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Abstract

Inferring 3D scene information from 2D observations

is an open problem in computer vision. We propose us-

ing a deep-learning based energy minimization framework

to learn a consistency measure between 2D observations

and a proposed world model, and demonstrate that this

framework can be trained end-to-end to produce consis-

tent and realistic inferences. We evaluate the framework

on human pose estimation and voxel-based object recon-

struction benchmarks and show competitive results can be

achieved with relatively shallow networks with drastically

fewer learned parameters and floating point operations

than conventional deep-learning approaches.

1. Introduction

Computer graphics involves reducing 3D scene informa-

tion to 2D using well-understood physics-based arguments

and mathematical operations like frame transformations and

projections. Computer vision can be thought of as the in-

verse problem – inferring 3D scene information from some

2D representation.

Unlike graphics, computer vision is inherently ill-posed.

While it is straight-forward enough to obtain an inference

which is consistent with a given 2D representation using

standard graphics and optimization techniques, there is no

guarantee this inference will be realistic. To resolve this, we

propose using simple optimization techniques on a learned

energy function which combines graphics operations with a

learned realism component.

We learn this energy function itself using deep-learning

optimization techniques, resulting in a multi-level optimiza-

tion framework which can be trained end-to-end. We apply

our framework to two common problems: 3D human pose

estimation, and single-view voxel-based object reconstruc-

tion.

2. Main Contributions

Our main contributions are as follows.

1. We propose simple parameterized energy functions

that capture both consistency and feasibility for the

problems of human pose estimation and object recon-

struction based on 2D features and well-understood

computer-graphics principles.

2. For the case of human pose estimation, we show the

proposed energy function can be used to lift 2D pose

inferences to 3D at competitive accuracies with sig-

nificantly fewer learned parameters and computational

requirements.

3. For object reconstruction, we demonstrate the frame-

work can produce high-resolution voxel grids from

single images on standard desktop GPUs without the

need for 3D convolutions or deconvolutions, out-

performing state-of-the-art high-resolution methods in

terms of accuracy.

3. Prior Work

3.1. Multi-Level Optimization

Many problems in machine learning involve inferring

values of unknown variables from observations. Energy-

based models describe relationships between sets of vari-

ables by mapping each combination to a scalar energy

value, where realistic combinations correspond to lower en-

ergies than their less viable counterparts. Inferences are

made by fixing values of known variables and seeking un-

known values which minimize the energy [27].

Energy-based models have been combined with deep

learning in the past. Zheng et al. [59] formulated condi-

tional random fields (CRFs) as a recurrent neural network

layer, which combined with a standard convolutional neural

network (CNN) achieved state-of-the-art results for image
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segmentation. Amos and Kolter [1] considered energy func-

tions based on quadratic programs. Their implementation

solved the inner optimization problem efficiently and ex-

actly, and demonstrated it was able to learn hard constraints

like those associated with the number-game Sudoku.

Domke [13] presented a number of implementations for

efficiently computing and differentiating approximate opti-

mizations – solutions where the energy minimization pro-

cess is based on a fixed number of steps of some optimiza-

tion algorithm. While the algorithms did not find the exact

solution to the energy minimization problem, these trun-

cated optimization processes still yielded good results for

image denoising and labeling problems. Belanger et al. [3]

took a similar approach and showed inexact optimization of

complex energy functions outperformed exact solutions us-

ing simpler functions for image denoising and natural lan-

guage semantic role labeling.

3.2. Human Pose Estimation

Inferring human pose in two or three dimensions from

images is an important part of many tasks including human-

computer interaction and action recognition. For the 2D

problem, traditional approaches combine visual features

and image descriptors with a tree-structure of the body and

known invariants and proportions [58]. More recently, deep

learning’s wave of success in other image processing appli-

cations such as image classification and segmentation has

flowed into pose estimation, with fully-convolutional ap-

proaches achieving exceptionally accurate 2D inferences by

regressing heatmaps rather than the joint coordinates them-

selves [50, 35, 10, 5, 11].

