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Abstract

We develop hierarchically quantized efficient embedding

representations for similarity-based search and show that

this representation provides not only the state of the art per-

formance on the search accuracy but also provides several

orders of speed up during inference. The idea is to hierar-

chically quantize the representation so that the quantization

granularity is greatly increased while maintaining the accu-

racy and keeping the computational complexity low. We also

show that the problem of finding the optimal sparse com-

pound hash code respecting the hierarchical structure can

be optimized in polynomial time via minimum cost flow in an

equivalent flow network. This allows us to train the method

end-to-end in a mini-batch stochastic gradient descent set-

ting. Our experiments on Cifar100 and ImageNet datasets

show the state of the art search accuracy while providing sev-

eral orders of magnitude search speedup respectively over

exhaustive linear search over the dataset.

1. Introduction

Learning the feature embedding representation that pre-

serves the notion of similarities among the data is of great

practical importance in machine learning and vision and

is at the basis of modern similarity-based search [21, 23],

verification [26], clustering [2], retrieval [25, 24], zero-shot

learning [31, 5], and other related tasks. In this regard, deep

metric learning methods [2, 21, 23] have shown advances

in various embedding tasks by training deep convolutional

neural networks end-to-end encouraging similar pairs of data

to be close to each other and dissimilar pairs to be farther

apart in the embedding space.

Despite the progress in improving the embedding repre-

sentation accuracy, improving the inference efficiency and

scalability of the representation in an end-to-end optimiza-

tion framework is relatively less studied. Practitioners de-

ploying the method on large-scale applications often resort

to employing post-processing techniques such as embedding

thresholding [1, 32] and vector quantization [27] at the cost

of the loss in the representation accuracy. Recently, Jeong

& Song [11] proposed an end-to-end learning algorithm for

quantizable representations which jointly optimizes the qual-

ity of the convolutional neural network based embedding

representation and the performance of the corresponding

sparsity constrained compound binary hash code and showed

significant retrieval speedup on ImageNet [20] without com-

promising the accuracy.

In this work, we seek to learn hierarchically quantizable

representations and propose a novel end-to-end learning

method significantly increasing the quantization granularity

while keeping the time and space complexity manageable

so the method can still be efficiently trained in a mini-batch

stochastic gradient descent setting. Besides the efficiency

issues, however, naively increasing the quantization granu-

larity could cause severe degradation in the search accuracy

or lead to dead buckets hindering the search speedup.

To this end, our method jointly optimizes both the sparse

compound hash code and the corresponding embedding rep-

resentation respecting a hierarchical structure. We alternate

between performing cascading optimization of the optimal

sparse compound hash code per each level in the hierarchy

and updating the neural network to adjust the corresponding

embedding representations at the active bits of the compound

hash code.

Our proposed learning method outperforms both the re-

ported results in [11] and the state of the art deep metric

learning methods [21, 23] in retrieval and clustering tasks on

Cifar-100 [13] and ImageNet [20] datasets while, to the best

of our knowledge, providing the highest reported inference

speedup on each dataset over exhaustive linear search.

2. Related works

Embedding representation learning with neural networks

has its roots in Siamese networks [4, 9] where it was trained

end-to-end to pull similar examples close to each other and

push dissimilar examples at least some margin away from

each other in the embedding space. [4] demonstrated the idea

could be used for signature verification tasks. The line of

work since then has been explored in wide variety of practical

applications such as face recognition [26], domain adaptation
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[22], zero-shot learning [31, 5], video representation learning

[28], and similarity-based interior design [2], etc.

Another line of research focuses on learning binary ham-

ming ranking [29, 33, 19, 14] representations via neural

networks. Although comparing binary hamming codes is

more efficient than comparing continuous embedding repre-

sentations, this still requires the linear search over the entire

dataset which is not likely to be as efficient for large scale

problems. [7, 16] seek to vector quantize the dataset and

back propagate the metric loss, however, it requires repeat-

edly running k-means clustering on the entire dataset during

training with prohibitive computational complexity.

We seek to jointly learn the hierarchically quantizable

embedding representation and the corresponding sparsity

constrained binary hash code in an efficient mini-batch based

end-to-end learning framework. Jeong & Song [11] moti-

vated maintaining the hard constraint on the sparsity of hash

code to provide guaranteed retrieval inference speedup by

only considering ks out of d buckets and thus avoiding linear

search over the dataset. We also explicitly maintain this con-

straint, but at the same time, greatly increasing the number of

representable buckets by imposing an efficient hierarchical

structure on the hash code to unlock significant improvement

in the speedup factor.

