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Abstract

Semi-supervised learning is becoming increasingly im-

portant because it can combine data carefully labeled by

humans with abundant unlabeled data to train deep neu-

ral networks. Classic methods on semi-supervised learn-

ing that have focused on transductive learning have not

been fully exploited in the inductive framework followed by

modern deep learning. The same holds for the manifold

assumption—that similar examples should get the same pre-

diction. In this work, we employ a transductive label prop-

agation method that is based on the manifold assumption to

make predictions on the entire dataset and use these predic-

tions to generate pseudo-labels for the unlabeled data and

train a deep neural network. At the core of the transductive

method lies a nearest neighbor graph of the dataset that

we create based on the embeddings of the same network.

Therefore our learning process iterates between these two

steps. We improve performance on several datasets espe-

cially in the few labels regime and show that our work is

complementary to current state of the art.

1. Introduction

Modern approaches to many computer vision problems

exploit deep neural networks. These are popular for being

very efficient and providing great performance at test time.

The downside is a requirement of large amounts of training

examples, which are labeled either by humans or automati-

cally on proxy tasks.

Visual data are available in large quantities, however,

data reliably annotated by humans are still very scarce. Ob-

taining large amounts of annotated training data for every

single task is not only impractical, potentially costly, but it

also turns out to be error prone. The low quality of crowd-

sourced annotation is a common motivation to minimize the

need of annotation.

In the domain of metric learning, promising results have

been recently achieved by unsupervised methods for either

learning from scratch or fine-tuning a supervised network

for domain adaptation, which devise proxy tasks for learn-

ing. These tasks exploit the distribution of data in the orig-

inal space, for instance pairwise relations of training ex-

Figure 1. Label propagation on manifolds toy example. Triangles

denote labeled, and circles un-labeled training data, respectively.

Top: color-coded ground truth for labeled points, and gray color

for unlabeled points. Bottom: color-coded pseudo-labels inferred

by diffusion that are used to train the CNN. The size reflects the

certainty of the pseudo-label prediction.

amples [42], relations between examples and cluster cen-

troids [1], or considering the manifold structure of data [19].

Alternatively, in self-supervised learning, one can take ad-

vantage of additional information like spatial layout in im-

ages [5, 12] or temporal relation in videos [40, 28]; or mine

for such information in unstructured data by algorithmic su-

pervision using conventional methods [13, 30]. However,

most such proxy tasks are inferior when directly compared

to laboriously annotated data by humans.

In classification, semi-supervised methods attempt to re-

duce the number of labeled examples, whereby the fully su-

pervised performance on all data acts as an upper bound.

In transductive learning [43, 45], label inference restricted

to a given set of unlabeled examples is of interest. In in-

ductive learning, the goal is generalization to new unseen

data, while the original training data are discarded. This

is achieved e.g. by combining classification loss on labeled
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data with unsupervised objectives on all data, where the

latter act as regularization [41, 38]. Or, an existing clas-

sifier can be used to assign pseudo-labels [24, 35], which

is another form of algorithmic supervision. Using a pow-

erful classifier trained on carefully annotated data can pro-

vide high-quality pseudo-labels, opening the door to learn-

ing from real unlabeled, large scale data. In such omni-

supervised learning [31], the fully supervised performance

on the labeled part is actually the lower bound. This only

refreshes the interest in inductive semi-supervised methods.

In this paper, we use efficient transductive label propa-

gation [43] to infer pseudo-labels for unlabeled data, which

are used to train the classifier. Label propagation is a graph-

based method, and in this work the graph is constructed ex-

ploiting the embeddings obtained by the classification net-

work itself. Thus, the proposed method alternates between

two steps. First, the network is trained from labeled and

pseudo-labeled data. The second step uses the embeddings

of the network trained in the previous step to construct a

nearest neighbor graph. Label propagation is then used to

infer pseudo-labels for unlabeled images, as well as a cer-

tainty score per image and per class. Training is performed

on all data, using certainty-based weights.

We experimentally show on standard datasets that the

proposed method outperforms other semi-supervised ap-

proaches. The less labeled data is available, the more pro-

nounced the advantage of the proposed approach is.

2. Related work

The literature is rich in the problem of semi-supervised

learning (SSL). The reader is advised to see [3] for an ex-

tensive overview. The same holds for SSL in image classi-

fication [10, 16, 4, 37]. In this section, we mostly restrict

the discussion to approaches that use deep learning for SSL

and perform the training on a large image collection with

mini-batch optimization.