The 3D problem is considerably more challenging. In

addition to problems involved in the 2D variant, the main

difficulty in training 3D pose inference systems that work

in the wild is the availability of varied datasets. While 2D

datasets can be annotated manually, 3D information is gen-

erally gathered using special motion-capture systems. Al-

though these systems are capable of generating massive vol-

umes of data, the examples within such datasets are usu-

ally limited in variety. For example, the human 3.6 million

dataset (H3M) [19] contains millions of frames, but all im-

ages are collected in the same room with only a handful of

subjects. By contrast, the popular 2D dataset COCO [30]

features over 50,000 human pose annotations with very few

duplicates.

To get around this lack of varied 3D data, many meth-

ods use a 2-stage approach to 3D inference by inferring 2D

poses from images, then lifting these 2D poses to 3D sepa-

rately [4, 7, 33]. These approaches benefit from the varied

image features in 2D datasets, but the separate stages means

any “lifting” module is unable to take advantage of contex-

tual information learned in the first stage.

The other main difficulty with 3D pose estimation is the

inherent ambiguity associated with depth inference and oc-

clusions. Adversarial approaches tackle this by introducing

loss terms which are themselves learned in a modified mini-

max game [21, 47, 56].

3.3. Single View 3D Object Reconstruction

Reconstructing 3D objects from a single view is a com-

mon problem in computer vision and robotics. Fundamen-

tal to any approach is the representation of the output ob-

ject. Volumetric methods are the most wildely used in

3D learning [48, 54, 8, 9, 20, 55, 37, 51, 24, 60]. These

approaches generally use 3D analogues of ideas and op-

erations that have proven successful in image processing,

including convolutions, deconvolutions and feature pool-

ing. Recent advances in auto-encoders [15, 43] and GANs

[53, 52, 31, 17] have also shown promising results on regu-

lar 3D grids, while Tulsiani et al. [46] showed object shape

and pose can be learned simultaneously and without 3D la-

bels using only depth maps or silhouettes to encourage view

consistency across multiple views.

Unfortunately, the additional dimension inherent to 3D

representations means these methods scale poorly with res-

olution, resulting in generally coarse outputs – typically 323

or 643. To overcome this scaling issue, octree networks

[40, 49, 18, 45] recursively divide regions of interest into

octants. By focusing only on regions near the object sur-

face, these methods operate with complexity proportional

to surface area rather than volume.

Other approaches to high-resolution inference keep the

regular volumetric data structure but use operations that

scale better to higher resolutions [23, 39].

Point cloud methods avoid the need to discretize space,

instead working on continuous coordinates of points on the

object surface [14, 36, 38, 28]. However, the variable size

and unordered nature of point clouds introduce their own

complexity in deep learning frameworks. Template defor-

mation approaches [26, 22, 57] instead infer a constant-

sized space warping that can be applied to an arbitrarily

dense cloud or mesh. This comes at a cost however, as the

topology of the output shape is intrinsically coupled with

that of the deformed template.

4. Method Overview

Our approach is based on energy minimization networks

which have been discussed previously in the literature [27,

13, 2, 3]. We base our notation on the work of Belanger,

McCallum and Yang [3], where we seek the minimizer of

some energy function

argmin
ỹ

E(ỹ;x,θE). (1)

We implement the energy function E as a neural network

which takes as inputs a proposed solution ỹ and extracted
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features x with learned parameters θE . For generic non-

convex energies, calculating the exact argmin is intractible,

hence we approximate the result by the output of some iter-

ative strategy

ỹ(t) = f(ỹ(t),E(ỹ(t−1);x,θE);θopt), (2)

for some fixed number of steps t ∈ [1,T ], where θopt are

hyper-parameters of the optimization strategy and ỹ(0) is an

initial proposal. For example, basic gradient-descent with

learning rate η is implemented as

f(ỹ,E(ỹ;x,θE);η) = ỹ−η∇ỹE. (3)

In this investigation we also considered gradient-descent

with momentum and gradient-clipping, where the momen-

tum term and clip value were trained as part of θopt.

Figure 1: Unrolled optimization involves iteratively updat-

ing a proposed value ỹ(t) to minimize some energy function

E according to an update step f. Parameters of E and f (blue)

are learned in the outer optimization process.

This process is illustrated in Figure 1. We refer to this

scheme as unrolled gradient descent or inner optimization.