3. Problem formulation

Consider the following hash function

r(x) = argmin
h∈{0,1}d

−f(x;θ)⊺h

under the constraint that ‖h‖1 = ks. The idea is to optimize

the weights in the neural network f(·;θ) : X → R
d, take

ks highest activation dimensions, activate the corresponding

dimensions in the binary compound hash code h, and hash

the data x ∈ X into the corresponding active buckets of a

hash table H. During inference, a query xq is given, and

all the hashed items in the ks active bits set by the hash

function r(xq) are retrieved as the candidate nearest items.

Often times [27], these candidates are reranked based on

the euclidean distance in the base embedding representation

f(·;θ) space.

Given a query hq , the expected number of retrieved items

is
∑

i 6=q Pr(h
⊺

i hq 6= 0). Then, the expected speedup factor

[11] (SUF) is the ratio between the total number of items

and the expected number of retrieved items. Concretely, it

becomes (Pr(h⊺

i hq 6= 0))−1 = (1 −
(
d−ks

ks

)
/
(
d
ks

)
)−1. In

case d ≫ ks, this ratio approaches d/ks
2.

Now, suppose we design a hash function r(x) so that

the function has total dim(r(x)) = dk (i.e. exponential in

some integer parameter k > 1) indexable buckets. The ex-

pected speedup factor [11] approaches dk/k2s which means

the query time speedup increases linearly with the number

of buckets. However, naively increasing the bucket size

for higher speedup has several major downsides. First, the

hashing network has to output and hold dk activations in the

memory at the final layer which can be unpractical in terms

of the space efficiency for large scale applications. Also, this

could also lead to dead buckets which are under-utilized and

degrade the search speedup. On the other hand, hashing the

items uniformly at random among the buckets could help

to alleviate the dead buckets but this could lead to a severe

drop in the search accuracy.

Our approach to this problem of maintaining a large num-

ber of representable buckets while preserving the accuracy

and keeping the computational complexity manageable is to

enforce a hierarchy among the optimal hash codes in an effi-

cient tree structure. First, we use dim(f(x)) = dk number

of activations instead of dk activations in the last layer of the

hash network. Then, we define the unique mapping between

the dk activations to dk buckets by the following procedure.

Denote the hash code as h̃ = [h1, . . . ,hk] ∈ {0, 1}d×k

where ‖hv‖1 = 1 ∀v 6= k and ‖hk‖1 = ks. The superscript
denotes the level index in the hierarchy. Now, suppose we
construct a tree T with branching factor d, depth k where
the root node has the level index of 0. Let each dk leaf
node in T represent a bucket indexed by the hash function
r(x). Then, we can interpret each h

v vector to indicate the
branching from depth v − 1 to depth v in T . Note, from

the construction of h̃, the branching is unique until level
k − 1, but the last branching to the leaf nodes is multi-way
because ks bits are set due to the sparsity constraint at level
k. Figure 1 illustrates an example translation from the given
hash activation to the tree bucket index for k=2 and ks=2.

Concretely, the hash function r(x) : Rd×k → {0, 1}d
k

can
be expressed compactly as Equation (1).

r(x) =

k⊗

v=1

argmin
h
v

− (f(x;θ)v)⊺ hv
(1)

subject to ‖hv‖1 =

{

1 ∀v 6= k

ks v = k
and h

v ∈ {0, 1}d

where
⊗

denotes the tensor multiplication operator between

two vectors. The following section discusses how to find

the optimal hash code h̃ and the corresponding activation

f(x;θ) = [f(x;θ)1, . . . , f(x;θ)k] ∈ R
d×k respecting the

hierarchical structure of the code.

4. Methods
To compute the optimal set of embedding representations

and the corresponding hash code, the embedding representa-

tions are first required in order to infer which ks activations

to set in the hash code, but to learn the embedding repre-

sentations, it requires the hash code to determine which

dimensions of the activations to adjust so that similar items

would get hashed to the same buckets and vice versa. We

take the alternating minimization approach iterating over

computing the sparse hash codes respecting the hierarchical

quantization structure and updating the network parameters
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Figure 1: Example hierarchical structure for k = 2 and

ks=2. (Left) The hash code for each embedding represen-

tation [f(xi;θ)
1, f(xi;θ)

2] ∈ R
2d. (Right) Corresponding

activated hash buckets out of total d2 buckets.

indexed at the given hash codes per each mini-batch. Sec-

tion 4.1 and Section 4.3 formalize the subproblems in detail.

4.1. Learning the hierarchical hash code

Given a set of continuous embedding representation
{f(xi;θ)}

n
i=1, we wish to compute the optimal binary hash

code {h1, . . . ,hn} so as to hash similar items to the same
buckets and dissimilar items to different buckets. Further-
more, we seek to constrain the hash code to simultaneously
maintain the hierarchical structure and the hard sparsity con-
ditions throughout the optimization process. Suppose items
xi and xj are dissimilar items, in order to hash the two items
to different buckets, at each level of T , we seek to encourage
the hash code for each item at level v, hv

i and h
v
j to differ.

