weighting module. We first compute the nearest neighbor distance between a pair of depth

images, which form the images (shown as heat maps) in the middle. In this paper, we use k = 1. We then apply a classical convolutional

neural network to output a score between (0, 1), which is then combined with the status vector to produce the weight of this relative pose

according to (10).

cover accurate synchronized transformations T
(k)
i . We now

describe the network design.

Network design. As shown in Figure 3, the key component

of our network design is a sub-network scoreθ0(Si, Sj , T
in
ij )

that takes two scans Si and Sj and a relative transformation

T in
ij between them and output a score in [0, 1] that indicates

whether this is a good scan alignment or not, i.e., 1 means a

good alignment, and 0 means an incorrect alignment.

We design scoreθ0 as a feed-forward network. Its input

consists of two color maps that characterize the alignment

patterns between the two input scans. The value of each

pixel represents the distance of the corresponding 3D point

to the closest points on the other scan under T in
ij (See the

second column of images in Figure 3). We then concatenate

these two color images and feed them into a neural network

(we used a modified AlexNet architecture[32]), which out-

puts the final score.

With this setup, we define the output weight w
(k+1)
ij as

w
(k+1)
ij :=

eθ1θ2

eθ1θ2 + (scoreθ0(Si, Sj , T in
ij )s

(k)
ij

T

θ3)θ2
(10)

Note that (10) is conceptually similar to the reweighting

scheme ρσ(x) = x2/(σ2 + x2) that is widely used in L0

minimization (c.f[18]). However, we make elements of the

factors and denominators parametric, so as to incorporate

status vectors and to capture dataset specific distributions.

Moreover, we use exponential functions in (10), since they

lead to a loss function that is easier to optimize. With

θ = (θ0, θ1, θ2, θ3) we collect all trainable parameters of

(10).

4.3. End­to­End Training

Let D denote a dataset of scan collections with annotated

ground-truth poses. Let kmax be the number of recurrent

steps (we used four recurrent steps in our experiments) . We

define the following loss function for training the weighting

module Weightθ:

min
θ

∑

S∈D

∑

1≤i<j≤|S|

(

‖Rkmax

j Rkmax

i

T
−Rgt

j Rgt

i

T
‖2F

+ λ‖tkmax

i − t
gt

i ‖2
)

(11)

where we set λ = 10 in all of our experiments. Note that

we compare relative rotations in (11) to factor out the global

orientation among the poses. The global shift in translation

is already handled by (4).

We perform back-propagation to optimize (11). The

technical challenges are to compute the derivatives that pass

through the synchronization layer, including 1) the deriva-

tives of R⋆
jR

⋆
i
T with respect to the elements of L, 2) the

derivatives of t⋆i with respect to the elements of L and b,

and 3) the derivatives of each status vector with respect to

the elements of L and b. In the following, we provide ex-

plicit expressions for computing these derivatives.

We first present the derivative between the output of ro-

tation synchronization and its input. To make the notation

uncluterred, we compute the derivative by treating L as a

matrix function. The derivative with respect to wij can be

easily obtained via chain-rule.

Proposition 1. Let ui and λi be the i-th eigenvector and

eigenvalue of L, respectively. Expand the SVD of Ui =
ViΣiW

T
i as follows:

Vi = (vi,1,vi,2,vi,3), Σi = diag(σi,1, σi,2, σi,3),

Wi = (wi,1,wi,2,wi,3).

Let etj ∈ R
t be the jth canonical basis of Rt. We then have

d(R⋆
jR

⋆
i
T ) = dRj ·R

⋆
i
T +R⋆

j · dRi
T ,

where

dRi :=
∑

1≤s,t≤3

vi,s
TdUiwi,t − vi,t

TdUiwi,s

σi,s + σi,t

vi,swi,t
T ,
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where dUi is defined by ∀1 ≤ j ≤ 3,

dUie
(3)
j = (e

(n)
i

T

⊗ I3)

3n
∑

l=4

ulu
T
l

λj − λl

dLuj .

The following proposition specifies the derivative of t⋆

with respect to the elements of L and b:

Proposition 2. The derivatives of t⋆ are given by

dt⋆ = L+dLL+ + L+db.

Regarding the status vectors, the derivatives of sij,1 with

respect to the elements of L are given by Prop. 1; The

derivatives of sij,2 and sij,4 with respect to the elements

of L are given by Prop. 2. It remains to compute the deriva-

tives of sij.3 with respect to the elements of L, which can

be easily obtained via the derivatives of the eigenvalues of

L [29], i.e.,

dλi = u
T
i dLui.

5. Experimental Results

This section presents an experimental evaluation of

the proposed learning transformation synchronization ap-

proach. We begin with describing the experimental setup in

Section 5.1. In Section 5.2, we analyze the results of our ap-

proach and compare it against baseline approaches. Finally,

we present an ablation study in Section 5.3.

