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Abstract

Pixel-wise losses, e.g., cross-entropy or L2, have been

widely used in structured prediction tasks as a spatial ex-

tension of generic image classification or regression. How-

ever, its i.i.d. assumption neglects the structural regular-

ity present in natural images. Various attempts have been

made to incorporate structural reasoning mostly through

structure priors in a cooperative way where co-occurring

patterns are encouraged.

We, on the other hand, approach this problem from an

opposing angle and propose a new framework, Adversar-

ial Structure Matching (ASM), for training such structured

prediction networks via an adversarial process, in which

we train a structure analyzer that provides the supervisory

signals, the ASM loss. The structure analyzer is trained to

maximize the ASM loss, or to emphasize recurring multi-

scale hard negative structural mistakes among co-occurring

patterns. On the contrary, the structured prediction net-

work is trained to reduce those mistakes and is thus enabled

to distinguish fine-grained structures. As a result, training

structured prediction networks using ASM reduces contex-

tual confusion among objects and improves boundary local-

ization. We demonstrate that our ASM outperforms pixel-

wise IID loss or structural prior GAN loss on three different

structured prediction tasks: semantic segmentation, monoc-

ular depth estimation, and surface normal prediction.

1. Introduction

Pixel-wise losses, e.g. cross-entropy or L2, are widely

used in structured prediction tasks such as semantic seg-

mentation, monocular depth estimation, and surface normal

prediction [21, 40, 13, 31], as a spatial extension of generic

image recognition [29, 20]. However, the disadvantage of

such pixel-wise losses is also obvious due to its additive na-

ture and i.i.d. assumption of predictions: IID losses would

* Equal contributions.

Figure 1: Experimental results on semantic segmentation on

PASCAL VOC 2012 [14], monocular depth estimation, and

surface normal prediction on Stanford 2D-3D-S [2]. Net-

works trained using IID loss and shape prior based (GAN)

loss mostly fail at confusing contexts (top row) and ambigu-

ous boundaries (bottom 2 rows) whereas our ASM approach

improves upon these aspects.

yield the same overall error for different spatial distributions

of prediction mistakes. Ideally, some mistakes such as im-

plausible and incomplete round wheels should incur more

penalty than slightly thinner wheels. Structural reasoning is

thus highly desirable for structured prediction tasks.

Various attempts have been made to incorporate struc-

tural reasoning into structured prediction in a coopera-

tive way, including two mainstreams, bottom-up Condi-

tional Random Fields (CRFs) [28, 61] and top-down shape

priors [53, 19, 24] or Generative Adversarial Networks

(GANs) [17, 41, 22]: (1) CRF enforces label consistency

between pixels and is commonly employed as a post-

processing step [28, 7], or as a plug-in module inside deep

neural networks [61, 39] that coordinate bottom-up infor-

mation. Effective as it is, CRF is usually sensitive to in-

put appearance changes and needs expensive iterative infer-

ence. (2) As an example of learning top-down shape pri-

ors, GAN emerges as an alternative to enforce structural
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regularity in the structured prediction space. Specifically,

the discriminator network is trained to distinguish the pre-

dicted mask from the ground truth mask. Promising as it

is, GAN suffers from inaccurate boundary localization as

a consequence of generic shape modeling. More recently,

Ke et al. [24] propose adaptive affinity fields that capture

structural information with adaptive receptive fields. How-

ever, it is designed specifically for classification and cannot

be extended straightforward to regression.

As a result, top-down cooperative approaches prefer an

additional loss (together with IID) that penalizes more on

the anomaly structures that are deemed undesirable. Such

trained networks are thus aware of intra-category shape in-

variance and inter-category object co-occurrences. How-

ever, we notice that in real examples as in Fig. 1, complex

and deformable shapes and confusing co-occurrences are

the most common mistakes in structured prediction espe-

cially when the visual cues are ambiguous. As a result,

training with shape priors sometimes deteriorates the pre-

diction as shown in the bicycle example. We are thus in-

spired to tackle this problem from an opposing angle: top-

down approaches should adapt the focus to confusing co-

occurring context or ambiguous boundaries so as to make

the structured prediction network learn harder.