Prior work on semi-supervised deep learning for image

classification is divided into two main categories. The first

consists of methods, e.g. [15, 23, 34, 38], that add an un-

supervised loss term (often called a regularizer) into the

loss function. This term is applied to either all images or

only the unlabeled ones. Methods in the second category,

e.g. [24, 36], assign pseudo-labels to the unlabeled exam-

ples. The pseudo-labeled data are then used in training with

a supervised loss, such as cross entropy. Both categories use

a standard loss term that is trained with supervision from

labeled images. A thorough evaluation of SSL deep image

classification can be found in Miyato et al. [27].

Our contribution belongs to the second category, and

is conceptually and implementation-wise orthogonal to the

first. It is therefore straightforward to combine the proposed

method with any method from the first category. We do

combine it with [38] as shown in Section 5.

Unsupervised loss in deep SSL. Assuming that every train-

ing image, labeled or not, belongs to a single category, a

natural requirement on the classifier is to make a confident

prediction on the training set. This idea was formalized by

Sajjadi et al. [35], where the regularizer is designed to min-

imize the entropy of the network output. Such a loss term is

easily combined with other terms. A similar combination is

performed for denoising auto-encoders that are applied on

all images in an unsupervised manner [32].

A direction attracting a lot of attention is that of consis-

tency loss, where two related cases, e.g. coming from two

similar images, or made by two networks with related pa-

rameters, are encouraged to have similar network outputs.

Sajjadi et al. [34] is the first, to our knowledge, to use a

consistency loss between the outputs of a network on ran-

dom perturbations of the same image. Laine and Aila [23]

rather apply consistency between the output of the current

network and the temporal average of outputs during train-

ing. The state-of-the-art mean teacher (MT) method [38]

replaces output averaging by averaging of network param-

eters. Consistency loss is commonly measured by squared

Euclidean distance. The Jensen-Shannon divergence is used

instead by Qiao et al. [29], while complementarity of the

two networks is enforced via adversarial examples. A simi-

lar idea is proposed by Miyato et al. [26].

Pseudo-labeling in deep SSL. Lee [24] uses the current

network to infer pseudo-labels of unlabeled examples, by

choosing the most confident class. These pseudo-labels are

treated like human-provided labels in the cross entropy loss.

Its impact is similar to that of entropy minimization [35]; in

both cases the network is forced to have more confident pre-

dictions. The same principle is adopted by Shi et al. [36],

where the authors further add contrastive loss to the con-

sistency loss. Our method is different from all such prior

work in that pseudo-labels are inferred by label propagation

rather than network predictions.

Label propagation has been extensively used in a transduc-

tive setup (see chapter 11 [3]). Recently, Douze et al. [7]

perform label propagation on a large image dataset with

CNN descriptors for few shot learning. Unseen images are

classified via online label propagation, which requires stor-

ing the entire dataset, while the network is trained in ad-

vance and descriptors are fixed. Our work is different in

that we perform label propagation on the training set off-

line while training the network, such that inference is pos-

sible without accessing the original training set. Learning

by association [17] can been seen as two steps of propaga-

tion on a constrained bi-partite graph between labeled and

unlabeled examples. Graph transduction game (GTG) [9],

a form of label propagation, has been used for pseudo-

labels [8] as in our work, but in this case the network is

pre-trained, the graph remains fixed and there is no weight-

ing mechanism. We compare to this approach in Section 5.
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3. Preliminaries

In this section we formulate the semi-supervised learn-

ing problem and then we discuss the classifier, different loss

functions that are commonly used in prior work, and finally

a transductive learning approach that our method is based

on. In our experiments we use a convolutional neural net-

work (CNN) to perform image classification, but this for-

mulation applies to any network architecture in any domain.

Problem formulation. We assume a collection of n ex-

amples X := (x1, . . . , xl, xl+1, . . . , xn) with xi ∈ X .

The first l examples xi for i ∈ L := {1, . . . , l}, denoted

by XL, are labeled according to YL := (y1, . . . , yl) with

yi ∈ C, where C := {1, . . . , c} is a discrete label set

for c classes. The remaining u := n − l examples xi for

i ∈ U := {l + 1, . . . , n}, denoted by XU , are unlabeled.