To achieve this, we optimize the hash code for all items per
each level sequentially in cascading fashion starting from

the first level {h1
1, . . . ,h

1
n} to the leaf nodes {hk

1 , . . . ,h
k
n}

as shown in Equation (2).

minimize
hk
1:n,...,h1

1:n

k∑

v=1

n∑

i=1

−(f(xi;θ)
v)⊺ h

v
i

︸ ︷︷ ︸
unary term

(2)

+
k∑

v=2

∑

(i,j)∈N

h
v
i
⊺Q′

h
v
j

v−1∏

w=1

1(hw
i = h

w
j )

︸ ︷︷ ︸
sibling penalty

+
k∑

v=1

∑

(i,j)∈N

h
v
i
⊺P ′

h
v
j

︸ ︷︷ ︸
orthogonality

subject to ‖hv
i ‖ =

{

1 ∀v 6= k

ks v = k
, hv

i ∈ {0, 1}
d, ∀i,

where N denotes the set of dissimilar pairs of data and 1(·)
denotes the indicator function. Concretely, given the hash
codes from all the previous levels, we seek to minimize the
following discrete optimization problem in Equation (3),
subject to the same constraints as in Equation (2), sequen-

tially for all levels1 v ∈ {1, . . . , k}. The unary term in the
objective encourages selecting as large elements of each em-
bedding vector as possible while the second term loops over
all pairs of dissimilar siblings and penalizes for their orthog-
onality. The last term encourages selecting as orthogonal

1In Equation (3), we omit the dependence of v for all h1, . . . ,hn to

avoid the notation clutter.

elements as possible for a pair of hash codes from different
classes in the current level v. The last term also makes sure,
in the event that the second term becomes zero, the hash code
still respects orthogonality among dissimilar items. This can
occur when the hash code for all the previous levels was
computed perfectly splitting dissimilar pairs into different
branches and the second term becomes zero.

minimize
h1,...,hn

n∑

i=1

−(f(xi; θ)
v
)
⊺
hi

︸ ︷︷ ︸
unary term

+
∑

(i,j)∈Sv

h
⊺

i Q
′
hj

︸ ︷︷ ︸
sibling penalty

+
∑

(i,j)∈N

h
⊺

i P
′
hj

︸ ︷︷ ︸
orthogonality

(3)

where Sv =
{
(i, j) ∈ N | hw

i = h
w
j , ∀w = 1, . . . , v − 1

}

denotes the set of pairs of siblings at level v in T , and

Q′, P ′ encodes the pairwise cost for the sibling and the

orthogonality terms respectively. However, optimizing Equa-

tion (3) is NP-hard in general even in the simpler case of

ks = 1, k = 1, d > 2 [3, 11]. Inspired by [11], we use

the average embedding of each class within the minibatch

c
v
p = 1

m

∑
i:yi=p f(xi;θ)

v ∈ R
d as shown in Equation (4).

minimize
z1,...,znc

nc∑

p=1

−(cvp)
⊺
zp +

∑

(p,q)∈Sv
z

p 6=q

zp
⊺
Qzq +

∑

p 6=q

zp
⊺
Pzq

︸ ︷︷ ︸

:=ĝ(z1,...,znc )

subject to ‖zp‖ =

{

1 ∀v 6= k

ks v = k
, zp ∈ {0, 1}d, ∀p, (4)

where Sv
z =

{
(p, q) | zwp = z

w
q , ∀w = 1, . . . , v − 1

}
, nc

is the number of unique classes in the minibatch, and

we assume each class has m examples in the minibatch

(i.e. npairs [23] minibatch construction). Note, in

accordance with the deep metric learning problem setting

[21, 23, 11], we assume we are given access to the label

adjacency information only within the minibatch.

The objective in Equation (4) upperbounds the objective
in Equation (3) (denote as g(·;θ)) by a gap M(θ) which
depends only on θ. Concretely, rewriting the summation in
the unary term in g, we get

g(h1, . . . ,hn;θ) =

nc∑

p

∑

i:yi=p

−(f(xi;θ)
v)⊺ hi (5)

+
∑

(i,j)∈Sv

h
⊺

iQ
′
hj +

∑

(i,j)∈N

h
⊺

iP
′
hj

≤

nc∑

p

∑

i:yi=p

−(cvp)
⊺
hi +

∑

(i,j)∈Sv

h
⊺

iQ
′
hj +

∑

(i,j)∈N

h
⊺

iP
′
hj

+maximize
ĥ1,...,ĥn

nc∑

p

∑

i:yi=p

(cvp − f(xi;θ)
v)⊺ ĥi

︸ ︷︷ ︸

:=M(θ)

.