We propose a new framework called Adversarial Struc-

ture Matching (ASM), which replaces IID losses, for train-

ing structured prediction networks via an adversarial pro-

cess, in which we train a structure analyzer to provide su-

pervisory signals, the adversarial structure matching (ASM)

loss. By maximizing ASM loss, or learning to exaggerate

structural mistakes from the structured prediction networks,

the structure analyzer not only becomes aware of complex

shapes of objects but adaptively emphasize those multi-

scale hard negative structural mistakes. As a result, train-

ing structured prediction networks by minimizing ASM

loss reduces contextual confusion among co-occurring ob-

jects and improves boundary localization. To improve the

stability of training, we append a structure regularizer on

the structure analyzer to compose a structure autoencoder.

By training the autoencoder to reconstruct ground truth,

which contains complete structures, we ensure the filters

in the structure analyzer form a good structure basis. We

demonstrate that structured prediction networks trained us-

ing ASM outperforms its pixel-wise counterpart and GAN

on the figure-ground segmentation task on Weizmann horse

dataset [5] and semantic segmentation task on PASCAL

VOC 2012 dataset [14] with various base architectures, such

as FCN [40], U-Net [47], DeepLab [7], and PSPNet [60].

Besides the structured classification tasks, we also verify

the efficacy of ASM on structured regression tasks, such as

monocular depth estimation and surface normal prediction,

with U-Net [47] on Stanford 2D-3D-S dataset [2].

2. Related Works

Semantic Segmentation. The field of semantic segmenta-

tion has progressed fast in the last few years since the in-

troduction of fully convolutional networks [40, 7]. Both

deeper [60, 34] and wider [44, 47, 56] network architec-

tures have been proposed and have dramatically boosted

the performance on standard benchmarks like PASCAL

VOC 2012 [14]. Notably, multi-scale context informa-

tion emerges to remedy limited receptive fields, e.g., spa-

tial pyramid pooling [60] and atrous spatial pyramid pool-

ing [8]. Though these methods yield impressive perfor-

mance w.r.t. mIoU, they fail to capture rich structure in-

formation present in natural scenes.

Structure Modeling. To overcome the aforementioned

drawback, researchers have explored several ways to incor-

porate structure information [28, 9, 61, 39, 35, 4, 53, 19,

24]. For example, Chen et al. [7] utilized denseCRF [28]

as post-processing to refine the final segmentation results.

Zheng et al. [61] and Liu et al. [39] further made the CRF

module differentiable within the deep neural network. Be-

sides, low-level cues, such as affinity [49, 42, 38, 4] and

contour [3, 6] have also been leveraged to encode image

structures. However, these methods either are sensitive to

appearance changes or require expensive iterative inference.

Monocular Depth Estimation and Normal Prediction.

With large-scale RGB-D data available [50, 2, 57], data-

driven approaches [23, 25, 30, 31, 33, 37, 48, 13, 15]

based on deep neural networks make remarkable progress

on depth estimation and surface normal prediction. Just

like in semantic segmentation, some incorporate structural

regularization such as CRFs into the system and demon-

strate notable improvements [26, 32, 36, 51, 52, 55, 63, 10].

Recently, leveraging depth estimation and semantic seg-

mentation for each other has emerged to be a promising

direction to improve structured predictions of both tasks

[11, 12, 18, 45, 50]. Others propose to jointly train a net-

work for both tasks [43, 46, 27, 59, 54]. Our work is also

along this direction as the ASM framework can train differ-

ent structured prediction tasks in a consistent manner.

3. Method

We provide an overview of the framework in Fig. 2 and

summarize the training procedure in Alg. 1.