5.1. Experimental Setup

Datasets. We consider two datasets in this paper, Red-

wood [16] and ScanNet [17]:

• Redwood contains RGBD sequences of individual ob-

jects. We uniformly sample 60 sequences. For each

sequence, we sample 30 RGBD images that are 20

frames away from the next one, which cover 600

frames of the original sequence. For experimental

evaluation, we use the poses associated with the re-

construction as the ground-truth. We use 35 sequences

for training and 25 sequences for testing. Note that the

temporal order among the frames in each sequence is

discarded in our experiments.

• ScanNet contains RGBD sequences, as well as recon-

struction, camera pose, for 706 indoor scenes. Each

scene contains 2-3 sequences of different trajectories.

We randomly sample 100 sequences from ScanNet.

We use 70 sequences for training and 30 sequences for

testing. Again the temporal order among the frames in

each sequence is discarded in our experiments.

More details about the sampled sequences are given in the

supplementary material.

Pairwise methods. We consider two state-of-the-art pair-

wise methods for generating the input to our approach:

• Super4PCS [34] applies sampling to find consistent

matches of four point pairs.

• Fast Global Registration (FastGR) [50] utilizes fea-

ture correspondences and applies reweighted non-

linear least squares to extract a set of consistent fea-

ture correspondences and fit a rigid pose. We used the

Open3D implementation [51].

Baseline approaches. We consider the following baseline

approaches that are introduced in the literature for transfor-

mation synchronization:

• Robust Relative Rotation Averaging (RotAvg) [12]

is a scalable algorithm that performs robust rotation

averaging of relative rotations. To recover translations,

we additionally apply a state-of-the-art translation syn-

chronization approach [26]. We use default setting of

its publicly accessible code. [26] is based on our own

Python implementation.

• Geometric Registration (GeoReg) [15] solve multi-

way registration via pose graph optimization. We mod-

ify the Open3D implementation to take inputs from

Super4PCS or FastGR.

• Transformation Synchronization (TranSyncV2) [9]

is a spectral approach that aims to find a low rank ap-

proximation of the null space of the Laplacian matrix.

We used the authors’ code.

• Spectral Synchronization in SE(3) (EIGSE3) [7] is

another spectral approach that considers translation

and rotation together by working in SE(3). We used

the authors’ code.

Note that our approach utilizes a weighting module to

score the input relative transformations. To make fair com-

parisons, we use the median nearest-neighbor distances be-

tween the overlapping regions (defined as points within dis-

tance 0.2m from the other point cloud) to filter all input

transformations, and select those with median distance be-

low 0.1m. Note that with smaller threshold the pose graph

will be disconnected. We then feed these filtered input

transformations to each baseline approach for experimental

evaluation.

Evaluation protocol. We employ the evaluation protocols

of [11] and [26] for evaluating rotation synchronization and

translation synchronization, respectively. Specifically, for

rotations, we first solve the best matching global rotation

between the ground-truth and the prediction, we then re-

port the statistics and the cumulative distribution function

(CDF) of angular deviation arccos(‖ log(RTRgt‖F√
2

) between
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Methods Redwood ScanNet

Rotation Error Translation Error (m) Rotation Error Translation Error (m)

3
◦

5
◦

10
◦
30

◦
45

◦ Mean 0.05 0.1 0.25 0.5 0.75 Mean 3
◦

5
◦

10
◦
30

◦
45

◦ Mean 0.05 0.1 0.25 0.5 0.75 Mean

FastGR (all) 29.4 40.2 52.0 63.8 70.4 37.4
◦ 22.0 39.6 53.0 60.3 67.0 0.68 9.9 16.8 23.5 31.9 38.4 76.3

◦ 5.5 13.3 22.0 29.0 36.3 1.67

FastGR (good) 33.9 45.2 57.2 67.4 73.2 34.1
◦ 26.7 45.7 58.8 65.9 71.4 0.59 12.4 21.4 29.5 38.6 45.1 68.8

◦ 7.7 17.6 28.2 36.2 43.4 1.43

Super4PCS (all) 6.9 10.1 16.7 39.6 52.3 55.8
◦ 4.2 8.9 18.2 31.0 43.5 1.14 0.5 1.3 4.0 17.4 25.2 98.5

◦ 0.3 1.2 5.3 13.3 21.6 2.11

Super4PCS (good) 10.3 14.9 23.9 48.0 60.0 49.2
◦ 6.4 13.3 26.2 41.2 53.2 0.93 0.8 2.3 6.4 23.0 31.7 90.8

◦ 0.6 2.2 8.9 19.5 29.5 1.80

RotAvg (FastGR) 30.4 42.6 59.4 74.4 82.1 22.4
◦ 23.3 43.2 61.8 72.4 80.7 0.42 6.0 10.4 17.3 36.1 46.1 64.4