To train our network we use a loss λ made up of a

weighted sum of losses applied to all steps of the optimiza-

tion process,

λ =
T

∑
t=0

λ̂ (ỹ(t),y). (4)

where kt is a scalar weighting value, y is the example label

and λ̂ is some per-proposal loss function dependent on the

problem. In all experiments we use exponential weighting

kt = 0.9T−t .

Assuming E and f are piecewise-doubly-differentiable

and λ0 is piecewise differentiable, the parameters θE and

θopt can be learned using any standard optimization strategy

referred to as the outer optimizer. For brevity, we drop the

parameters θE and θopt in equations and diagrams hereafter.

To summarise, our inverse graphics energy networks

(IGE-Net) are made up of:

• a feature extractor module that provides a (possibly

empty) set of features as well as an initial estimate;

• an energy module which reduces a proposed solution

and observed features to a scalar value; and

• an inner optimization strategy.

5. Human Pose Estimation

We begin by considering the problem of lifting human

joint information from 2D (x ∈R
NJ2

×2) to 3D (y ∈R
NJ3

×3).

Note we do not require the number of joints to be the same,

nor do we require any known correspondences between the

two sets. This allows us to pair 2D inferences from a model

trained on one dataset with 3D pose data with different joint

annotations.

Recent progress in this area has resulted in a number of

algorithms performing very well on standard benchmarks,

split on accuracy metrics by a matter of millimeters. For

many applications, such error rates are well and truly satis-

factory, so we approach this problem with the aim to mini-

mize memory requirements and computational costs – fac-

tors more important in areas such as mobile robotics and

autonomous systems – while maintaining reasonable accu-

racy.

We also limit our methods to perform well as defined by

scale-invariant metrics. While scale can be learned based

on contextual information, errors in scale inference tend to

drown-out those associated with relative positions.

5.1. Network Structure

We base our feature extractor module on the work of

Martinez et al. [33]. The proposed network is made up of

two residual blocks each containing two dense layers along

with an input and output layer for a total of six, as well

as batch normalization, rectified linear activations, weight

clipping, residual connections and dropout. While this net-

work is small by modern standards, we reduce it further by

removing one of the internal blocks and dropping the num-

ber of units in each remaining inner layer by a factor of 8.

This reduces the number of trainable parameters by roughly

a factor of 100. Since our losses and evaluation are scale-

agnostic, we also remove the weight clipping.

We consider an energy function E as the combination of

a reprojection energy Ex and a feasibility energy Ey,

E(ỹ;x) = Ex (x̃(ỹ);x)+Ey(ỹ), (5)

where x̃(ỹ) is the projection of the proposed solution. We

assume the intrinsic camera parameters are known, and in-

fer 3D poses in the camera’s reference frame.

Each energy function makes use of pairwise squared eu-

clidean distances similar to Moreno-Noguer [34],

∆2
i j(z) = ||zi − z j||

2
2, j > i, (6)

where z is an ordered set of points in R
N . This transforma-

tion has many desirable properties, including invariance to

rotation, translation and reflection. Unlike Moreno-Noguer,

we use the squared distance rather than the actual differ-

ence, as this avoids a square root operation causes problems

with gradients near zero.
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Figure 2: For lifting 2D pose information to 3D, we split

the energy into 2 parts: a reprojection loss Ex which mea-

sures how consistent the projected proposed pose is with the

observed 2D information, and a feasibility loss Ey which

operates on the normalized proposed pose.

We parameterize our reprojection loss as a 2-layer dense

network DNx with a softplus and softabs activation. In-

puts are given by the pairwise squared distances between

all points in x and x̃, i.e.

Ex(x̃;x) = DNx

�

∆2(x̃⊕x)
�

, (7)

where ⊕ is the concatenation operator along the joint di-

mension.

While a perfect proposal will yield a perfect reprojection

(ỹ = y ⇒ x̃ = x), the reverse implication does not hold. As

the name suggests, the feasibility energy Ey is intended to

promote feasible proposals independently of the appearance

x̃. To make this scale-invariant, we normalize the proposed

pose ŷ = N(ỹ) by dividing by the distance between the hip

joints, then consider the pairwise squared distances,

Ey(ỹ) = DNy(∆
2(ŷ)). (8)

This energy architecture is illustrated in Figure 2.