3.1. Adversarial Structure Matching

We consider structured prediction tasks, in which a struc-

tured prediction network (structured predictor) S : x 7→ ŷ,

which usually is a deep CNN, is trained to map an input

image x ∈ R
n to a per-pixel label mask ŷ ∈ R

n. We

propose to train such a structured predictor with another

network, structure analyzer. The analyzer A : Rn 7→ R
k
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Figure 2: Framework overview: A structure analyzer extracts structure features (red arrows) from structured outputs. The

analyzer is trained to maximize an adversarial structure matching (ASM) loss, or discrepancy between multi-scale structure

features extracted from ground truth and from predictions of a structured predictor. The analyzer thus learns to exaggerate

the hard negative structural mistakes and to distinguish fine-grained structures. The structured predictor on the contrary is

trained to minimize the ASM loss. To make sure the filters in the analyzer form a good structure basis, we introduce a

structure regularizer, which together with the analyzer, constitutes an autoencoder. The autoencoder is trained to reconstruct

ground truth with a structure regularization (SR) loss. Dotted lines denote computations during training only.

extracts k-dimensional multi-layer structure features from

either ground truth masks, denoted as A(y), or predictions,

denoted as A(S(x)). We train the analyzer to maximize the

distance between the structure features from either inputs,

so that it learns to exaggerate structural mistakes, or hard

negative structural examples, made by the structured pre-

dictor. On the contrary, we simultaneously train the struc-

tured predictor to minimize the same distance. In other

words, structured predictor S and structure analyzer A play

the following two-player minimax game with value func-

tion V (S,A):

min
S

max
A

V (S,A) = Ex,y

[
1

2
‖A (S(x))−A(y)‖

2
2

]

,

(1)

that is, we prefer the optimal structured predictor as the one

that learns to predict true structures to satisfy the analyzer.

Note that the analyzer will bias its discriminative power to-

wards similar but subtly different structures as they occur

more frequently through the course of training.

One might relate this framework to GAN [17]. A critical

distinction is that GAN tries to minimize the data distribu-

tions between real and fake examples and thus accepts a

set of solutions. Here, structured prediction tasks require a

specific one-to-one mapping of each pixel between ground

truth masks and predictions. Therefore, the discrimina-

tion of structures should take place for every patch between

corresponding masks, hence the name adversarial structure

matching (ASM).

It is also related to perceptual loss [16, 58] for style trans-

fer, which uses pretrained CNN features to capture image

statistics. We, on the other hand, generalize this concept by

adapting the CNN and accepting any dimensional inputs.

3.2. Global Optimality ofS(x) = y and Convergence

We would like the structured predictor to converge to a

good mapping of y given x, if given enough capacity and

training time. To simplify the dynamic of convergence, we

consider both structured predictor S and analyzer A as mod-

els with infinite capacity in a non-parametric setting.

Proposition 1. For a fixed S, if S(x) 6= y, then

‖A∗ (S(x))−A∗(y)‖
2
2 is infinitely large for an optimal A.

Proof. If S(x) 6= y, there exists an index i such that

S(x)[i] − y[i] = ǫ, where ǫ ∈ R \ {0}. Without loss

of generality, we assume S(x)[j] = y[j] if j 6= i and let

S(x)[i] = c+ 1
2ǫ and y[i] = c− 1

2ǫ.

We consider a special case where Al on the i-th dimen-

sion of the input is a linear mapping, i.e., Al(x[i]) = wix[i].
As A is with infinite capacity, we know there exists A such

that

‖A (S(x))−A(y)‖
2
2 ≥ ‖Al (S(x))−Al(y)‖

2
2 =

∥
∥
∥
∥
wi

(

c+
1

2
ǫ

)

− wi

(

c−
1

2
ǫ

)∥
∥
∥
∥

2

2

= |wiǫ| (2)

Note that ‖Al (S(x))−Al(y)‖
2
2 → ∞ as |wi| → ∞. Thus

‖A∗ (S(x))−A∗(y)‖
2
2 → ∞.
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In practice, parameters of A are restricted

within certain range under weight regularization so

‖A∗ (S(x))−A∗(y)‖
2
2 would not go to infinity.

