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Abstract

Meta-learning approaches have been proposed to tackle

the few-shot learning problem. Typically, a meta-learner is

trained on a variety of tasks in the hopes of being generaliz-

able to new tasks. However, the generalizability on new tasks

of a meta-learner could be fragile when it is over-trained on

existing tasks during meta-training phase. In other words,

the initial model of a meta-learner could be too biased to-

wards existing tasks to adapt to new tasks, especially when

only very few examples are available to update the model.

To avoid a biased meta-learner and improve its generaliz-

ability, we propose a novel paradigm of Task-Agnostic Meta-

Learning (TAML) algorithms. Specifically, we present an

entropy-based approach that meta-learns an unbiased initial

model with the largest uncertainty over the output labels by

preventing it from over-performing in classification tasks. Al-

ternatively, a more general inequality-minimization TAML is

presented for more ubiquitous scenarios by directly minimiz-

ing the inequality of initial losses beyond the classification

tasks wherever a suitable loss can be defined. Experiments

on benchmarked datasets demonstrate that the proposed ap-

proaches outperform compared meta-learning algorithms

in both few-shot classification and reinforcement learning

tasks.

1. Introduction

The key to achieving human level intelligence is to learn

from a few labeled examples. Human can learn and adapt

quickly from a few examples using prior experience. We

want our learner to be able to learn from a few examples and

quickly adapt to a changing task. All these concerns motivate

to study the few-shot learning problem. The advantage of

studying the few-shot problem is that it only relies on few

examples and it alleviates the need to collect large amount
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of labeled training set which is a cumbersome process.

Recently, meta-learning approach is being used to tackle

the problem of few-shot learning. A meta-learning model

usually contains two parts – an initial model, and an updat-

ing strategy (e.g., a parameterized model) to train the initial

model to a new task with few examples. Then the goal of

meta-learning is to automatically meta-learn the optimal pa-

rameters for both the initial model and the updating strategy

that are generalizable across a variety of tasks. There are

many meta-learning approaches that show promising results

on few-shot learning problems. For example, Meta-LSTM

[1] uses LSTM meta-learner that not only learns initial model

but also the updating rule. On the contrary, MAML [2] only

learns an initial model since its updating rule is fixed to a

classic gradient descent method as a meta-learner.

The problem with existing meta-learning approaches is

that the initial model can be trained biased towards some

tasks, particularly those sampled in meta-training phase.

Such a biased initial model may not be well generalizable to

an unseen task that has a large deviation from meta-training

tasks, especially when very few examples are available on

the new task. This inspires us to meta-train an unbiased

initial model by preventing it from overperforming on some

tasks or directly minimizing the inequality of performances

across different tasks, in a hope to make it more generalizable

to unseen tasks. To this end, we propose a Task-Agnostic

Meta-Learning (TAML) algorithms in this paper.

Specifically, we propose two novel paradigms of TAML

algorithms – an entropy-based TAML and inequality-

minimization measures based TAML. The idea of using

entropy based approach is to maximize the entropy of labels

predicted by the initial model to prevent it from overperform-

ing on some tasks. However, the entropy-based approach

is limited to discrete outputs from a model, making it more

amenable to classification tasks.

The second paradigm is inspired by inequality measures

used in Economics. The idea is to meta-train an initial model

in such a way that it directly minimizes the inequality of

111719



losses by the initial model across a variety of tasks. This will

force the meta-learner to learn a unbiased initial model with-

out over-performing on some particular tasks. Meanwhile,

any form of losses can be adopted for involved task without

having to rely on discrete outputs. This makes this paradigm

more ubiquitous to many scenarios beyond classification

tasks.

The remainder of the paper is organized as follows. We

review about the related work in Section 2. It is followed

by the elaboration of the proposed TAML approach to meta-

learning in Section 3. In Section 4, we present extensive

experimental studies on few-shot classification and reinforce-

ment learning.