The goal in SSL is to use all examples X and labels YL

to train a classifier that maps previously unseen samples to

class labels.

Classifier. The network takes an input example from X and

produces a vector of class confidence scores. We denote it

by fθ : X → R
c, where θ are the network parameters. It

is conceptually divided in two parts. The first is a feature

extraction network φθ : X → R
d mapping the input to a

feature vector, or descriptor. We denote the descriptor of

the i-th example by vi := φθ(xi). The second typically

consists of a fully connected (FC) layer applied on top of

φθ and followed by softmax, producing a vector of confi-

dence scores. Function fθ is the mapping from input space

directly to confidence scores. The output of the network for

the i-th example is fθ(xi) and the prediction is the one of

maximum confidence score

ŷi := argmax
j

fθ(xi)j , (1)

where subscript j denotes the j-th dimension of the vector.

Supervised loss. In supervised learning, the network is

trained by minimizing a supervised loss term of the form

Ls(XL, YL; θ) :=

l
∑

i=1

ℓs (fθ(xi), yi) , (2)

which applies only to labeled examples in XL. Such term

is part of the total loss when training a network in a semi-

supervised setup [36, 38, 29]. A standard choice for the

loss function ℓs in classification is cross-entropy, given by

ℓs(s, y) := − log sy for s ∈ R
c and y ∈ C.

Pseudo-labeling is the process of assigning a pseudo-label

ŷi to each example xi for i ∈ U . Denoting by ŶU :=
(ŷl+1, . . . , ŷn) the collection of pseudo-labels for XU , the

following additional pseudo-label loss term applies

Lp(XU , ŶU ; θ) :=
n
∑

i=l+1

ℓs (fθ(xi), ŷi) , (3)

where again ℓs is any supervised loss function like cross-

entropy. An example is the approach proposed by Lee [24],

who first train network fθ with (2) and then assign pseudo-

labels according to (1) for i ∈ U .

Unsupervised loss is another common alternative where

the loss function applies to both labeled and unlabeled ex-

amples and encourages consistency under different trans-

formations of the data or the network. The so-called consis-

tency loss [36, 38, 36] is defined as

Lu(X; θ) :=

n
∑

i=1

ℓu(fθ(xi), fθ̃(x̃i)), (4)

where x̃i refers to a different transformation of example xi.

Note that according to the standard practice of data augmen-

tation, every forward pass of xi during training is performed

under some random transformation. Parameter set θ̃ is ei-

ther equal to θ or any other transformation of it, such as a

moving average over the sequence of network updates [38].

A simple choice of ℓu is the squared Euclidean distance, i.e.

ℓu(s, s̃) := ||s− s̃)||2 for s, s̃ ∈ R
c, forcing the two outputs

to be as close as possible.

Transductive learning solves a more specific problem. In-

stead of training a generic classifier able to classify new,

yet unseen, examples, the goal is to use X and YL to in-

fer labels for examples in XU . In this work, we adopt the

graph-based approach of Zhou et al. [43] for transductive

learning by diffusion1.

Diffusion for transductive learning [43]. Let V =
(v1, . . . ,vl,vl+1, . . . ,vn) be the descriptor set, where vi

corresponds to xi as defined earlier. A symmetric adjacency

matrix W ∈ R
n×n with zero diagonal is constructed, whose

elements wij are non-negative pairwise similarities between

vi and vj . Its symmetrically normalized counterpart is

given by W = D−1/2WD−1/2, where D := diag(W1n)
is the degree matrix and 1n is the all-ones n-vector. A n×c
label matrix Y is defined with elements

Yij :=

{

1, if i ∈ L ∧ yi = j
0, otherwise.

(5)

That is, the rows of Y corresponding to labeled examples

are one-hot encoded labels and the rest are zero. Diffusion

amounts to computing the n× c matrix

Z := (I − αW)−1Y, (6)

where α ∈ [0, 1) is a parameter. Finally, the class prediction

for an unlabeled example xi is

ŷi := argmax
j

zij , (7)

where zij is the (i, j) element of matrix Z.