Minimizing the upperbound in Equation (5) over h1, . . . ,hn

is identical to minimizing the objective ĝ(z1, . . . , znc
) in
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Equation (4) since each example j in class i shares the same

class mean embedding vector ci. Absorbing the factor m
into the cost matrices i.e. Q = mQ′ and P = mP ′, we

arrive at the upperbound minimization problem defined in

Equation (4). In the upperbound problem Equation (4), we

consider the case where the pairwise cost matrices are di-

agonal matrices of non-negative values. Theorem 1 in the

following subsection proves that finding the optimal solution

of the upperbound problem in Equation (4) is equivalent to

finding the minimum cost flow solution of the flow network

G′ illustrated in Figure 2. Section B in the supplementary

material shows the running time to compute the minimum

cost flow (MCF) solution is approximately linear in nc and

d. On average, it takes 24 ms and 53 ms to compute the MCF

solution (discrete update) and to take a gradient descent step

with npairs embedding [23] (network update), respectively

on a machine with 1 TITAN-XP GPU and Xeon E5-2650.

4.2. Equivalence of the optimization problem to
minimum cost flow

Theorem 1. The optimization problem in Equation (4) can

be solved exactly in polynomial time by finding the minimum

cost flow solution on the flow network G’.

Proof. Suppose we construct a vertex set A =
{a1, . . . , anc

} and partition A into {Ar}
l
r=0 with the par-

tition of {1, . . . , nc} from equivalence relation Sv
z

2. Here,

we will define A0 as a union of subsets of size 1 (i.e. each el-

ement in A0 is a singleton without a sibling), and A1, . . . , Al

as the rest of the subsets (of size greater than or equal to2).

Concretely, |A| = nc and A =
⋃l

r=0 Ar.
Then, we construct l + 1 set of complete bipartite graphs

{Gr = (Ar ∪Br, Er)}
l
r=0 where we define gr = |Ar| and

|Br|=d ∀r. Now suppose we construct a directed graph G′

by directing all edges Er from Ar to Br, attaching source
s to all vertices in Ar, and attaching sink t to all vertices in

B0. Formally, G′ =
(⋃l

r=0 (Ar ∪Br) ∪ {s, t}, E′
)

. The

edges in E′ inherit all directed edges from source to vertices

in Ar, edges from vertices in B0 to sink, and {Er}
l
r=0. We

also attach gr number of edges for each vertex br,q ∈ Br to
b0,q ∈ B0 and attach nc number of edges from each vertex

b0,q ∈ B0 to t. Concretely, E′ is

{(s, ap)|ap ∈ A} ∪

l⋃

r=0

Er ∪

l⋃

r=1

{(br,q, b0,q)i}
gr−1
i=0 ∪ {(b0,q, t)j}

nc−1
j=0 .

Edges incident to s have capacity u(s, ap) = ks and

cost v(s, ap) = 0 for all ap ∈ A. The edges between

ap ∈ Ar and br,q ∈ Br have capacity u(ap, br,q) = 1 and

cost v(ap, br,q) = −cp[q]. Each edge i ∈ {0, . . . , gr − 1}
between br,q ∈ Br and b0,q ∈ B0 has capacity

u
(
(br,q, b0,q)i

)
= 1 and cost u

(
(br,q, b0,q)i

)
= 2αi.

Each edge j ∈ {0, . . . , nc− 1} between b0,q ∈ B0 and t has

capacity u
(
(b0,q, t)j

)
= 1 and cost v

(
(b0,q, t)j

)
= 2βj.

2Define (p, q) ∈ Svz ⇐⇒ ap, aq ∈ Ar, ∀r ≥ 1

Figure 2 illustrates the flow network G′. The amount of flow

from source to sink is ncks. The figure omits the vertices in

A0 and the corresponding edges to B0 to avoid the clutter.

Now we define the flow {fz(e)}e∈E′ for each edge in-
dexed both by flow configuration zp ∈ z1:nc

where zp ∈
{0, 1}d, ‖zp‖1 = ks ∀p and e ∈ E′ below in Equation (6).

(i) fz(s, ap) = ks, (ii) fz(ap, br,q) = zp[q]

(iii) fz
(
(br,q, b0,q)i

)
=

{
1 ∀i <

∑

p:ap∈Ar
zp[q]

0 otherwise

(iv) fz
(

(b0,q, t)j

)

=

{
1 ∀j <

∑nc

p=1 zp[q]

0 otherwise
(6)

To prove the equivalence of computing the minimum cost

flow solution and finding the minimum binary assignment

in Equation (4), we need to show (1) that the flow defined

in Equation (6) is feasible in G′ and (2) that the minimum

cost flow solution of the network G′ and translating the

computed flows to {zp} in Equation (4) indeed minimizes

the discrete optimization problem. We first proceed with the

flow feasibility proof.