Corollary 1. For an optimal A, S(x) = y if and only if

A∗(S(x)) = A∗(y).

Proof. ⇒ If S(x) = y, ‖A (S(x))−A(y)‖
2
2 =

‖A(y)−A(y)‖
2
2 = 0, for any A. Hence

‖A∗ (S(x))−A∗(y)‖
2
2 = 0.

⇐ If A∗(S(x)) = A∗(y) or ‖A∗ (S(x))−A∗(y)‖
2
2 = 0,

S(x) 6= y contradicts Proposition 1. Hence S(x) = y.

Theorem 1. If (S∗, A∗) is a Nash equilibrium of the system,

then S∗(x) = y and V (S∗, A∗) = 0
Proof. From Proposition 1, we proved V (S,A∗) → ∞ if

S(x) 6= y. From Corollary 1, we proved V (S,A∗) = 0 if

and only if S(x) = y. Since V (S,A) ≥ 0 for any S and

A, the Nash equilibrium only exists when S∗(x) = y, or

V (S∗, A∗) = 0.

From the proofs, we recognize imbalanced powers be-

tween the structured predictor and structure analyzer where

the analyzer can arbitrarily enlarge the value function if the

structured predictor is not optimal. In practice, we should

limit the training of the analyzers or apply regularization,

such as weight regularization or gradient capping to prevent

gradient exploding. Therefore, we train the analyzer only

once per iteration with a learning rate that is not larger than

the one for structured predictor. Another trick for semantic

segmentation is to binarize the predictions S(x) (winner-

take-all across channels for every pixel) before calculating

ASM loss for analyzer. In this way, the analyzers will fo-

cus on learning to distinguish the structures instead of the

confidence levels of predictions.

3.3. Reconstructing y as Structure Regularization

Although theoretically structure analyzers would dis-

cover any structural difference between predictions and

ground truth, randomly initialized analyzers suffer from

missing certain structures in the early stage. For example,

if filter responses for a sharp curve are initially very low,

ASM loss for the sharp curve will be as small, resulting in

inefficient learning. This problem will emerge when train-

ing both structured predictors and structure analyzers from

scratch. To alleviate this problem, we propose a regulariza-

tion method to stabilize the learning of analyzers.

One way to ensure the filters in the analyzer form a

good structure basis is through reconstructing ground truth,

which contains complete structures. If filters in the analyzer

fail to capture certain structures, the ground truth mask can-

not be reconstructed. Hence, we append a structure regu-

larizer on top of structure analyzer to constitute an autoen-

coder. we denote the structure regularizer R : At(y) 7→ y,

where At(·) denotes features from the structure analyzer,

Algorithm 1: Algorithm for training structured predic-

tion networks using ASM.

for number of training iterations do

/* Train structure analyzer */

(optional) Binarize structured predictions S(x(i)).
Update the structure analyzer A and regularizer R

by ascending its stochastic gradient:

∇θA,R

1

m

m∑

i=1

[1

2

∥
∥
∥A

(

S(x(i))
)

−A(y(i))
∥
∥
∥

2

2

+ λIID (y, R (At(y)))
]

/* Train structured predictor */

Sample a minibatch with m images

{x(1), . . . ,x(m)} and ground truth masks

{y(1), . . . ,y(m)}.