2. Related Work

The idea of meta-learning has been proposed more than a

couple of decades ago [3, 4, 5]. Most of the approaches to

meta-learning include learning a learner’s model by training

a meta-learner. Recent studies towards meta-learning for

deep neural networks include learning a hand-designed opti-

mizer like SGD by parameterizing it through recurrent neural

networks. Li [6], and Andrychowicz [7] studied a LSTM

based meta-learner that takes the gradients from learner and

performs an optimization step. Recently, meta-learning

framework has been used to solve few-shot classification

problems. [1] used the same LSTM based meta-learner ap-

proach in which LSTM meta-learner takes the gradient of

a learner and proposed an update to the learner’s parame-

ters. The approach learns both weight initialization and an

optimizer of the model weights. Finn [2] proposed a more

general approach for meta-learning known as MAML by

simply learning weight initialization for a learner through a

fixed gradient descent. It trains a model on a variety of tasks

to have a good initialization point that can be quickly adapted

(few or one gradient steps) to a new task using few train-

ing examples. Meta-SGD [8] extends the MAML, which

not only learns weight initialization but also the learner’s

update step size. [9] proposes a temporal convolution and

attention based meta-learner called SNAIL that achieves

state-of-the-art performance for few-shot classification tasks

and reinforcement learning tasks.

Other paradigms of meta-learning approaches include

training a memory augmented neural network on existing

tasks by coupling with LSTM or feed-forward neural net-

work controller [10, 11]. There are also several non-meta-

learning approaches to few-shot classification problem by

designing specific neural architectures. For example, [12]

trains a Siamese network to compare new examples with

existing ones in a learned metric space. Vinyals [13] used a

differentiable nearest neighbour loss by utilizing the cosine

similarities between the features produced by a convolu-

tional neural network. [14] proposed a similar approach to

matching net but used a square euclidean distance metric

instead. In this paper, we mainly focus on the meta-learning

approaches and their applications to few-shot classification

and reinforcement tasks.

3. Approach

Our goal is to train a model that can be task-agnostic in

a way that it prevents the initial model or learner to over-

perform on a particular task. In this section, we will first

describe our entropy based and inequality-minimization mea-

sures based approach to the problem, and then we will dis-

cuss some of the inequality measures that we used in the

paper.

3.1. Task Agnostic Meta­Learning

In this section, we propose a task-agnostic approach for

few-shot meta-learning. The goal of few-shot meta-learning

is to train a model in such a way that it can learn to adapt

rapidly using few samples for a new task. In this meta-

learning approach, a learner is trained during a meta-learning

phase on variety of sampled tasks so that it can learn new

tasks , while a meta-learner trains the learner and is respon-

sible for learning the update rule and initial model.

The problem with the current meta-learning approach is

that the initial model or learner can be biased towards some

tasks sampled during the meta-training phase, particularly

when future tasks in the test phase may have discrepancy

from those in the training tasks. In this case, we wish to

avoid an initial model over-performing on some tasks. More-

over, an over-performed initial model could also prevent the

meta-learner to learn a better update rule with consistent

performance across tasks.

To address this problem, we impose an unbiased task-

agnostic prior on the initial model by preventing it from over-

performing on some tasks so that a meta-learner can achieve

a more competitive update rule. There have been many

meta-learning approaches to few-shot learning problems

that have been briefly discussed in the section 2. While

the task-agnostic prior is a widely applicable principle for

many meta-learning algorithms, we mainly choose Model-

Agnostic Meta Learning approach (MAML) as an example

to present the idea, and it is not hard to extend to other

meta-learning approaches.

In the following, we will depict the idea by presenting

two paradigms of task-agnostic meta-learning (TAML) al-

gorithms – the entropy-maximization/reduction TAML and

inequality-minimization TAML.

3.1.1 Entropy-Maximization/Reduction TAML

For simplicity, we express the model as a function fθ that is

parameterized by θ. For example, it can be a classifier that

takes an input example and outputs its discrete label. Dur-

ing meta-training, a batch of tasks are sampled from a task
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distribution p(T ), and each task is K-shot N -way problem

where K represents the number of training examples while

N represent the number of classes depending on the problem

setting. In the MAML, a model is trained on a task T i using

K examples and then tested on a few new examples Dval

for this task.

A model has an initial parameter θ and when it is trained

on the task T i, its parameter is updated from θ to θi by

following an updating rule. For example, for K-shot classi-

fication, stochastic gradient descent can be used to update

model parameter by θi ← θ − α∇θLTi
(fθ) that attempts to

minimize the cross-entropy loss LTi
(fθ) for the classifica-

tion task Ti over K examples.