It is easy to see the capacity constraints are satisfied by

construction in Equation (6) so we prove that the flow conser-

vation conditions are met at each vertices. First, the output

flow from the source
∑

ap∈A fz(s, ap) =
∑nc

p=1 ks = ncks
is equal to the input flow. For each vertex ap ∈ A, the

amount of input flow is ks and the output flow is the same∑
br,q∈Br

fz(ap, br,q) =
∑d

q=1 zp[q] = ‖z‖1 = ks.

For r > 0, for each vertex br,q ∈ Br, denote the input

flow as yr,q =
∑

ap∈Ar
fz(ap, br,q) =

∑
p:ap∈Ar

zp[q].

The output flow is
∑gr−1

i=0 fz((br,q, b0,q)i) =∑
p:ap∈Ar

zp[q] = yr,q. The second term vanishes

because of Equation (6) (iii).

The last flow conservation condition is to check

the connections from each vertex b0,q ∈ B0 to the

sink. Denote the input flow at the vertex as y0,q =∑
p:ap∈A0

zp[q] +
∑l

r=1 yr,q =
∑nc

p=1 zp[q]. The output

flow is
∑nc−1

j=0 fz((b0,q, t)j) =
∑nc

p=1 zp[q] = y0,q which is

identical to the input flow. Therefore, the flow construction

in Equation (6) is feasible in G′.

The second part of the proof is to check the optimal-
ity conditions and show the minimum cost flow finds
the minimizer of Equation (4). Denote, {fo(e)}e∈E′

as the minimum cost flow solution of the network G′

which minimizes the total cost
∑

e∈E′ v(e)fo(e). Also

denote the optimal flow from ap ∈ Ar to br,q ∈
Br, fo(ap, bq) as z

′
p[q]. By optimality of the flow,

{fo(e)}e∈E′ ,
∑

e∈E′ v(e)fo(e) ≤
∑

e∈E′ v(e)fz(e) ∀z.
By Lemma 1, the lhs of the inequality is equal to∑nc

p=1 −cp
T
z
′
p +

∑l

r=1

∑
p1 6=p2∈{p|ap∈Ar}

αz′p1

T
z
′
p2

+
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Figure 2: Equivalent flow network diagram G′ corresponding to the discrete optimization Equation (4). Edge labels show the

capacity and the cost respectively.

∑
p1 6=p2

βz′p1

T
z
′
p2

. Additionally, Lemma 2 shows

the rhs of the inequality is equal to
∑nc

p=1 −cp
T
zp +

∑l

r=1

∑
p1 6=p2∈{p|ap∈Ar}

αzp1
T
zp2

+
∑

p1 6=p2
βzp1

T
zp2

.

Finally, ∀{z}

nc∑

p=1

−cp
T
z
′
p +

l∑

r=1

∑

p1 6=p2∈{p|ap∈Ar}

αz
′
p1

T
z
′
p2

+
∑

p1 6=p2

βz
′
p1

T
z
′
p2

≤

nc∑

p=1

−cp
T
zp +

l∑

r=1

∑

p1 6=p2∈{p|ap∈Ar}

αzp1
T
zp2

+
∑

p1 6=p2

βzp1
T
zp2

.

This shows computing the minimum cost flow solution on

G′ and converting the flows to z’s, we can find the minimizer

of the objective in Equation (4).

Lemma 1. Given the minimum cost flow {fo(e)}e∈E′ of the

network G′, the total cost of the flow is
∑

e∈E′ v(e)fo(e) =∑nc

p=1 −cp
T
z
′
p +

∑l

r=1

∑
p1 6=p2∈{p|ap∈Ar}

αz′p1

T
z
′
p2

+
∑

p1 6=p2
βz′p1

T
z
′
p2 .

Proof. Proof in section A.2 of the supplementary material.

Lemma 2. Given a feasible flow {fz(e)}e∈E′ of the net-

work G′, the total cost of the flow is
∑

e∈E′ v(e)fz(e) =∑nc

p=1 −cp
T
zp +

∑l

r=1

∑
p1 6=p2∈{p|ap∈Ar}

αzp1
T
zp2

+∑
p1 6=p2

βzp1
T
zp2

.

Proof. Proof in section A.2 of the supplementary material.