Update the structured predictor S by descending

its stochastic gradient:

∇θS

1

2m

m∑

i=1

∥
∥
∥A

(

S(x(i))
)

−A(y(i))
∥
∥
∥

2

2

end

The gradient-based updates can use any standard

gradient-based learning rule. Structure analyzer A
should use a learning rate that is not larger than

structured predictor S.

which are not necessarily the same set of features for ASM;

hence the reconstruction mapping: R (At(y)) 7→ y. As a

result, the final objective function is as follows

S∗ =argmin
S

max
A

Ex,y

[
1

2
‖A (S(x))−A(y)‖

2
2

]

︸ ︷︷ ︸

adversarial structure matching loss

+min
A,R

λEy [IID (y, R (At(y)))]

︸ ︷︷ ︸

structure regularization loss

, (3)

where IID (y, R (At(y))) is defined for target tasks as:

Semantic segmentation: − y · logR (At(y))

Depth estimation: ‖y −R (At(y))‖
2
2

Surface normal Prediction:

∥
∥
∥
∥

y

‖y‖2
−

R (At(y))

‖R (At(y))‖2

∥
∥
∥
∥

2

2

Note that structure regularization loss is independent to S.
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Figure 3: Error maps of predictions and reconstructions by the structure autoencoder on VOC PASCAL 2012. The autoen-

coder network is able to reconstruct the missing part of certain structures, for example, it completes the round wheel in the

front. Note that neither the structure analyzer nor regularizer has access to input images.

Figure 4: Visualization of loss maps from different layers in the structure analyzer. Examples are from monocular depth

estimation on 2D-3D-Semantics [2]. We observe earlier layers capture lower-level structural mistakes as opposed to later

layers. It is worth to note that conv9, with skip connection from conv1, provides low-level structure errors guided by global

information. We observe that multi-scale structure supervision is achieved by the multi-layer structure analyzer.

4. Experiments

We demonstrate the effectiveness of our proposed meth-

ods on three structure modeling tasks: semantic segmenta-

tion, monocular depth estimation, and surface normal pre-

diction. We conduct extensive experiments on all three

tasks to compare the same structured prediction networks

trained using ASM, GAN, or IID losses. (Note that GAN

means training with IID loss and adversarial loss.)

We first give an overview of the datasets and implemen-

tation details in Sec. 4.1. Then we analyze what is learned

in the structure analyzer to understand the mechanics of

ASM in Sec. 4.2. Finally, we present our main results and

analyses on segmentation in Sec. 4.3 and on depth estima-

tion and surface normal prediction in Sec. 4.4.

4.1. Experimental Setup

Tasks and datasets. We compare our proposed ASM

against GAN and IID losses on the Weizmann horse [5],

PASCAL VOC 2012 [14], and Stanford 2D-3D-Semantics

[2] datasets. The Weizmann horse [5] is a relatively small

dataset for figure-ground segmentation that contains 328
side-view horse images, which are split into 192 training

and 136 validation images. The VOC 2012 [14] dataset is a

well-known benchmark for generic semantic segmentation

which includes 20 object classes and a ‘background’ class,

containing 10, 582 and 1, 449 images for training and vali-

dation, respectively. We also conduct experiments on 2D-

3D-Semantics [2] dataset for monocular depth and surface

normal prediction. The 2D-3D-S dataset is a large-scale in-

door scene benchmark, which consists of 70, 496 images,

along with depth, surface normal, instance- and semantic-

level segmentation annotations. The results are reported

over fold-1 data splits–Area 1,2,3,4,6 (52, 903 images) for

training and Area 5 (17, 593 images) for testing.

Architectures. For all the structure autoencoders (i.e., ana-

lyzer and regularizer), we use U-Net [47] with either 7 conv

layers for figure-ground segmentation, 5 conv layers for se-

mantic segmentation and 9 conv layers for depth and surface

normal estimation. We conduct experiments on different

structured prediction architectures. On horse dataset [5],

we use U-Net [47] (with 7 convolutional layers) as the

base architecture. On VOC [14] dataset, we carry out ex-

periments and thorough analyses over 3 different architec-

tures with ResNet-101 [20] backbone, including FCN [40],

DeepLab [7], and PSPNet [60], which is a highly competi-

tive segmentation model. On 2D-3D-S [2] dataset, we use

U-Net [47] (with 18 convolutional layers) as the base archi-

tecture for both depth and surface normal prediction. Aside

from base architectures, neither extra parameters nor post-

processing are required at inference time.