To train our model, we use a per-step outer loss function

λ̂ (ỹ(t),y) = ||kỹ(t)−y||2, (9)

where k is the optimal scaling factor with respect to the

squared error.

5.2. Implementation Details

We pretrain our initial pose estimation network indepen-

dently for 200 epochs with a batch size of 64 as per the

original [33].

For our inner loss networks, we initialized the hidden

layer weights using Glorot initialization [16], and the loss

layer weights with a version scaled down by 10−3. This re-

sulted in the inner optimizer starting with little effect and

growing, which smooths learning in the very early stages.

We used the same learning-rate decay schedule as Martinez

et al. [33] except with initial learning rate lowered by a fac-

tor of 10 and training to convergence.

We initialize our inner optimizer’s learning rate, gradient

clip value and momentum at 1, 1 and 0.1 respectively. To

prevent negative momentum early due to spurious gradients

in the initial loss function, we used the absolute value of a

learned parameter rather than the learned parameter itself.

We run experiments on the popular Human 3.6 million

(H3M) dataset [19]. We use 2D pose inferences provided

by Martinez et al. [33] which come from stacked hourglass

networks of Newell et al. [35]: one trained entirely on var-

ied 2D poses in-the-wild, and another fine tuned on H3M.

We also experiment with ground-truth 2D poses. All train-

ing and evaluation uses inputs with the 16 joints used in

COCO [30], and infer a slightly different set of 16 joints

in 3D. Evaluation is on a 17-joint skeleton with additional

pelvis joint as per Martinez et al. [33]. We train on subjects

1, 5, 6, 7 and 8 and evaluate on subjects 9 and 11.

5.3. Results

Sample results for our 2-step network trained on 2D

ground-truth inputs are shown in Figure 3. We see the net-

work learns to reconcile inconsistent 2D data in a single

step. The subsequent step has a smaller impact, but still

makes minor adjustments to the 3D pose without losing

consistency with the observation.

Figure 3: Camera view (top) and novel view (bottom) of

inferred pose (solid) and ground truth (dotted) after 0, 1 and

2 steps. Note the observed 2D pose (dotted, top) has one

fewer joints in the head. The model uses camera view 2D

joint coordinates (top, dotted) as inputs.

We evaluate our models using two metrics: the mean per-

joint error after scaling as per Equation 9, and the per-joint

error after an optimal rigid body transformation. We refer to

these as Protocol 1a and Protocol 2 respectively (Martinez

et al. [33] define Protocol 1 to be a slightly different metric.

It is largely analogous in meaning to our Protocol 1a, though

not equivalent).

We begin analysis by looking at performance of our net-

works using ground truth 2D poses with different numbers

of inner optimizer steps. We compare against different ver-

sions of the base model without the IGE component by

varying the number of residual blocks as well as the number

of hidden units in each layer. Protocol 2 results are shown

in Figure 4.

Our IGE networks can achieve competitive results in

a handful of steps, with performance comparable to the

full base model with significantly few operations. Unlike

the baseline, our networks also have a constant number of
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Figure 4: Protocol 2 scores (lower is better) and the num-

ber of multiply-adds due to dense layers in inference. Base

model values are for networks with (left-to-right) 128, 256,

512 and 1024 units in each dense layer and 1 (red) or 2

(blue) residual blocks. IGE values (black) are for (left-to-

right) 0, 1, 2, 4, 6 and 8, 12 and 16 steps. The size of

each dot represents the number of trainable parameters of

the model.

Protocol 1a Protocol 2

2D source SH FT GT SH FT GT

Mart. [33] - - - 52.5 47.7 37.1

Base 1024/2 79.0 75.1 61.6 52.2 47.9 35.8

IGE4 75.1 67.8 45.1 56.1 51.5 39.4

IGE8 72.8 66.0 42.6 55.1 50.5 37.7

Table 1: Average Protocol 1a/Protocol 2 scores for infer-

ences based on stacked hourglass detections (SH), fine-

tuned stacked hourglass detections (FT) and ground truth

projections (GT). Baseline models had 1024 hidden units

and 2 residual blocks. IGE networks were trained for 4 and

8 steps. Lower is better.

trained parameters, resulting in a significantly smaller mem-

ory footprint.