4.3. Learning the embedding representation given
the hierarchical hash codes

Given a set of binary hash codes for the mean embed-

dings {zv1, . . . , z
v
nc
}, ∀v = 1, . . . , k computed from Equa-

tion (4), we can derive the hash codes for all n examples

in the minibatch, hv
i := z

v
p ∀i : yi = p and update the

network weights θ given the hierarchical hash codes in

turn. The task is to update the embedding representations,

{f(xi;θ)
v}ni=1, ∀v = 1, . . . , k, so that similar pairs of data

have similar embedding representations indexed at the acti-

vated hash code dimensions and vice versa. Note, In terms

of the hash code optimization in Equation (4) and the bound

in Equation (5), this embedding update has the effect of

tightening the bound gap M(θ).

We employ the state of the art deep metric learning

algorithms (denote as ℓmetric(·)) such as triplet loss with

semi-hard negative mining [21] and npairs loss [23] for

this subproblem where the distance between two exam-

ples xi and xj at hierarchy level v is defined as dvij =

‖
(
h
v
i ∨ h

v
j

)
⊙(f(xi;θ)

v − f(xj ;θ)
v) ‖1. Utilizing the log-

ical OR of the two binary masks, in contrast to independently

indexing the representation with respective masks, to index

the embedding representations helps prevent the pairwise

distances frequently becoming zero due to the sparsity of the

code. Note, this formulation in turn accommodates the back-

propagation gradients to flow more easily. In our embedding

representation learning subproblem, we need to learn the rep-

resentations which respect the tree structural constraint on

the corresponding hash code h = [h1, . . . ,hk] ∈ {0, 1}d×k

where ‖hv‖1 = 1 ∀v 6= k and ‖hk‖1 = ks. To this end, we

decompose the problem and compute the embedding loss

per each hierarchy level v separately.

Furthermore, naively using the similarity labels to define

similar pairs versus dissimilar pairs during the embedding

learning subproblem could create a discrepancy between the

hash code discrete optimization subproblem and the embed-

ding learning subproblem leading to contradicting updates.

Suppose two examples xi and xj are dissimilar and both had

the highest activation at the same dimension o and the hash

code for some level v was identical i.e. h
v
i [o] = h

v
j [o] = 1.

Enforcing the metric learning loss with the class labels, in

this case, would lead to increasing the highest activation for

one example and decreasing the highest activation for the

other example. This can be problematic for the example with

decreased activation because it might get hashed to another

occupied bucket after the gradient update and this can repeat
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causing instability in the optimization process.

However, if we relabel the two examples so that they are

treated as the same class as long as they have the same hash

code at the level, the update wouldn’t decrease the activations

for any example, and the sibling term (the second term) in

Equation (4) would automatically take care of splitting the

two examples in the next subsequent levels.

To this extent, we apply label remapping as follows.

yvi = remap(hv
i ), where remap(·) assigns arbitrary unique

labels to each unique configuration of h
v
i . Concretely,

remap(hv
i ) = remap(hv

j ) ⇐⇒ yvi = yvj . Finally, the

embedding representation learning subproblem aims to solve

Equation (7) given the hash codes and the remapped labels.

Section C in the supplementary material includes the abla-

tion study of label remapping.

minimize
θ

k∑

v=1

ℓmetric ({f(xi;θ)
v}ni=1; {h

v
i }

n
i=1, {y

v
i }

n
i=1) (7)

Following the protocol in [11], we use the Tensorflow

implementation of deep metric learning algorithms in

tf.contrib.losses.metric_learning.

5. Implementation details

Algorithm 1 Learning algorithm

input θ
emb
b (pretrained metric learning base model); θd, k

initialize θf = [θb,θd]
for t = 1, . . . , MAXITER do

Sample a minibatch {xi} and initialize S1z = ∅
for v = 1, · · · , k do

Update the flow network G′ by computing class cost vectors

c
v
p = 1

m

∑

i:yi=p f(xi;θf )
v

Compute the hash codes {hv
i } via minimum cost flow on G′

Update Sv+1
z given Svz and {hv

i }
Remap the label to compute yv

end for

Update the network parameter given the hash codes

θf ← θf − η(t)∂θf

k∑

v=1

ℓmetric(θf ; h
v
1:nc

, yv1:nc
)

Update stepsize η(t) ← ADAM rule [12]

end for

output θf (final estimate);

Network architecture For fair comparison, we follow

the protocol in [11] and use the NIN [15] architecture (de-

note the parameters θb) with leaky relu [30] with τ = 5.5
as activation function and train Triplet embedding network

with semi-hard negative mining [21], Npairs network [23]

from scratch as the base model, and snapshot the network

weights (θemb
b ) of the learned base model. Then we replace

the last layer in (θemb
b ) with a randomly initialized dk di-

mensional fully connected projection layer (θd) and finetune

the hash network (denote the parameters as θf = [θb,θd]).
Algorithm 1 summarizes the learning procedure.