To prevent the initial model fθ from over-performing on a

task, we prefer it makes a random guess over predicted labels

with an equal probability so that it is not biased towards the

task. This can be expressed as a maximum-entropy prior

over θ so that the initial model should have a large entropy

over the predicted labels over samples from task T i.

The entropy for task Ti is computed by sampling xi from

PTi
(x) over its output probabilities yi,n over N predicted

labels:

HTi
(fθ) = −Exi∼PTi

(x)

N
∑

n=1

ŷi,n log(ŷi,n) (1)

where [yi,1, · · · , yi,N ] = fθ(xi) is the predictions by

fθ, which are often an output from a softmax layer in a

classification task. The above expectation is taken over xi’s

sampled from task Ti.
Alternatively, one can not only maximize the entropy

before the update of initial model’s parameter, but also min-

imize the entropy after the update. So overall, we maxi-

mize the entropy reduction for each task T i as HTi
(fθ) −

HTi
(fθi). The minimization of HTi

(fθi) means that the

model can become more certain about the labels with a

higher confidence after updating the parameter θ to θi. This

entropy term can be combined with the typical meta-training

objective term as a regularizer to find the optimal θ, which is

min
θ

ETi∼P (T )LTi
(fθi) + λ[−HTi

(fθ) +HTi
(fθi)]

where λ is a positive balancing coefficient, and the first term

is the expected loss for the updated model fθi . The entropy-

reduction algorithm is summarized in 1.

Unfortunately, the entropy-based TAML is subject to a

critical limitation – it is only amenable to discrete labels in

classification tasks to compute the entropy. In contrast, many

other learning problems, such as regression and reinforce-

ment learning problems, it is often trained by minimizing

some loss or error functions directly without explicitly ac-

cessing a particular form of outputs like discrete labels. To

make the TAML widely applicable, we need to define an

alternative metric to measure and minimize the bias across

tasks.

Algorithm 1 TAML for Few-Shot Classification

Require: p(T ): distribution over tasks.

Require: α, β: hyperparameters

Randomly Initialize θ

while not done do

Sample batch of tasks T i ∼ p(T )
for all T i do

Sample K samples from T i

Evaluate ∇θLTi
(fθ) and LTi

(fθ) using K

samples.

Compute adapted parameters using gradient

descent.

θi ← θ − α∇θLTi

Sample Dval from Ti for meta update.

end for

if Entropy-Reduction TAML then

Update θ ← θ − β∇θ{ETi∼P (T )LTi
(fθi)

+ λ[−HTi
(fθ) +HTi

(fθi)]} using Dval, LTi
,

andHTi
.

else if Inequality Measures Based TAML then

Update θ ← θ − β∇θ[ETi∼p(T )LTi
(fθi)

+ λIE({LTi
(fθ)})] using Dval,i, LTi

, and IE
end if

end while

3.1.2 Inequality-Minimization TAML

We wish to train a task-agnostic model in meta-learning such

that its initial performance is unbiased towards any particular

task T i. Such a task-agnostic meta-learner would do so by

minimizing the inequality of its performances over different

tasks.

To this end, we propose an approach based on a large

family of statistics used to measure the ”economic inequal-

ities” to measure the ”task bias”. The idea is that the loss

of an initial model on each task Ti is viewed as an income

for that task. Then for the TAML model, its loss inequality

over multiple tasks is minimized to make the meta-learner

task-agnostic.

Specifically, the bias of the initial model towards any

particular tasks is minimized during meta-training by mini-

mizing the inequality over the losses of sampled tasks in a

batch. So, given an unseen task during testing phase, a better

generalization performance is expected on the new task by

updating from an unbiased initial model with few examples.

The key difference between both TAMLs lies that for en-

tropy, we only consider one task at a time by computing

the entropy of its output labels. Moreover, entropy depends

on a particular form or explanation of output function, e.g.,

the SoftMax output. On the contrary, the inequality only

depends on the loss, thus it is more ubiquitous.