Results for experiments based on inferred 2D poses are

shown in Table 1. Interestingly, our baseline method ap-

pears to overfit certain displacements, resulting in a rela-

tively high Protocol 1a loss, though achieves a loss consis-

tent with Martinetz et al. after optimal translation. Our IGE

network performs slightly worse than Martinez et al. on in-

ferred detections, though given the reduced computational

and memory burden we believe this would be an acceptable

trade-off in many scenarios.

6. Single View 3D Object Reconstruction

For the problem of 3D object reconstruction we param-

eterize shapes as voxel occupancy grids and seek a method

that will scale well to high resolutions.

6.1. Energy Formulation

Theoretically, the approach of separating reprojection

and feasibility losses can be applied to object reconstruc-

Figure 5: Energy function for single view reconstruction.

tion by comparing silhouettes and using some 3D con-

volutional encoder respectively. However, initial experi-

ments showed this approach suffered from a number is-

sues. These included issues with formulating projections

of continuous-valued proposed solutions and scaling issues

associated with the cubic nature of the grid.

Instead, we propose a very different energy function for-

mulation for single view reconstruction. We consider the in-

ner optimizer input x to be the progressive outputs of some

2D convolutional network with NC output feature-banks of

different resolutions x = {x1,x2, · · · ,xNC
}.

We consider an energy function made up of the sum of

energy functions at each resolution. For each image feature

map xi of shape (hi,wi, fi) we consider a voxel grid in the

camera’s viewing frustum ȳi of shape (hi,wi,di) by averag-

ing the proposed voxel grid values in world coordinates ỹ

over the frustum voxel volumes. Our energy function seeks

to learn the consistency between all voxels values along a

ray and the image features of the associated pixel,

E(ỹ;x) = ∑
i

CNNi(xi ⊕ ȳi), (10)

where concatenation is along the feature dimension and

CNNi is some short 2D convolutional neural network.

By setting the depth of the averaged frustum voxel grid

di and the number of filters in each layer of CNNi to be

proportional to the number of image features fi, and assum-

ing those image features roughly double in depth as they

halve in spatial resolution, we ensure the number of oper-

ations at each image resolution is the same. This allows

for much better resolution scaling than typical 3D convolu-

tion/deconvolution networks.

In practice, averaging a voxel grid in world coordinates

over voxels corresponding to a frustum grid is a non-trivial

operation and must be done at each step and resolution of

the inner optimizer across all examples. Instead, we trans-

form the labels of our dataset into the frustum space in a

preprocessing step. During inference, the proposed solu-

tion ỹ is a voxel grid in frustum coordinates which is av-

erage pooled anisotropically with different pool sizes for

each image resolution. This means only the average pool-
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ing must be done at each inner optimization step and res-

olution. Although this pooling operation still scales pro-

portionally to the number of voxels and inner optimization

steps (O(T N3)), GPU pooling implementations are rela-

tively fast and the operation introduces no additional pa-

rameters.

While this means our method requires knowledge of the

intrinsic camera parameters, we argue the choice of frame is

arbitrary. Our method does not explicitly use the pose of the

camera in its inference, and while the dataset transforma-

tion discussed above results in a slightly different problem

compared to other approaches in the literature, we do not

believe this puts us at an unfair advantage. On the contrary,

the transformation results in a more varied dataset, and we

demonstrate experimentally that traditional approaches per-

form slightly worse in this environment.

Our energy architecture is illustrated in Figure 5.

6.2. Outer Loss

For training, we experimented with two different per-

step outer losses. Firstly, we consider an α-balanced focal

loss [29] based on cross-entropy,

λ̂CE(ỹ,y) =−∑
v

[yv(1− ỹv)
γ(1+α) log(ỹv)+

(1− yv)ỹ
γ
v(1−α) log(1− ỹv)],

(11)

where summation is over all voxels v. This is a general-

ization of standard cross-entropy (which is recovered by

setting γ = α = 0) designed to alleviate issues with class

imbalance. α ∈ (0,1) results in additional focus on pos-

itive examples, while γ > 0 results in reduced focus on

easy examples like those associated with the outside (usu-

ally empty) or very center (usually filled) of the voxel grid.