Hash table construction and query We use the learned

hash network θf and apply Equation (1) to convert xi into

the hash code h(xi;θf ) and use the base embedding net-

work θ
emb
b to convert the data into the embedding represen-

tation f(xi;θ
emb
b ). Then, the embedding representation is

hashed to buckets corresponding to the ks set bits in the hash

code. During inference, we convert a query data xq into the

hash code h(xq;θf ) and into the embedding representation

f(xq;θ
emb
b ). Once we retrieve the union of all bucket items

indexed at the ks set bits in the hash code, we apply a rerank-

ing procedure [27] based on the euclidean distance in the

embedding space.

Evaluation metrics Following the evaluation protocol

in [11], we report our accuracy results using precision@k

(Pr@k) and normalized mutual information (NMI) [17] met-

rics. Precision@k is computed based on the reranked order-

ing (described above) of the retrieved items from the hash

table. We evaluate NMI, when the code sparsity is set to

ks = 1, treating each bucket as an individual cluster. We

report the speedup results by comparing the number of re-

trieved items versus the total number of data (exhaustive

linear search) and denote this metric as SUF.

6. Experiments

We report our results on Cifar-100 [13] and ImageNet

[20] datasets and compare against several baseline methods.

First baseline methods are the state of the art deep metric

learning models [21, 23] performing an exhaustive linear

search over the whole dataset given a query data (denote

as ‘Metric’). Next baseline is the Binarization transform

[1, 32] where the dimensions of the hash code corresponding

to the top ks dimensions of the embedding representation

are set (denote as ‘Th’). Then we perform vector quantiza-

tion [27] on the learned embedding representation from the

deep metric learning methods above on the entire dataset

and compute the hash code based on the indices of the ks
nearest centroids (denote as ‘VQ’). Another baseline is the

quantizable representation in [11](denote as [11]). In both

Cfar-100 and ImageNet, we follow the data augmentation

and preprocessing steps in [11] and train the metric learn-

ing base model with the same settings in [11] for fair com-

parison. In Cifar-100 experiment, we set (d, k) = (32, 2)
and (d, k) = (128, 2) for the npairs network and the triplet

network, respectively. In ImageNet experiment, we set

(d, k) = (512, 2) and (d, k) = (256, 2) for the npairs net-

work and the triplet network, respectively. In ImageNetSplit

experiment, we set (d, k) = (64, 2). We also perform LSH

hashing [10] baseline and Deep Cauchy Hashing [6] baseline

which both generate n-bit binary hash codes with 2n buckets

and compare against other methods when ks=1 (denote as

‘LSH’ and ‘DCH’, respectively). For the fair comparison,

we set the number of buckets, 2n=dk.
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Triplet Npairs
test train test train

Method SUF Pr@1 Pr@4 Pr@16 SUF Pr@1 Pr@4 Pr@16 SUF Pr@1 Pr@4 Pr@16 SUF Pr@1 Pr@4 Pr@16

ks Metric 1.00 56.78 55.99 53.95 1.00 62.64 61.91 61.22 1.00 57.05 55.70 53.91 1.00 61.78 60.63 59.73

1 LSH 138.83 52.52 48.67 39.71 135.64 60.45 58.10 54.00 29.74 53.55 50.75 43.03 30.75 59.87 58.34 55.35
DCH 96.13 56.26 55.65 54.26 89.60 61.06 60.80 60.81 41.59 57.23 56.25 54.45 40.49 61.59 60.77 60.12

Th 41.21 54.82 52.88 48.03 43.19 61.56 60.24 58.23 12.72 54.95 52.60 47.16 13.65 60.80 59.49 57.27
VQ 22.78 56.74 55.94 53.77 40.35 62.54 61.78 60.98 34.86 56.76 55.35 53.75 31.35 61.22 60.24 59.34
[11] 97.67 57.63 57.16 55.76 97.77 63.85 63.40 63.39 54.85 58.19 57.22 55.87 54.90 63.11 62.29 61.94
Ours 97.67 58.42 57.88 56.58 97.28 64.73 64.63 64.69 101.1 58.28 57.79 56.92 97.47 63.06 62.62 62.44

2 Th 14.82 56.55 55.62 52.90 15.34 62.41 61.68 60.89 5.09 56.52 55.28 53.04 5.36 61.65 60.50 59.50
VQ 5.63 56.78 56.00 53.99 6.94 62.66 61.92 61.26 6.08 57.13 55.74 53.90 5.44 61.82 60.56 59.70
[11] 76.12 57.30 56.70 55.19 78.28 63.60 63.19 63.09 16.20 57.27 55.98 54.42 16.51 61.98 60.93 60.15
Ours 98.38 58.39 57.51 56.09 97.20 64.35 63.91 63.81 69.48 57.60 56.98 55.82 69.91 62.19 61.71 61.27