◦ 3.7 9.2 19.5 34.0 45.6 1.26

GeoReg (FastGR) 17.8 28.7 47.5 74.2 83.2 27.7
◦ 4.9 18.4 50.2 72.6 81.4 0.93 0.2 0.6 2.8 16.4 27.1 87.2

◦ 0.1 0.7 4.8 16.4 28.4 1.80

RotAvg (Super4PCS) 5.4 8.7 17.4 45.1 59.2 49.6
◦ 3.2 7.4 17.0 32.3 46.3 0.95 0.3 0.8 3.0 15.4 23.3 96.8

◦ 0.2 1.0 5.8 16.5 27.6 1.70

GeoReg (Super4PCS) 2.1 4.1 10.2 33.1 48.3 60.6
◦ 1.1 3.1 10.3 21.5 31.8 1.25 1.9 5.1 13.9 36.6 47.1 72.9

◦ 0.4 2.1 9.8 23.2 34.5 1.82

TranSyncV2 (FastGR) 9.5 17.9 35.8 69.7 80.1 27.5
◦ 1.5 6.2 24.0 48.8 67.5 0.62 0.4 1.5 6.1 29.0 42.2 68.1

◦ 0.2 1.5 11.3 32.0 46.3 1.44

EIGSE3 (FastGR) 36.6 47.2 60.4 74.8 83.3 21.3
◦ 21.5 36.7 57.2 70.4 79.2 0.43 1.5 4.3 12.1 34.5 47.7 68.1

◦ 1.2 4.1 14.7 32.6 46.0 1.29

Our Approach (FastGR) 67.5 77.5 85.6 91.7 94.4 6.9◦ 20.7 40.0 70.9 88.6 94.0 0.26 34.4 41.1 49.0 58.9 62.3 42.9◦ 2.0 7.3 22.3 36.9 48.1 1.16

Our Approach (Super4PCS) 2.3 5.1 13.2 42.5 60.9 46.7
◦ 1.1 4.0 13.8 29.0 42.3 1.02 0.4 1.7 6.8 29.6 43.5 66.9

◦ 0.1 0.8 5.6 16.6 27.0 1.90

Transf. Sync. (FastGR) 27.1 37.7 56.9 74.4 82.4 22.1
◦ 17.4 34.4 55.9 70.4 81.3 0.43 3.2 6.5 14.6 35.8 47.4 63.5

◦ 1.6 5.6 15.5 30.9 43.4 1.31

Input Only (FastGR) 36.7 51.4 68.1 87.7 91.7 13.7
◦ 25.1 49.3 73.2 86.4 91.6 0.26 11.7 19.4 30.5 50.7 57.7 51.7

◦ 5.9 15.4 30.5 43.7 52.2 1.03

No Recurrent (FastGR) 37.8 52.8 71.1 87.7 91.7 12.9
◦ 26.3 51.1 77.3 87.1 92.0 0.24 8.6 15.3 26.9 51.4 58.2 49.8

◦ 3.9 11.1 27.3 43.7 53.9 1.01

Figure 4: Benchmark evaluations on Redwood [16] and ScanNet [17]. Quality of absolute poses are evaluated by computing

errors to pairwise ground truth poses. Angular distances between rotation matrices are computed via angular (Rij , R
⋆
ij) =

arccos(
tr(RT

ijR
⋆
ij)−1

2 ). Translation distances are computed by ‖tij − t⋆ij‖. We collect statistics on percentages of rotation

and translation errors that are below a varying threshold. I) The 4th to 7th rows contain evaluations for upstream algorithms.

(all) refers to statistics among all pairs where (good) refers to the statistics computed among relative poses with good quality

overlap regions. II) For the second part, we report results of all baselines computed from this good set of relative poses, which

is consistently better than the results from all relative poses. Since there are two input methods, we report the results of each

transformation synchronization approach on both inputs. III) The third parts contain results for ablation study performed

only on FastGR[50] inputs. The first row reports state-of-the-art rotation and translation synchronization results, followed by

variants of our approach.

a prediction R and its corresponding ground-truth Rgt . For

translations, we report the statistics and CDF of ‖t − t
gt‖

between each pair of prediction t and its corresponding

ground-truth t
gt . The unit of translation errors are meters

(m). The statistics are shown in Figure 4 and the CDF plots

are shown in Section B of the supplementary material.

5.2. Analysis of Results

Figure 4 and Figure 5 present quantitative and quali-

tative results, respectively. Overall, our approach yielded

fairly accurate results. On Redwood, the mean errors in ro-

tations/translations of FastGR and our result from FastGR

are 34.1◦/0.58m and 6.9◦/0.26m, respectively. On Scan-

Net, the mean errors in rotations/translations of FastGR and

our result from FastGR are 68.8◦/1.43m and 42.9◦/1.16m,

respectively. Note that in both cases, our approach leads to

salient improvements from the input. The final results of our

approach on ScanNet are less accurate than those on Red-

wood. Besides the fact that the quality of the initial relative

transformations is lower on ScanNet than that on Redwood,

another factor is that depth scans from ScanNet are quite

noisy, leading to noisy input (and thus less signals) for the

weighting module. Still, the improvements of our approach

on ScanNet are salient.