Implementation details on Weizmann horse. We use the

poly learning rate policy where the current learning rate

equals the base one multiplied by (1− iter
max iter

)0.9 with max

iterations as 100 epochs. We set the base learning rate as
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0.0005 with Adam optimizer for both S and A. Momentum

and weight decay are set to 0.9 and 0.00001, respectively.

We set the batch size as 1 and use only random mirroring.

For ASM, We set λ = 2 for structure regularization.

Implementation details on VOC dataset. Our implemen-

tation follows the implementation details depicted in [8].

We adopt the same poly learning rate policy and set the

base learning rate with SGD optimizer as 0.001 for S and

0.0005 for A. The training iterations for all experiments

on all datasets are 30K. Momentum and weight decay are

set to 0.9 and 0.0005, respectively. For data augmentation,

we adopt random mirroring and random resizing between

0.5 and 2 for all datasets. We do not use random rotation

and random Gaussian blur. We do not upscale the logits

(prediction map) back to the input image resolution, in-

stead, we follow [7]’s setting by downsampling the ground-

truth labels for training (output stride = 8). The crop

size is set to 336 × 336 and batch size is set to 8. We

update BatchNorm parameters with decay = 0.9997 for

ImageNet-pretrained layers and decay = 0.99 for untrained

layers. For ASM, we set λ = 10 for structure regularization.

Implementation details on 2D-3D-S. We implement pixel-

wise L2 loss and normalized L2 for depth and surface nor-

mal prediction as a counterpart to cross-entropy loss for

segmentation. We adopt the same poly learning rate pol-

icy, and set the base learning rate to 0.01 for both S and

A. While the original image resolution is 1080 × 1080,

we down-sample image to half resolution, set “cropsize” to

512× 512 for training, and keep 540× 540 for testing. We

use random cropping and mirroring for data augmentation.

The “batchsize” is set to 8, weight decay is set to 0.0005,

and models are trained for 120K iterations from scratch.

4.2. Analyses of Structure Analyzer

Before getting to the main results, we verify the structure

analyzer actually captures certain structures and visualize

what kind of supervisory signals it provides for training the

structured predictor.

For segmentation, some objects are rigid and certain

shapes are important structures, e.g., rectangles for buses,

circles for wheels, and parallel lines for poles. Here, we vi-

sualize the prediction, reconstruction, and their error maps

in Fig. 3. We observe that that the structure autoencoder

network is able to reconstruct the missing part of certain

structures, for example, it completes round wheels of bikes.

Note that neither the structure analyzer nor regularizer has

access to input images.

We further analyze the losses from each layer in the

structure analyzer for monocular depth estimation, shown

in Fig. 4. We observe that in the early layers where in-

formation is local, the errors are near object boundaries.

In the middle layers, e.g., layer 2 and 3, the structure an-

Figure 5: Top 10 input stimuli (in a row) for a filter in the

analyzer with maximal activations for semantic segmenta-

tion (top 3 rows), depth estimation (middle 3 rows), and

surface normal prediction (bottom 3 rows).

alyzer attends to broader context, such as the orientation of

walls. In the final layer (conv9, with skip connection from

conv1), low-level structure errors are guided by global in-

formation. We observe that multi-scale structure supervi-

sion is achieved by the multi-layer structure analyzer.

To understand what’s learned in the analyzer, we are in-

spired by Zhou et al. [62] to visualize features in a CNN by

finding the patches that maximally activate a targeted filter.

We show in Fig. 5 the top 10 input stimuli for three filters

in different layers for each task. We observe that each filter

in the analyzer attends to a specific structure, e.g., chairs,

bottles, hallways, bookcases, etc..