1We first present the original approach and discuss our design choices

in the following section.
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It is interesting to observe that matrix Z as defined by (6)

is the minimizer of the following quadratic cost function

J(Z) :=
α

2

n
∑

i,j=1

wij

∥

∥

∥

∥

∥

zi√
dii

− zj
√

djj

∥

∥

∥

∥

∥

2

+(1−α) ‖Y − Z‖2F ,

(8)

where zi is the i-th row of matrix Z, dii is the i-th diago-

nal diagonal element of D and ‖·‖F is the Frobenius norm.

The first term encourages smoothness such that nearby ex-

amples get the same predictions, while the second attempts

to maintain predictions for the labeled examples [43].

4. Method

In the following, we begin by providing an overview of

our approach. We then develop the main elements of our so-

lution, put everything together in a concrete algorithm, and

discuss how our approach is complementary to approaches

using unsupervised loss for SSL [38, 36, 36]. Finally, we

discuss the relation to prior work that encourages smooth-

ness in deep networks.

Overview. We introduce a new iterative process for semi-

supervised learning that can be summarized as follows.

First, we construct a nearest neighbor graph and perform

label propagation by transductive learning on the training

set. Then, we estimate of a weight reflecting the uncertainty

of label propagation for each unlabeled example. Finally,

we inject the obtained labels into the network training pro-

cess. These ideas are developed below, while a graphical

overview of the proposed approach is shown in Figure 2.

Nearest neighbor graph. Given a network with pa-

rameters θ, we construct the descriptor set V =
(v1, . . . ,vl,vl+1, . . . ,vn), where vi := φθ(xi). A sparse

affinity matrix A ∈ R
n×n with elements

aij :=

{

[v⊤i vj ]
γ
+, if i 6= j ∧ vi ∈ NNk(vj)

0, otherwise
(9)

is constructed, where NNk denotes the set of k nearest

neighbors in X , and γ is a parameter following recent work

on manifold-based search [20]. Note that constructing the

affinity matrix of the nearest neighbor graph is efficient even

for large n [20], while constructing the full affinity matrix

as in Zhou et al. is not tractable. Then, let W := A + A⊤,

which is indeed a symmetric nonnegative adjacency matrix

with zero diagonal.

Label propagation. Estimating matrix Z by (6) is imprac-

tical for large n because the inverse matrix (I − αW)−1 is

not sparse. We rather use the the conjugate gradient (CG)

method to solve linear system

(I − αW)Z = Y, (10)

which applies because matrix (I−αW) is positive-definite.

This solution is known to be faster than the iterative solution

of Zhou et al. [43], and has been used in semi-supervised

learning [44], interactive image segmentation [14], image

retrieval [20] and semantic image segmentation [2]. Finally,

we infer the pseudo-labels ŶU = (ŷl+1, . . . , ŷn), where ŷi
is given by (7).

Pseudo-label certainty and class balancing. Inferring

pseudo-labels from matrix Z by hard assignment has two

undesired effects: first, we define pseudo-labels on all un-

labeled examples while clearly we do not have the same

certainty for each example. Second, pseudo-labels may not

be balanced over classes, which will impede learning.

To deal with the former issue we associate with each

pseudo-label a weight reflecting the certainty of the predic-

tion. We use entropy, as a measure of uncertainty, to assign

weight ωi to example xi, defined by

ωi := 1− H(ẑi)

log(c)
, (11)

where Ẑ is the row-wise normalized counterpart of Z, i.e.

ẑij = zij/
∑

k zik, and function H : Rc → R is the entropy

function. Weight ωi is normalized in [0, 1] because log(c)
is the maximum possible entropy in R

c.

To deal with the latter issue of class imbalance, we assign

weight ζj to class j that is inversely proportional to class

population, defined as ζj := (|Lj | + |Uj |)−1, where Lj

(resp. Uj) are the examples labeled (resp. pseudo-labeled)

as class j.

Given the above definitions of per-example and per-class

weights, we associate the following weighted loss to the la-

beled and pseudo-labeled examples

Lw(X,YL, ŶU ; θ) :=
l

∑

i=1

ζyi
ℓs (fθ(xi), yi)

+

n
∑

i=l+1

ωiζŷi
ℓs (fθ(xi), ŷi) , (12)

which is the sum of weighted versions of Ls (2) and Lp (3).

In contrast to (3), pseudo-labels originate in diffusion rather

than network predictions.

A toy example showing the result of label propagation

and the estimated weights is shown in Figure 3.