Our approach still requires reasonable initial transforma-

tions to begin with. This can be understood from the fact

that our approach seeks to perform synchronization by se-

lecting a subset of input relative transformations. Although

our approach utilizes learning, its performance shall de-

crease when the quality of the initial relative transforma-

tions drops. An evidence is that our approach only leads

to modest performance gains when taking the output of Su-

per4PCS as input.

Comparison with state-of-the-art approaches. Although

all the two baseline approaches improve from the input rel-

ative transformations, our approach exhibits significant fur-

ther improvements from all baseline approaches. On Red-

wood, the mean rotation and translation errors of the top

performing method RotAvg from FastGR are 22.4◦ and

0.418m, respectively. The reductions in mean error of our

approach are 69.2% and 39.0% for rotations and transla-

tions, respectively, which are significant. The reductions in

mean errors of our approach on ScanNet are also noticeable,

i.e., 33.3% and 7.4% in rotations and translations, respec-

tively.

Our approach also achieved relative performance gains

from baseline approaches when taking the output of Su-

per4PCS as input. In particular, for mean rotation errors,

our approach leads to reductions of 5% and 9% on Red-

wood and ScanNet, respectively.

When comparing rotations and translations, the improve-

ments on mean rotation errors are bigger than those on mean

translation errors. One explanation is that there are a lot of

planar structures in Redwood and ScanNet. When align-

ing such planar structures, rotation errors easily lead to a

large change in nearest neighbor distances and thus can be
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Figure 5: Each column represents the results of one scene. From bottom to top, we show the results of our approach , Rotation Averag-

ing [12]+Translation Sync. [26] (row II), Geometric Registration [15] (row III), and Ground Truth (row IV) (Top). The left four scenes are

from Redwood [16] and the right two scenes are from ScanNet [17]

detected by our weighting module. In contrast, translation

errors suffer from the gliding effects on planar structures

(c.f.[20]). For example, there are rich planar structures that

consist of a pair of perpendicular planes, and aligning such

planar structures may glide along the common line of these

plane pairs. As a result, our weighting module becomes less

effective for improving the translation error.

5.3. Ablation Study

In this section, we present two variants of our learning

transformation synchronization approach to justify the use-

fulness of each component of our system. Due to space

constraint, we perform ablation study only using FastGR.

Input only. In the first experiment, we simply learn to

classify the input maps, and then apply transformation syn-

chronization techniques on the filtered input transforma-

tions. In this setting, state-of-the-art transformation syn-

chronization techniques achieves mean rotation/translation

errors of 22.1◦/0.43m and 63.5◦/1.25m on Redwood and

ScanNet, respectively. By applying our learning approach

to fixed initial map weights, e.g., we fix θ0 of the weighting

module in (10), our approach reduced the mean errors to

13.7◦/0.255m and 51.7◦/1.031m on Redwood and Scan-

Net, respectively. Although such improvements are notice-

able, there are still gaps between this reduced approach and

our full approach. This justifies the importance of learning

the weighting module together.

No recurrent module. Another reduced approach is to di-

rectly combine the weighting module and one synchroniza-

tion layer. Although this approach can improve from the in-

put transformations. There is still a big gap between this ap-

proach and our full approach (See the last row in Figure 4).

This shows the importance of using weighting modules to

gradually reduce the error while simultaneously make the

entire procedure trainable end-to-end.

6. Conclusions

In this paper, we have introduced a supervised transfor-

mation synchronization approach. It modifies a reweighted

nonlinear least square approach and applies a neural net-

work to automatically determine the input pairwise trans-

formations and the associated weights. We have shown how

to train the resulting recurrent neural network end-to-end.

Experimental results show that our approach is superior to

state-of-the-art transformation synchronization techniques

on ScanNet and Redwood for two state-of-the-art pairwise

scan matching methods.

There are ample opportunities for future research. So

far we have only considered classifying pairwise transfor-

mations, it would be interesting to study how to classify

high-order matches. Another interesting direction is to in-

stall ICP alignment into our recurrent procedure, i.e., we

start from the current synchronized poses and perform ICP

between pairs of scans to obtain more signals for transfor-

mation synchronization. Moreover, instead of maintaining

one synchronized pose per scan, we can maintain multi-

ple synchronized poses, which offer more pairwise matches

between pairs of scans for evaluation. Finally, we would

like to apply our approach to synchronize dense correspon-

dences across multiple images/shapes.
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