4.3. Main Results on Segmentation

We evaluate both figure-ground and semantic segmenta-

tion tasks via mean pixel-wise intersection-over-union (de-

noted as mIoU) [40]. We first conduct ablation studies

on both datasets to thoroughly analyze the effectiveness of

using different layers of structure features in the structure

analyzer. As summarized in Table 1, using low- to mid-

level features (from conv1 to conv2) of structure analyz-

ers yields the highest performance, 79.62% and 71.60%
mIoU on Weizmann horse dataset and VOC dataset, respec-

tively). We also report mIoU on VOC dataset using differ-

ent base architectures as shown in Table 2. Our proposed

method achieves consistent improvements across all three

base architectures, boosting mIoU by 3.23% with FCN,

0.51% with DeepLab and 1.31% with PSPNet. ASM is also

0.71% higher than GAN (incorporated with IID loss) on
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Loss Horse mIoU (%) VOC mIoU (%)

IID 77.28 68.91

ASM (Conv1) 78.14 70.00

ASM (Conv2) 78.15 70.70

ASM (Conv1-2) 79.62 71.60

ASM (Conv3) 77.79 70.85

ASM (Conv1-3) 78.11 69.81

ASM w/o rec. 77.83 72.14

ASM w/o adv. 76.70 71.26

IID+ASM 78.34 68.49

Table 1: Ablation studies of ASM on Weizmann horse

dataset with U-Net and on PASCAL VOC dataset with

FCN. Generally, using low- to mid-level features (conv1

and conv2) of structure analyzers yield the best perfor-

mance. It also shows that reconstruction is not always

needed if base networks are pre-trained. DeepLab or PSP-

Net (not shown here) has the same trend as U-Net.

Base / Loss mIoU (%)

FCN / IID 68.91

FCN / ASM 72.14

DeepLab / IID 77.54

DeepLab / ASM 78.05

PSPNet / IID 80.12

PSPNet / cGAN 80.67

PSPNet / GAN 80.74

PSPNet / ASM 81.43

Table 2: Experimental results on PASVAL VOC with sev-

eral base models, FCN [40], DeepLab [7], and PSPNet [60].

The improvements by replacing pixel-wise losses with

ASM are consistent across different base models. cGAN

[22] denotes the discriminator is conditioned on the input.

VOC dataset. We show some visual comparison in Fig. 8.

Boundary Localization Improvement. We argue that our

proposed method is more sensitive to complex shapes of

objects. We thus evaluate boundary localization using stan-

dard contour detection metrics [1]. The contour detection

metrics compute the correspondences between prediction

boundaries and ground-truth boundaries, and summarize

the results with precision, recall, and f-measure. We com-

pare the results with different loss functions: IID, GAN and

ASM on VOC validation set. As shown in Figure 6, ASM

outperforms both IID and GAN among most categories and

overall in boundary precision. (Detailed numbers including

recall and f-measure can be found in the supplementary.)

The boundaries of thin-structured objects, such as ‘bike’

and ‘chair’, are much better captured by ASM.

Figure 6: Improvements (%) of per-class boundary preci-

sion of PSPNet [60] on PASCAL VOC 2012 [14] validation

set. ASM outperforms IID and GAN in most categories.

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

IID 0.267 0.393 1.174 0.466 0.790 0.922

cGAN 0.266 0.371 1.123 0.509 0.816 0.932

ASM 0.252 0.405 1.079 0.540 0.834 0.929

Table 3: Depth estimation measurements on 2D-3D-S [2].

Note that lower is better for the first three columns, and

higher is better for the last three columns. IID is L2.

4.4. Main Results on Depth and Surface Normal

We compare ASM with pixel-wise L2 loss (IID) and

cGAN [22] for monocular depth estimation. The perfor-

mance is evaluated by the metrics proposed in [13], which

are formulated as follows:

Abs Relative difference (rel) : 1
|T |

∑

y∈T |y − ŷ|/ŷ

RMSE (rms) :
√

1
|T |

∑

y∈T ‖y − ŷ‖2

log10 :
√

1
|T |

∑

y∈T ‖ log y − log ŷ‖2

Threshold : % of yi s.t max(yi

ŷi
, ŷi

yi
) = δ < thr

As summarized in Table 3, our proposed method consis-

tently improves among most metrics, including ‘rel’, ‘rms’,

and accuracy with different thresholds. Note that ‘rel’,

‘log10’, and ‘rms’ metrics reflect the mean value of error

distributions, which penalizes more on larger errors, which

are usually incurred by mislabeling of the ground truth. On

the other hand, accuracy with thresholds evaluates the me-

dian of errors, which reflects more precisely the visual qual-

ity of predictions. We notice that our method outperforms

others even more significantly in median errors with smaller

thresholds, which demonstrates the fine-grained structure

discriminator power of ASM. The conclusion is consistent

with our observations from visual comparisons in Fig. 8.

We compare ASM with pixel-wise normalized L2 loss

(IID) and cGAN [22] for surface normal prediction. To

evaluate the prediction quality, we follow [15] and report

the results on several metrics, including the mean and me-

dian of error angles between the ground truth and predic-

tion, and the percentage of error angles within 2.82◦, 5.63◦,
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Angle Distance Within t◦ Deg.

Mean Median 2.82◦ 5.63◦ 11.25◦ 22.5◦ 30◦

IID 16.84 9.20 12.90 31.12 58.01 77.37 82.76

cGAN 17.12 9.04 12.28 31.52 58.52 77.00 82.32

ASM 16.98 8.28 17.58 35.48 63.29 78.50 82.47

Table 4: Surface normal estimation measurements on 2D-

3D-S [2]. Note that lower is better for the first two columns,

and higher is better for the last three columns. IID is nor-

malized L2.

Figure 7: Improvements (%) of instance-average surface

normal metric on 2D-3D-S [2]. The categories with most

improvements are ‘column’, ‘beam’, ‘table’, and ‘wall’.

11.25◦, 22.5◦, 30◦. The results are presented in Table 4,

and ASM improves metrics including median angles and

percentage of angles within 2.82◦, 5.63◦, 11.25◦ by large

margin. Similar to accuracy with thresholds for depth es-

timation, metrics with smaller angles are more consistent

with visual quality. We conclude that ASM captures most

details and outperforms baselines in most cases. We ob-

serve in Fig. 8 prominent visual improvements on thin struc-

tures, such as bookcase shelves. The surface normal predic-

tion of larger objects, including wall and ceiling, are more

uniform. Also, the contrast between adjacent surfaces are

sharper with ASM.

Instance- and Semantic-level Analysis. Just as mIoU met-

ric in semantic segmentation, the metrics proposed by [13]

for depth and by [15] for surface normal are biased toward

larger objects. We thus follow [24] to evaluate instance-

wise metrics to attenuate the bias and fairly evaluate the per-

formance on smaller objects. We collect semantic instance

masks on 2D-3D-S dataset and formulate the instance-wise

metric as

∑
i∈Ic

Mi,c

|Ic|
, where Ic denotes the set of instances

in class c and Mi,c is the metric for depth or surface nor-

mal of instance i in class c. (We do not use instance- or

semantic-level information during training.) As shown in

Fig 7, we demonstrate that ASM improves instance-wise

percentage of angles within 11.25◦ consistently among all

categories. The instance-wise analysis for depth estimation

can be found in the supplementary.

Figure 8: Visual quality comparison for semantic segmen-

tation (top two rows) on VOC [14] validation set, monocu-

lar depth estimation (middle two rows) and surface normal

prediction (bottom two rows) on [2]. Left to right: Images,

predictions from training with IID, IID+(c)GAN, ASM, and

ground truth masks.

5. Conclusion

We proposed a novel framework, Adversarial Structure

Matching, for training structured prediction networks. We

provided theoretical analyses and extensive experiments

to demonstrate the efficacy of ASM. We concluded that

multi-scale hard negative structural errors provide better

supervision than the conventional pixel-wise IID losses (or

incorporated with structure priors) in different structured

prediction tasks, namely, semantic segmentation, monocu-

lar depth estimation, and surface normal prediction.
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