Secondly, we experiment with a continuous intersection-

over-union implementation similar to that proposed by

Richter and Roth [39],

λ̂IoU (ỹ,y) = 1−
ỹ ·y

||ỹ+y||1 − ỹ ·y
. (12)

6.3. Implementation Details

We experimented with two architectures: a small net-

work with encoder based on MobilenetV2 (MN) [42], and

another larger network based on Inception-V4 (I4) [44].

Image decoding networks built off the encoder network

following a typical U-Net architecture common in the lit-

erature [41, 32, 35]. For the initial estimate, we used the

output of a 3D deconvolution network based on the gener-

ator of Wu et al. [53] with one fewer layers, producing an

output of resolution 323. We then trilinearly upsampled to

the required resolution.

The inner-loop CNNs (CNNi) each consist of two 3× 3

2D convolutions without padding except the lowest resolu-

tion, which was a 3× 3 followed by a 2× 2, with softplus

and softabs activations.

Our inner optimizer used a learned learning rate and gra-

dient clip value. We observed no significant difference with

momentum, so did not include it in experiments.

We used a base-line 3D deconvolutional network for

low-resolution comparison (323) similar to the initial esti-

mate network, except we doubled the number of features to

keep the number of trained parameters comparable.

An overview of feature sizes and parameter counts is

given in Table 2. Additional details and network diagrams

are provided in the supplementary material.

Base IGE

MN2 I4 MN2 I4

Image Encoder
Output size 1280 1536 42 ×320 42 ×1536

Parameters 2,223,872 54,276,192 1,811,712 54,276,192

3D Decoder
Initial size 43 ×128 43 ×512 43 ×64 43 ×256

Parameters 2,656,113 14,159,297 238,009 3,802,849

Image Decoder
Initial size - - 42 ×128 42 ×512

Parameters - - 140,992 2,928,384

Inner-loop CNN
Initial size - - 42 ×256 42 ×1024

Parameters - - 1,109,840 16,573,760

Inner Optimizer Parameters - - 2 2

Total Parameters 4,879,985 68,435,489 3,300,555 77,581,187

Table 2: Network specification summary. Parameter counts

are for 323 networks – Image decoder and inner-loop CNN

parameter counts increase negligibly for higher resolutions.

6.4. Dataset

We conduct experiments on the 13 categories of the pop-

ular Shapenet dataset [6] popularized by Choy et al. [9].

Due to difficulties reconciling the rendering parameters, im-

ages and models supplied by the authors, we use our own

renderings and voxelizations. As per Choy et al. each model

was rendered from 24 different camera positions with az-

imuth angle uniformly sampled from [0◦,360◦) and eleva-

tion angle in [25◦,30◦] with resolution 128×128.

We created voxel grids by defining any voxel intersected

by a face as filled. This means thin structures take up dis-

proportionately large volumes at low resolutions. This is

different to approaches which take a less strict approach

which may preserve a better overall volume ratio but risk

losing thin structures entirely. This difference can affect

low resolution grids significantly, though the difference be-

comes insignificant at higher resolutions. After initial vox-

elization, grids were filled in consistent with the approach

used by Johnston et al. [23].

6.5. Results

Images of two of our models’ inferences are shown in

Figure 6 – our smaller model trained with α-balanced cross-

entropy loss and the larger model with continuous IoU. Un-

surprisingly both models learn to space-carve very well,

featuring virtually no voxels along rays that miss the ob-

ject. The IoU-trained model appears to be more conserva-
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Frustum Dataset World Aligned Dataset