The complete algorithm is explained in 1. Formally,

consider a batch of sampled tasks {Ti} and their losses

11721



{LTi
(fθ)} by the initial model fθ, one can compute the in-

equality measure by IE({LTi
(fθ)}) as discussed later. Then

the initial model parameter θ is meta-learned by minimizing

the following objective

ETi∼p(T ) [LTi
(fθi)] + λIE({LTi

(fθ)})

through gradient descent as shown in Algorithm 1. It is worth

noting that the inequality measure is computed over a set

of losses from sampled tasks. The first term is the expected

loss by the model fθi after the update, while the second

is the inequality of losses by the initial model fθ before

the update. Both terms are a function of the initial model

parameter θ since θi is updated from θ. In the following, we

will elaborate on some choices on inequality measures IE .

3.2. Inequality Measures

Inequality measures are instrumental towards calculating

the economic inequalities in the outcomes that can be wealth,

incomes, or health related metrics. In meta-learning context,

we use ℓi = LTi
(fθ) to represent the loss of a task Ti, ℓ̄

represents the mean of the losses over sampled tasks, and

M is the number of tasks in a single batch. The inequality

measures used in TAML are briefly described below.

Theil Index [15].This inequality measure has been derived

from redundancy in information theory, which is defined as

the difference between the maximum entropy of the data

and an observed entropy. Suppose that we have M losses

{ℓi|i = 1, · · · ,M}, then Thiel Index is defined as

TT =
1

M

M
∑

i=1

ℓi

ℓ̄
ln

ℓi

ℓ̄
(2)

Generalized Entropy Index [16]. The relation between

information theory and information distribution analysis has

been exploited to derive a number of measures for inequality.

Generalized Entropy index has been proposed to measure

the income inequality. It is not a single inequality measure,

but it is a family that includes many inequality measures like

Thiel Index, Thiel L etc. For some real value α, it is defined

as:

GE(α) =



















































1

Mα(α− 1)

M
∑

i=1

[(

ℓi

ℓ̄

)α

− 1

]

, α 6= 0, 1,

1

M

M
∑

i=1

ℓi

ℓ̄
ln

ℓi

ℓ̄
, α = 1,

−
1

M

M
∑

i=1

ln
ℓi

ℓ̄
, α = 0,

(3)

From the equation, we can see that it does represent a family

of inequality measures. When α is zero, it is called a mean

log deviation of Thiel L, and when α is one, it is actually

Thiel Index. A larger GE α value makes this index more

sensitive to differences at the upper part of the distribution,

and a smaller α value makes it more sensitive to differences

at the bottom of the distribution.

Atkinson Index [17] is another measure for income in-

equality which is useful in determining which end of the

distribution contributed the most to the observed inequality.

It is defined as :

Aǫ =



























1−
1

µ

(

1

M

M
∑

i=1

ℓ1−ǫ
i

)
1

1−ǫ

, for 0 ≤ ǫ 6= 1,

1−
1

ℓ̄

(

1

M

M
∏

i=1

ℓi

)
1

M

, for ǫ = 1, ,

(4)

where ǫ is called ”inequality aversion parameter”. When

ǫ = 0 the index becomes more sensitive to the changes in

upper end of the distribution ,and when it approaches to 1,

the index becomes more sensitive to the changes in lower

end of the distribution.

Gini-Coefficient [18] is usually defined as the half of the

relative absolute mean difference. In terms of meta-learning,

if there are M tasks in a single batch and a task Ti loss is

represented by ℓi, then Gini-Coefficient is defined as:

G =

∑M
i=1

∑M
j=1 |ℓi − ℓj |

2n
∑M

i=1 ℓi
(5)

Gini- coefficient is more sensitive to deviation around the

middle of the distribution than at the upper or lower part of

the distribution.

Variance of Logarithms [19] is another common inequal-

ity measure defined as:

VL(ℓ) =
1

M

M
∑

i=1

[ln ℓi − ln g(ℓ)]2 (6)

where g(ℓ) is the geometric mean of ℓ which is defined as

(
∏M

i=1 ℓi)
1/M . The geometric mean put greater emphasis

on the lower losses of the distribution.