Iterative training. Given the above definitions of nearest

neighbor graph definition, label propagation, example/class

weighting and pseudo-label loss, we plug those components

into an iterative learning process. We begin by randomly

initializing the network parameters θ and we train the net-

work for T epochs in a fully supervised manner on the l
labeled examples XL using the supervised loss term (2).

The trained network then provides the starting point for the
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Feature extractor φθ

F
C

+
so

ftm
ax

Network fθ

Phase 1:

Train for T epochs with

Ls(XL, YL; θ)

(labeled examples only)

Train for 1 epoch with

Lw(X,YL, ŶU ; θ)

(all examples)

Extract descriptors V

Compute affinity A (9)

W ← A + A⊤

W ← D−1/2WD−1/2

Use φθ

Solve (10)

Label propagation

Phase 2: Iterate T ′ times

: labels : missing labels : pseudo-labels (size proportional to certainty ωi)

Figure 2. Overview of the proposed approach. Starting from a randomly initialized network, we first train it in a supervised fashion on

the labeled examples. Then we initiate an iterative process where at each iteration we compute a nearest neighbor graph of the entire

training set in the feature space of the current network, we propagate labels by transductive learning, and then we train the network on the

entire training set, with true labels or pseudo-labels on the labeled or unlabeled examples respectively. The pseudo-labels are weighted per

example and per class according to prediction certainty and inverse class population, respectively.

1 labeled example 3 labeled examples 10 labeled examples

Figure 3. Toy example with 300 examples demonstrating label propagation for different number of labeled examples. Triangle markers

correspond the labeled examples and circles to the unlabeled ones which are finally pseudo-labeled by label propagation. The class is

color-coded and the size of the circles corresponds to weight ωi. The true labels are the same as the example of Figure 1 (top).

following iterative process. First, we extract descriptors V
on the entire training set X and compute nearest neighbors

to construct the adjacency matrix W . Second, we perform

label propagation by solving linear system (10) and assign

pseudo-labels to unlabeled examples XU by (7). Finally,

we train the network for one epoch on the entire training

set X using the weighted loss Lw (12). We repeat this it-

erative process for T ′ epochs. The above is summarized in

Algorithm 1.

Procedure OPTIMIZE() refers to the mini-batch opti-

mization of the corresponding loss term for one epoch, i.e.

all examples are fed to the network once. More details about

batch construction are given in the implementation details.

Combination with other approaches. Our contribution

falls in the case of pseudo-label loss in the form of (3). It is

orthogonal to approaches that use unsupervised loss, for in-

stance (4), applied to both labeled and unlabeled examples.

Combination of the two comes in a straightforward way by

adding term (4) to the total loss optimized in lines 4 and 16

of Algorithm 1. This is exactly the way we combine the

proposed approach with the state-of-the-art Mean-Teacher

approach [38] in our experiments.

Discussion. In an inductive framework, if zi/
√
dii is re-

placed by the network output fθ(xi) in the smoothness

term of (8), then this becomes an unsupervised loss term,

e.g. like (4), only now it encourages consistency between

nearby example predictions. And indeed such solution is

adopted e.g. by Weston et al. [41]. This is not very effi-

cient because the adjacency matrix is typically sparse with

non-zero-elements only on nearest neighbors, and then the

gradient of the smoothness term will propagate from each

example to its neighbors only at each iteration.
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Algorithm 1 Label propagation for deep SSL

1: procedure LPDSSL(Training examples X , labels YL)

2: θ ← initialize randomly

3: for epoch ∈ [1, . . . , T ] do

4: θ ← OPTIMIZE(Ls(XL, YL; θ)) ⊲ mini-batch optimization

5: end for

6: for epoch ∈ [1, . . . , T ′] do

7: for i ∈ {1, . . . , n} do vi ← φθ(xi) ⊲ extract descriptors

8: for (i, j) ∈ {1, . . . , n}2 do aij ← affinity values (9)