IGE Base Base

MN I4 MN IF MN I4 R2N2 [9] OGN [45] Mat. [39]

plane 59.6 62.4 49.2 50.2 55.0 62.6 51.3 58.7 64.7

bench 52.4 55.2 47.3 47.9 52.8 58.1 42.1 48.1 57.7

cabinet 73.6 74.9 70.6 71.3 72.1 74.9 71.6 72.9 77.6

car 78.4 79.9 74.2 73.5 77.2 76.9 79.8 81.6 85.0

telephone 69.9 72.2 65.4 64.5 70.9 70.3 66.1 70.2 75.6

chair 57.0 60.1 52.4 53.6 55.0 60.7 46.6 48.3 54.7

sofa 69.6 71.2 65.9 66.8 66.7 69.8 62.8 64.6 68.1

rifle 60.6 62.6 47.8 50.0 55.0 60.2 54.4 59.3 61.6

lamp 54.0 56.5 47.5 50.1 48.7 50.8 38.1 39.8 40.8

monitor 58.8 60.7 53.5 55.4 54.7 60.0 46.8 50.2 53.2

speaker 74.5 76.5 72.4 72.8 70.6 72.4 66.2 63.7 70.1

table 57.4 60.6 52.9 54.3 57.8 61.0 51.3 53.6 57.3

watercraft 61.9 64.0 55.5 56.6 54.8 60.0 51.3 63.0 59.1

mean 63.7 65.9 58.0 59.0 60.8 64.4 56.0 59.5 63.5

Table 3: IoU values (in %) at 323 resolutions. IGE mod-

els was trained with continuous IoU loss from Equation 12.

Mean values are calculated by class. A single model was

trained across all categories for each of our columns.

tive when it comes to thin-structures, while the α-balanced

model inferences often display slight shadowing along rays.

This often results in more realistic looking inferences de-

spite a lower average IoU score.

Quantitatively, we first investigate the performance of

the models and effect of the frustum grid at 323 resolutions.

We compare against R2N2 [9] – a standard benchmark –

along with other approaches designed for high resolution in-

ference: Octree-Generation Network (OGN) [45] and Ma-

tryoshka networks (Mat.) [39].

Intersection-over-union (IoU) values are shown in Table

3. Baseline models trained on the world-aligned grid con-

sistently out-perform those trained on the frustum grid by

a small margin. This suggests the patterns present in the

frustum dataset are harder to learn than those in the regu-

lar dataset. This is not surprising, as there is significantly

more variety in the frustum voxel grid dataset (1 grid per

view, rather than 1 grid per model). For example, almost

all planes in the world-aligned dataset have long fuselages

and angled wings. A model that learns to identify planes

could do reasonably well at low resolutions by simply infer-

ring the class average rather than taking into account fine-

level detail. To do similarly well on the frustum dataset, the

model would need to additionally infer the camera position

and learn to transform the average grid values accordingly.

While this means subsequent comparison to other meth-

ods trained on world-aligned grids is not truly fair, we in-

clude their results anyway. We believe this is more infor-

mative than only using self-comparisons so long as they are

intepreted with this disclaimer in mind.

Our multi-level optimization approach clearly out-

performs the baseline on the same dataset across all cat-

egories and both image networks. It also out-performs the

base method on the easier world-aligned dataset, along with

all other competing methods considered on average.

IGE-MN IGE-I4

cont. IoU α = γ = 0 α = 0.7 γ = 2 cont. IoU α = γ = 0 α = 0.7 γ = 2

323 63.5 60.7 58.0 59.8 66.0 61.9 59.6 64.0

643 61.5 56.8 57.1 56.9 64.7 60.8 59.3 59.3

1283 58.9 51.6 54.5 53.9 62.2 56.4 56.8 57.1

Table 4: Mean IoU (in %, averaged over categories) for our

IGE models trained with different losses.

car plane table

Resolution 32 64 128 256 32 64 128 256 32 64 128 256

OGN1 [45] 64.1 77.1 78.2 76.6 - - - - - - - -

MAT1 [39] 68.3 78.4 79.4 79.6 36.7 48.8 58.0 59.6 38.6 42.3 43.5 41.3

IGE-MN13 57.8 68.8 72.8 73.3 29.6 44.8 52.9 54.4 33.6 44.0 47.8 48.2

IGE-I413 57.9 70.9 74.0 75.2 30.5 47.8 57.5 57.3 34.8 46.5 52.7 50.5

IGE-MN1 57.0 70.3 76.2 75.2 30.7 47.9 58.7 58.1 33.6 45.9 50.6 50.2

IGE-I41 58.4 71.2 76.5 76.5 30.1 49.2 60.5 62.0 35.0 46.4 52.2 52.1

Table 5: Mean IoU (in %) trained at difference resolutions

and evaluated at 2563 for models trained across all cate-

gories (13) and per-category (1). Per-category break-down

of 13-category models available in supplementary.