4. Experiments

We report experiment results in this section to evaluate

the efficacy of the proposed TAML approaches on a variety

of few-shot learning problems on classification and reinforce-

ment learning.
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Table 1. Few Shot Classification results on Omniglot dataset for fully connected network and convolutional network on 5-way setting, where

* means re-run results as there is no general training/test splitting available for Omniglot, thus we re-run compared models with the same

splitting used in running the TAML for a fair comparison. The ± shows 95% confidence interval over tasks.

Methods
5-way

1-shot 5-shot

MANN, no conv [10] 82.8% 94.9%

MAML, no conv [2] 89.7 ± 1.1% 97.5 ± 0.6 %(96.1 ± 0.4)%*

TAML(Entropy), no conv 91.19 ± 1.03% 97.40 ± 0.34%

TAML(Theil), no conv 91.37 ± 0.97% 96.84 ± 0.36%

TAML(GE(2)), no conv 91.3 ± 1.0% 96.76 ± 0.4%

TAML(Atkinson), no conv 91.77 ± 0.97% 97.0 ± 0.4%

Siamese Nets [12] 97.3% 98.4%

Matching Nets [13] 98.1% 98.9%

Neural Statistician [20] 98.1% 99.5%

Memory Mod. [21] 98.4% 99.6%

Prototypical Nets [14] 98.8% 99.7%

Meta Nets [11] 98.9% -

Snail [9] 99.07 ± 0.16% 99.78 ± 0.09%

MAML [2] 98.7 ± 0.4% 99.9± 0.1%

MAML+L2 [2] 98.77 ± 0.5% 99.31± 0.1%

Meta-SGD* [8] 97.97 ± 0.7% 98.96± 0.2%

TAML(Entropy) 99.23 ± 0.35% 99.71 ± 0.1%

TAML(Theil) 99.5 ± 0.3% 99.81 ± 0.1 %

TAML(GE(2)) 99.47 ± 0.25 % 99.83 ± 0.09%

TAML(Atkinson) 99.37 ± 0.3% 99.77 ± 0.1%

TAML (Gini-Coefficient) 99.3 ± 0.32% 99.70 ± 0.1%

TAML(GE(0)) 99.33 ± 0.31% 99.75 ± 0.09%

TAML (VL) 99.1 ± 0.36% 99.6 ± 0.1%

Table 2. Few Shot Classification results on Omniglot dataset for CNN on 20-way setting. For a fair comparison, * denotes re-run results by

both meta-learning approaches on the same training/test split used in TAML models. The proposed TAML approaches outperform both

MAML and Meta-SGD.

Methods
20-way

1-shot 5-shot
Siamese Nets [12] 88.2% 97.0%
Matching Nets [13] 93.8% 98.5%
Neural Statistician [20] 93.2% 98.1%
Memory Mod. [21] 95.0% 98.6%
MAML* [2] 90.81 ± 0.5% 97.49 ± 0.15%
MAML+L2* [2] 90.93 ± 0.6% 97.65 ± 0.18%
Meta-SGD* [8] 93.98 ± 0.43% 98.42 ± 0.11%
TAML(Entropy + MAML) 95.62 ± 0.5% 98.64 ± 0.13%
TAML(Theil + Meta-SGD) 95.15 ± 0.39% 98.56 ± 0.1%
TAML(Atkinson + Meta-SGD) 94.91 ± 0.42% 98.50 ± 0.1%
TAML (VL + Meta-SGD) 95.12 ± 0.39% 98.58 ± 0.1%
TAML(Theil + MAML) 92.61 ± 0.46% 98.4 ± 0.1%
TAML(GE(2) + MAML) 91.78 ± 0.5% 97.93 ± 0.1%
TAML(Atkinson + MAML) 93.01 ± 0.47% 98.21 ± 0.1%
TAML(GE(0) + MAML) 92.95 ± 0.5% 98.2 ± 0.1%
TAML (VL + MAML) 93.38 ± 0.47% 98.54 ± 0.1%

4.1. Classification

We use two benchmark datasets Omniglot and MiniIm-

agenet for few-shot classification problem. The Omniglot

dataset has 1623 characters from 50 alphabets. Each charac-

ter has 20 instances which are drawn by different individuals.