9: W ← A+A⊤ ⊲ symmetric affinity

10: W ← D−1/2WD−1/2 ⊲ symmetrically normalized affinity

11: Z ← solve (10) with CG ⊲ diffusion

12: for (i, j) ∈ U × C do ẑij ← zij/
∑

k zik ⊲ normalize Z
13: for i ∈ U do ŷi ← argmaxj ẑij ⊲ pseudo-label

14: for i ∈ U do ωi ← certainty of ŷi (11) ⊲ pseudo-label weight

15: for j ∈ C do ζj ← (|Lj |+ |Uj |)
−1 ⊲ class weight/balancing

16: θ ← OPTIMIZE(Lw(X,YL, ŶU ; θ)) ⊲ mini-batch optimization

17: end for

18: end procedure

Our main idea therefore is that instead of just encour-

aging nearby examples to get the same predictions, we en-

courage all examples to get predictions same as the ones

we would get by transductive learning according to the

quadratic cost (8) and its solution Z (6). Computing Z is

efficient because it is performed outside our main optimiza-

tion process, i.e. it does not need iterating on mini-batches

of data and backpropagating through the network. Then,

given Z, the main optimization process drives all examples

directly to that solution, as if they were all labeled.

5. Experiments

We present the datasets used in our experiments and the

SSL setup that is followed. Then, we discuss the training

details of our method and the methods reproduced for fair

comparison. Finally, we perform experiments to show the

impact of different components involved in the proposed

method and to compare with the state of the art. All er-

ror rates reported are produced by our own implementation

unless otherwise stated.

5.1. Datasets

We use three image classification datasets, namely

CIFAR-10 [22], CIFAR-100 [22] and Mini-ImageNet [39].

Each dataset is used in an SSL setup where part of the train-

ing images are labeled and the rest are unlabeled. We evalu-

ate the performance on an independent test set. Unless oth-

erwise specified, error rate is reported in our experiments.

CIFAR-10. The training set consists of 50k images com-

ing from 10 classes, while the test set consists of 10k im-

ages from the same 10 classes. All images have resolution

32 × 32. Evaluation is performed with 50, 100, 200, and

400 labeled images per classes, corresponding to l = 500,

1k, 2k, and 4k label images in total. We use the same

random selection of labeled images that is used in Mean

Teacher [38] when available (1k, 2k and 4k labels). The se-

lection process is repeated 10 times, resulting in 10 different

dataset splits for SSL on CIFAR 10. We follow the common

practice which is to use each of them and report mean error

and standard deviation.

CIFAR-100. Similarly to CIFAR-10, CIFAR-100 has 50k

training and 10k test images of resolution 32 × 32, com-

ing from 100 classes. We follow a protocol equivalent to

the one of CIFAR-10. We evaluate with 40 and 100 labeled

images per class, corresponding to 4k and 10k labeled im-

ages in total. There are 3 such dataset splits, mean error and

standard deviation are reported.

Mini-ImageNet. We introduce an SSL evaluation setup for

Mini-ImageNet [39] which is a subset of the well-known

ImageNet [6] dataset and has been previously used for few-

shot learning [11]. We use the train/test splits created in the

work of Ravi and Larochelle [33]. It consists of 100 classes

with 600 images per class, of resolution 84 × 84. We ran-

domly assign 500 images from each class to the training set,

and 100 images to the test set. The result is a train and test

set of 50k and 10k images, respectively. We create three

dataset splits for the case of 40 and 100 labeled images per

class that correspond to 4k and 10k labeled images in to-

tal. Mean error and standard deviation over the three dataset

splits are reported.

5.2. Training

We list the reproduced baselines, and provide training

details per algorithm and dataset.

Implementation. We build our implementation on top

of the publicly available Pytorch code for the Mean Teacher

(MT) approach [38]2. The fully supervised baseline and MT

are reproduced identically as the original implementation.

In all our experiments SGD optimization is used.

Networks. Experiments on CIFAR-10 and CIFAR-100

are performed with the “13-layer” network that is used

in prior work [23, 38], while on Mini-ImageNet, Resnet-

18 [18] is engaged. Both networks consist of a feature ex-

tractor φθ followed by an FC layer and softmax. We add an

ℓ2-normalization layer right after φθ (before the FC layer)

providing unit-norm descriptors for the graph construction.

The same choice is also adopted in the fully supervised

baseline. One exception is all variants of MT as we ob-

served that the ℓ2-normalization layer slightly harms per-

formance. We normalize images to have channel-wise zero

mean and unit variance over the entire training set. Unlike

prior work [38], we do not normalize the input images with

ZCA, nor add Gaussian noise to the input layer, which result

in worse performance according to our experiments.