Unsurprisingly, our larger model out-performs the

smaller one in all categories, regardless of the model ar-

chitecture.

To better understand the effect of the loss functions in-

volved, we trained models at various resolutions with con-

tinous IoU loss compared to models trained with different

versions of Equation 11: base cross entropy (α = 0,γ = 0),

reweighted cross entropy (α = 0.7, γ = 0) and focal loss

(α = 0, γ = 2). Results are provided in Table 4.

Continuous IoU loss gives superior metrics scores to

all variations of cross-entropy. There is no clear winner

amongst cross-entropy variants.

Finally, we consider how our continuous IoU model per-

forms at resolution of 2563. Results for models trained at

different resolutions and then linearly interpolated are given

in Table 5. We trained a single model on all 13 categories, as

well as a separate model for each of cars, planes and tables

for fair comparison with other work.

Our networks all perform comparably on cars and

planes, with our larger network performing slightly bet-

ter, and category-specific training also improving things

slightly. We significantly out-perform other methods on the

table category, where the space-carving ability of our net-

work can extract high-precision corners and edges and ac-

curately reconstruct many thin structures.

Poor performance of low resolution models when evalu-

ated at high resolutions is clear for our models. We attribute

this to the large change in the volume of these structures as

resolution increases as a result of our voxelization strategy.

A small performance regression is observed going from

1283 to 2563 in most experiments on our 13-category mod-

els. This is consistent with the observation made in OGN

[45], who demonstrate that training on a more limited

dataset results in improved performance with resolution,

while more varied datasets are hindered by increased res-
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Figure 6: Sample results for IGE-MN model trained with α = 0.7 loss @ 1283 resolution and IGE-I4 model trained with

continuous IoU @ 2563. For each block of 6, top row: (left) input image, (middle) inference (blue) projected ground truth

silhouettes (gray), (right) same as middle except I4 network trained with cont. IoU loss. Bottom row: (left) ground truth

object, (middle) MN inference, (right) I4 inference.

olution. Unlike OGN, our regression occurs when training

on the cross-category dataset, where as theirs is apparent

training on the cars dataset.

7. Conclusion

We have demonstrated energy-based multi-level opti-

mization networks can take advantage of computer graphics

principles to infer 3D information from 2D inputs. Our hu-

man pose dimension-lifting model performed comparably

to networks with orders of magnitude mode parameters and

with a fraction of the number of operations. We investigated

two 3D reconstruction networks, and showed competitive

results could be achieved with a relatively small network,

and a larger network could out-perform other state-of-the-

art high-resolution networks.

This research was supported by the Australian Research

Council through the grant ARC FT170100072.

7082



References

[1] B. Amos and J. Z. Kolter. Optnet: Differentiable opti-

mization as a layer in neural networks. arXiv preprint

arXiv:1703.00443, 2017. 2

[2] D. Belanger and A. McCallum. Structured prediction energy

networks. In International Conference on Machine Learn-

ing, pages 983–992, 2016. 2

[3] D. Belanger, B. Yang, and A. McCallum. End-to-end learn-

ing for structured prediction energy networks. In Proceed-

ings of the 34th International Conference on Machine Learn-

ing - Volume 70, ICML’17, pages 429–439. JMLR.org, 2017.

2

[4] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero,

and M. J. Black. Keep it smpl: Automatic estimation of 3d

human pose and shape from a single image. In European

Conference on Computer Vision, pages 561–578. Springer,

2016. 2

[5] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. In CVPR,

2017. 2

[6] A. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,

Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al.

Shapenet: An information-rich 3d model repository., corr

abs/1512.03012. URL http://arxiv. org/abs/1512.03012. 6

[7] C.-H. Chen and D. Ramanan. 3d human pose estimation=

2d pose estimation+ matching. In CVPR, volume 2, page 6,

2017. 2
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