We randomly select 1200 characters for training and remain-

ing for testing. From 1200 characters, we randomly sample

100 for validation. As proposed in [10], the dataset is aug-

mented with rotations by multiple of 90 degrees.
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(a) Entropy (b) Thiel

Figure 1. Validation Accuracy of TAML vs MAML on Mini-Imagenet 1-shot 5-way.

Algorithm 2 Inequality Measures Based TAML for Rein-

forcement Learning

Require: p(T ): distribution over tasks.

Require: α, β: hyperparameters

Randomly Initialize θ

while not done do

Sample batch of tasks T i ∼ p(T )
for all T i do

Sample K trajectories (x1, a1, ..., xT ) using fθ in

T i.

Evaluate∇θLTi
(fθ) and LTi

using K trajectories

in Equation 7

Compute adapted parameters using gradient

descent : θi = θ − α∇θLTi
.

Sample trajectories Dval,i using fθi in Ti.
end for

Update θ ← θ − β∇θ[ETi∼p(T )LTi
(fθi)

+ λIE({LTi
(fθ)})] using Dval,i, LTi

, and IE
end while

The Mini-Imagenet dataset was proposed by [13] and it

consists of 100 classes from Imagenet dataset. We used the

same split proposed by [1] for fair comparison. It involves

64 training classes, 12 validation classes and 20 test classes.

We consider 5-way and 20-way classification for both 1-shot

and 5-shot.

For K-shot N -way classification, we first sample N un-

seen classes from training set and for every N unseen class,

we sample K different instances. We follow the same model

architecture used by [13]. The Omniglot dataset images are

downsampled by 28x28 and we use a strided convolutions

instead of max-pooling. The MiniImagenet images are down-

sampled to 84x84 and we used 32 filters in the convolutional

layers for 5-shot setting. For 1-shot setting, we used 64 fil-

ters in convolutional layers and we added two dropouts. We

also used Leaky-ReLU instead of ReLU as non-linearity. We

re-run the MAML on MiniImagenet 1-shot setting for this

customized architecture too. We also evaluate the proposed

approach on non-convolutional neural network. For a fair

comparison with MANN [10] and MAML [2], we follow the

same architecture used by MAML [2]. We use Leaky-ReLU

as non-linearity instead of ReLU non-linearity.

We train and evaluate the meta-models based on TAML

that are unbiased and show they can be adapted to new tasks

in few iterations as how they are meta-trained. For Omniglot

dataset, we use a batch size of 32 and 16 for 5-way and

20-way classification, respectively. We follow [2] for other

training settings. For fair comparison with Meta-SGD on

20-way classification, the model was trained with 1 gradient

step. For 5-way Mini-Imagenet, we use a batch size of 4 for

both 1-shot and 5-shot settings. For 5-way 5-shot setting, we

used a learning rate α of 0.05. For 20-way classification on

MiniImagenet, the learning rate was set to 0.01 for both 1-

shot and 5-shot, and each task is updated using one-gradient

step. All the models are trained for 60000 iterations. We use

the validation set to tune the hyper-parameter λ for both the

approaches.

4.1.1 Results

We report the results for 5-way Omniglot for both fully

connected network and convolutional network. We added

one more baseline in which we add L2 regularizer in the

MAML’s cost function and from Table 1 2, it shows that

the performance is about the same as MAML for both 5-

way and 20-way classification settings.The convolutional

network learned by TAML outperforms all the state-of-the-

art methods in Table 1. For 20-way classification, we re-ran

the Meta-SGD algorithm with our own training/test splitting

for fair comparison since the Meta-SGD is not open-sourced

and their training/test split is neither available. The results

are reported in the Table 2. It can be shown that TAML

outperforms MAML and Meta-SGD for both 1-shot and 5-
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Table 3. Few Shot Classification results on Mini-Imagenet dataset on 5-way and 20-way setting. The results for other methods on 5-way are

reported from MAML, and for 20-way, the results are reported from Meta-SGD. TAML approaches outperform MAML on both settings and

Meta-SGD on 20-way setting.* Accuracy using the comparable network architecture.