Hyper-parameters and training choices are adapted

from the MT method and implementation. These are fixed

2https://github.com/CuriousAI/mean-teacher/tree/

master/pytorch
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Pseudo-labeling ωi ζj CIFAR-10

Diffusion (7)

36.53± 1.42

✓ 36.17± 1.98

✓ 33.32± 1.53

✓ ✓ 32.40± 1.80

GTG [8] ✓ ✓ 35.20± 2.23

Network (1) ✓ ✓ 35.17± 2.46

Table 1. Impact of weights ωi, class weights ζj , and pseudo-

labeling by diffusion prediction (7) or network prediction (1). Er-

ror rate is reported on CIFAR-10 with 500 labels.
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Figure 4. Accuracy of predicted pseudo-labels according to

ground-truth on CIFAR-10 with 500 labeled images. Diffusion

predictions (7) are compared against network predictions (1).
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Figure 5. Distribution of weights ωi for unlabeled images at epoch

0 (left) and epoch 90 (right) during the training of CIFAR-10 with

500 labels. Correct pseudo-labels according to ground-truth are

shown in blue and incorrect in red.
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Figure 6. Error rate versus number of labeled images on CIFAR-

10 using different methods.

for all approaches (re)produced by this work. The training

is performed for 180 epochs in total. Initial learning rate l0
is decayed with cosine annealing [25] so that it would have

reached zero after 210 epochs, while l0 = 0.05 on CIFAR-

10, and l0 = 0.2 on CIFAR-100 and Mini-ImageNet. Ran-

dom data augmentation is performed by 4×4 random trans-

lations [38] followed by horizontal flip in CIFAR-10 and

CIFAR-100. On Mini-ImageNet, each image is randomly

rotated by 10 degrees before random horizontal flip. Batch

auto(0.82) auto(0.82) auto(0.82) auto(0.82) auto(0.81) ship(0.81)

ship(0.81) frog(0.80) auto(0.80) auto(0.80) frog(0.80) frog(0.80)

Figure 7. Examples of incorrectly pseudo-labeled images with

highest ωi in CIFAR-10. Predicted class and ωi are shown below

each image.

size is 100 for CIFAR-10 and 128 for CIFAR-100 and Mini-

ImageNet. All other learning parameters remain unchanged

from MT implementation.

The fully supervised approach corresponds to training

with (2) and labeled images only. MT uses the additional

dual output trick with coefficient 0.01. Both these ap-

proaches are reproduced.

Our approach is performed with mini-batch size B =
BU + BL, where BL images are labeled and BU images

are originally unlabeled. We set BL = 50 for CIFAR-10

and BL = 31 for CIFAR100 and Mini-ImageNet. Same

is also applied for MT. One epoch is defined as one pass

through all originally unlabeled examples in the training

set, meaning that images in IL appear multiple times per

epoch. We follow the same diffusion parameters as Iscen et

al. [20]. We set k = 50 for graph construction, γ = 3
in (9), and α = 0.99 in (10). We solve (10) with at most

20 iterations of CG. Pairwise similarities for the graph are

computed with the publicly available FAISS library [21].

Confidence weights ωi are normalized over all examples

s.t. maxi ωi = 1. Class weights ζj are normalized over c
classes such that the average class weight is 1. Pseudo-label

predictions, ωi, and ζj are updated after each epoch.

To assess the benefit of diffusion, we finally evaluate

a variant of our approach where the pseudo-labels are not

provided by diffusion but derived from the network with

(1) or from GTG propagation [8] instead. Training is per-

formed with (12), as with our method. This is in the spirit

of pseudo-labeling in prior work [36, 24].

5.3. Ablation Study

We investigate the impact of different components of our

method. First, we study the effectiveness of weights intro-

duced in the loss function (12). Table 1 shows the classifi-

cation performance on CIFAR-10 test set, when using only

500 labeled examples for training and the rest of the training

set is considered unlabeled. Different weighting schemes

are evaluated by setting all ωi to one, all ζi to one, or both

to one. It is shown that both weights have positive contribu-

tions. We also show the benefit of predicting with diffusion

over predicting by the trained network or GTG propagation.