Methods
5-way

1-shot 5-shot

20 way

1-shot 5-shot

Fine-tune 28.86 ± 0.54% 49.79 ± 0.79% - -

Nearest Neighbors 41.08 ± 0.70% 51.04 ± 0.65% - -

Matching Nets [13] 43.56 ± 0.84% 55.31 ± 0.73% 17.31 ± 0.22% 22.69 ± 0.20%

Meta-Learn LSTM [1] 43.44 ± 0.77% 60.60 ± 0.71% 16.70 ± 0.23% 26.06 ± 0.25%

TAML(Theil + Meta-Learn LSTM) 46.28 ± 0.79% 62.92 ± 0.66% - -

MAML (firstorderapprox.) [2] 48.07 ± 1.75% 63.15 ± 0.91% - -

MAML [2] 48.70 ± 1.84% 63.11 ± 0.92% 16.49 ± 0.58% 19.29 ± 0.29%

MAML (64 filters) [2] 49.5 ± 1.8% - - -

Meta-SGD [8] 50.47 ± 1.87% 64.03 ± 0.94% 17.56 ± 0.64% 28.92 ± 0.35%

Prototypical network [14] 46.61 ± 0.78% 65.77 ± 0.70% - -

Reptile [22] 49.97 ± 0.32% 65.99 ± 0.58% - -

LLAMA [23] 49.40 ± 1.83% - - -

SNAIL* [9] 45.1% 55.2% - -

GNN [24] 50.33 ± 0.36% 66.41 ± 0.63% - -

Relation Network [25] 50.44 ± 0.82% 65.32 ± 0.70% - -

TAML(Entropy + MAML) 51.73 ± 1.88% 66.05 ± 0.85% - -

TAML(Theil + MAML) 51.5 ± 1.86% 65.94 ± 0.9% 18.74 ± 0.65% 25.77 ± 0.33%

TAML(GE(2) + MAML) 50.87 ± 1.86% 65.18 ± 0.9% 18.22 ± 0.67% 24.89 ± 0.34%

TAML(Atkinson + MAML) 51.03 ± 1.83% 65.24 ± 0.91% - -

TAML(GE(0) + MAML) 50.93 ± 1.9% 65.71 ± 0.9% 18.95 ± 0.68% 24.53± 0.33%

TAML (VL + MAML) 51.13 ± 1.85% 66.0 ± 0.89% 18.13 ± 0.64% 25.33 ± 0.32%

TAML(GE(0) + Meta-SGD) 51.1 ± 1.88% 65.51 ± 0.93% 19.45 ± 0.67% 29.75± 0.34%

TAML (VL + Meta-SGD) 51.77 ± 1.86% 65.6 ± 0.93% 19.73 ± 0.65% 29.81 ± 0.35%

(a) GE(0) (b) Theil (c) GE(2)

Figure 2. Results on 2D Navigation task.

shot settings. The results also show that TAML achieves

much more competitive rule during the training.

For MiniImagenet, the proposed TAML approaches out-

perform the compared ones for 1-shot 5-way classification

problem. For 5-shot 5 way setting, our entropy based ap-

proach still outperforms all the other methods except for

GNN which is still within the variance of entropy based

approach. The entropy based TAML achieves the best per-

formance compared with inequality-minimization TAML for

5-shot problem. For 20-way setting, we use the reported

results from Meta-SGD for both MAML and Meta-SGD. We

outperform both MAML and Meta-SGD for both 1-shot and

5-shot settings. It is interesting to note that MAML performs

poor compared with matching nets and Meta-learner LSTM

when it is trained using one gradient step as reported in Ta-

ble 3. The test accuracy for prototypical results which is
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reported in Table 3 for models matches train and test ”shot”

and ”way”. The results reported by [14] requires 30-way

15 queries per training episode for 1-shot and, 20-way 15

queries per training episode for 5-shot results.

We also compare the performance of TAML when applied

to Meta-Learn LSTM [1]. For this experiment, we added

dropout after the last convolution layer and use leaky ReLU

instead of ReLU non-linearity. In each iteration, We sam-

ple 5 datasets where each dataset is {Dtrain,Dtest} from

Dmeta−train, and then calculate loss for each test set Dtest

of the dataset using the initial parameter of Meta-Learner.

We optimize the parameters of the Meta-learner based on the

both classification loss and TAML based inequality measure.

We report the result in table 3. For both 1-shot and 5-shot

experiment, we outperform Meta-Learn LSTM and achieve

almost more than 3% accuracy on both the settings. This

shows that TAML can be applicable to any meta-learning

algorithm.

Figure 1 shows the curve of validation accuracies of our

entropy approach on the left panel and Theil based approach

on right panel versus MAML for Mini-Imagenet 5-way 1-

shot at gradient step 5. It can be seen that our both ap-

proaches achieve much better validation accuracy as com-

pared to MAML meaning TAML achieves much better ini-

tialization point.

4.1.2 Analysis

Entropy based approach performs better than the inequality

based approach. For 5- way Omniglot, there is negligible dif-

ference between the entropy based approach and inequality

based approach. For 1 shot 5-way MiniImagenet experiment,

entropy based TAML still beats inequality based TAML for

MAML algorithms. VL based TAML has negligible im-

provement as compare to entropy based TAML because it

uses Meta-SGD algorithm. When it uses MAML, its per-

formance is lower than the entropy based approach. Every

inequality has some properties as mentioned in section 3.2.

Some of the inequalities are more sensitive to upper part

of the distribution means it is more sensitive towards those

tasks which have higher loss value and some of the inequali-

ties are sensitive towards changes to those tasks which have

lower loss values. The idea is to increase the uncertainty

of the initial model on different tasks. Theil inequality is a

part of larger family of GE. When alpha is 1 in equation 3,

it becomes Theil Index. Moreover, As we can see from Ta-

ble 1 2 3, VL, GE(0) and Thiel perform better than GE(2).

For Omniglot 5-way experiment, the margin is negligible

because MAML already achieved 99% accuracy on 1 shot

and 99.9% on 5-shot. Atkinson index can also be derived

from generalized entropy index family by setting epsilon = 1

- alpha as mentioned in equation 4 and 3. The high epsilon

corresponds to GE index with small alpha means it becomes

sensitive to lower end of the distribution.

4.2. Reinforcement Learning

In reinforcement learning, the goal is to learn the optimal

policy given fewer trajectories or experiences. A reinforce-

ment learning task T i is defined as Markov Decision Process

that consists of a state space S , an action spaceA, the reward

functionR, and state-transition probabilities qi(xt+1|xt, at)
where at is the action at time step t [26, 27]. In our exper-

iments, we are using the same settings as proposed in [2]

where we are sampling trajectories using policy fθ. The loss

function used is the negative of the expectation of the sum

of the rewards,

LTi
= −Eat∼fθ,xt,qTi

(

T
∑

t=1

Ri(xt, at)

)

. (7)

Experiments were performed using rllab suite [28].

Vanilla policy gradient [29] is used to for inner gradient

updates while trust region policy optimizer (TRPO) [30]

is used as meta-optimizer. The algorithm is the same as

mentioned in algorithm 1 with the only difference bing that

trajectories were sampled instead of images.

For reinforcement learning experiment, we evaluate

TAML on a 2D navigation task. The policy network that

was used in performing this task is identical to the policy

network that was used in [2] for a fair comparison, which is a

three-layered network using ReLU while setting the step size

α = 0.1. The experiment consists an agent moving in two-

dimensional environment and the goal of the agent is to reach

the goal state that is randomly sampled from a unit square.

For evaluation purposes, we compare the results of TAML

with MAML, oracle policy, conventional pre-training and

random initialization. Our results have shown that GE(0),

Theil, and GE(2) TAML perform on-par with MAML after 2

gradient steps but start to outperform it afterwards as shown

in figure 2.

5. Conclusion

In this paper, we proposed a novel paradigm of Task-

Agnostic Meta-Learning (TAML) algorithms to train a meta-

learner unbiased towards a variety of tasks before its initial

model is adapted to unseen tasks. Both an entropy-based

TAML and a general inequality-minimization TAML appli-

cable to more ubiquitous scenarios are presented. We argue

that the meta-learner with unbiased task-agnostic prior could

be more generalizable to handle new tasks compared with

the conventional meta-learning algorithms. The experiment

results also demonstrate the TAML could consistently out-

perform existing meta-learning algorithms on both few-shot

classification and reinforcement learning tasks.
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