Pseudo-labeling by the network predictions uses examples
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Dataset CIFAR-10

Nb. labeled images 500 1000 2000 4000

Fully supervised 49.08± 0.83 40.03± 1.11 29.58± 0.93 21.63± 0.38

TDCNN [36]† - 32.67± 1.93 22.99± 0.79 16.17± 0.37
Network prediction (1) + weights 35.17± 2.46 23.79± 1.31 16.64± 0.48 13.21± 0.61
Ours: Diffusion prediction (7) + weights 32.40± 1.80 22.02± 0.88 15.66± 0.35 12.69± 0.29

VAT [26]† - - - 11.36

Π model [23]† - - - 12.36± 0.31

Temporal Ensemble [23]† - - - 12.16± 0.24

MT [38]† - 27.36± 1.30 15.73± 0.31 12.31± 0.28
MT [38] 27.45± 2.64 19.04± 0.51 14.35± 0.31 11.41± 0.25
MT + Ours 24.02± 2.44 16.93± 0.70 13.22± 0.29 10.61± 0.28

Table 2. Comparison with the state of the art on CIFAR-10. Error rate is reported. “13-layer” network is used. The top part of the table

corresponds to training with pseudo-labels, while the bottom part of the table includes methods that are complementary to ours, as shown

by the combination of our method with MT. † denotes scores reported in prior work.

Dataset CIFAR-100 Mini-ImageNet-top1 Mini-ImageNet-top5

Nb. labeled images 4000 10000 4000 10000 4000 10000

Fully supervised 55.43± 0.11 40.67± 0.49 74.78± 0.33 60.25± 0.29 53.07± 0.68 38.28± 0.38

Ours 46.20± 0.76 38.43± 1.88 70.29± 0.81 57.58± 1.47 47.58± 0.94 36.14± 2.19
MT [38] 45.36± 0.49 36.08± 0.51 72.51± 0.22 57.55± 1.11 49.35± 0.22 32.51± 1.31
MT + Ours 43.73± 0.20 35.92± 0.47 72.78± 0.15 57.35± 1.66 50.52± 0.39 31.99± 0.55

Table 3. Performance comparison on CIFAR-100 and Mini-ImageNet with 4k and 10k labeled images. Error rate is reported. “13-layer”

network is used for CIFAR-100 and Resnet-18 is used for Mini-ImageNet. All methods are reproduced by us.

that the network can already classify, while diffusion allows

for accurate predictions beyond those examples. In Fig-

ure 4, we report the progress of the pseudo-label accuracy

on unlabeled images XU throughout the training. Diffusion

predictions are consistently better than network predictions.

Figure 5 demonstrates how ωi accurately estimates the

certainty of the prediction. From the plots we observe that

predictions become more accurate as the training evolves,

while at the beginning most examples are misclassified.

The proposed weighting mechanism is robust to incorrect

pseudo-labels and prevents model collapse. Figure 7 shows

some of the incorrectly pseudo-labeled images with high

certainty ωi. Most of the incorrect labels come from trucks

labeled as automobiles or birds labeled as frogs.

5.4. Comparison with the state­of­the­art

We present a comparison with state-of-the-art on all 3

datasets in Tables 2 and 3. The comparison includes perfor-

mance reported in prior work and our reproduced results.

In the case of the work by Shi et al. [36], we only compare

with their TDCNN variant which refers to pseudo-labeling

for network training. The other loss terms in their work are

complementary to ours, similarly to MT. We additionally

compare with our implementation of pseudo-labeling with

network predictions combined with the proposed weights.

The proposed approach performs the best out of the

pseudo-label based approaches on CIFAR-10. Results in

Figure 6 show that our benefit is larger when the num-

ber of labels is reduced. The results on CIFAR-10 show

that our approach is complementary to unsupervised loss,

such as the one used by MT. This combination achieves

the best performance on this dataset. The same holds for

CIFAR-100 and Mini-ImageNet for 10k available labels.

Our method also achieves a lower error rate than tempo-

ral ensemble (38.65±0.51) and Π-model (39.19±0.36) on

CIFAR-100 [23] with 10k labels. On Mini-ImageNet with

4k available labels, the best performance is achieved when

using our method without combining with Mean Teacher.

6. Conclusions

Most recent approaches for deep SSL rely on training

with unsupervised loss on both labeled and unlabeled im-

ages. We have proposed an approach that relies on graph-

based label propagation to infer pseudo-labels for the un-

labeled images. An additional training set is formed with

these pseudo-labels, which are shown to be more valuable

than the pseudo-labels inferred by the network itself. Our

method is in principle complementary to unsupervised loss

terms, which is experimentally shown in this work.
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