3 Th 7.84 56.78 55.91 53.64 8.04 62.66 61.88 61.16 3.10 56.97 55.56 53.76 3.21 61.75 60.66 59.73
VQ 2.83 56.78 55.99 53.95 2.96 62.62 61.92 61.22 2.66 57.01 55.69 53.90 2.36 61.78 60.62 59.73
[11] 42.12 56.97 56.25 54.40 44.36 62.87 62.22 61.84 7.25 57.15 55.81 54.10 7.32 61.90 60.80 59.96
Ours 94.55 58.19 57.42 56.02 93.69 63.60 63.35 63.32 57.09 57.56 56.70 55.41 58.62 62.30 61.44 60.91

4 Th 4.90 56.84 56.01 53.86 5.00 62.66 61.94 61.24 2.25 57.02 55.64 53.88 2.30 61.78 60.66 59.75
VQ 1.91 56.77 55.99 53.94 1.97 62.62 61.91 61.22 1.66 57.03 55.70 53.91 1.55 61.78 60.62 59.73
[11] 16.19 57.11 56.21 54.20 16.52 62.81 62.14 61.58 4.51 57.15 55.77 54.01 4.52 61.81 60.69 59.77
Ours 92.18 58.52 57.79 56.22 91.27 64.20 63.95 63.63 49.43 57.75 56.79 55.50 50.80 62.43 61.65 61.01

Table 1: Results with Triplet network with hard negative mining and Npairs network. Querying test data against a hash table

built on test set and a hash table built on train set on Cifar-100.

Triplet Npairs

Method SUF Pr@1 Pr@4 Pr@16 SUF Pr@1 Pr@4 Pr@16

ks Metric 1.00 10.90 9.39 7.45 1.00 15.73 13.75 11.08

1 LSH 164.25 8.86 7.23 5.04 112.31 11.71 8.98 5.56
DCH 140.77 9.82 8.43 6.44 220.52 13.87 11.77 8.99
Th 18.81 10.20 8.58 6.50 1.74 15.06 12.92 9.92
VQ 146.26 10.37 8.84 6.90 451.42 15.20 13.27 10.96
[11] 221.49 11.00 9.59 7.83 478.46 16.95 15.27 13.06
Ours 590.41 10.91 9.58 7.85 952.49 17.00 15.53 13.54

2 Th 6.33 10.82 9.30 7.32 1.18 15.70 13.69 10.96
VQ 32.83 10.88 9.33 7.39 116.26 15.62 13.68 11.15
[11] 60.25 11.10 9.64 7.73 116.61 16.40 14.49 12.00
Ours 533.86 11.14 9.72 7.96 1174.35 17.22 15.57 13.63

3 Th 3.64 10.87 9.38 7.42 1.07 15.73 13.74 11.07
VQ 13.85 10.90 9.38 7.44 55.80 15.74 13.74 11.12
[11] 27.16 11.20 9.55 7.60 53.98 16.24 14.32 11.73
Ours 477.86 11.21 9.72 7.94 1297.98 17.09 15.37 13.39

Table 2: Results with Triplet network with hard negative

mining and Npairs [23] Network. Querying ImageNet val

data against hash table built on val set.

6.1. Cifar­100

Cifar-100 [13] dataset has 100 classes. Each class has

500 images for train and 100 images for test. Given a query

image from test, we experiment the search performance

both when the hash table is constructed from train and from

test. The batch size is set to 128 in Cifar-100 experiment.

We finetune the base model for 70k iterations and decayed

the learning rate to 0.3 of previous learning rate after 20k

iterations when we optimize our methods. Table 1 shows

the results from the triplet network and the npairs network

respectively. The results show that our method not only

outperforms search accuracies of the state of the art deep

metric learning base models but also provides the superior

speedup over other baselines.

Triplet Npairs

Cifar-100 ImageNet Cifar-100 ImageNet
train test val train test val

LSH 62.94 53.11 37.90 43.80 37.45 36.00
DCH 86.11 68.88 45.55 80.74 65.62 50.01

Th 68.20 54.95 31.62 51.46 44.32 15.20
VQ 76.85 62.68 45.47 80.25 66.69 53.74
[11] 89.11 68.95 48.52 84.90 68.56 55.09
Ours 89.95 69.64 61.21 86.80 71.30 65.49

Table 3: Hash table NMI for Cifar-100 and Imagenet.

Method SUF Pr@1 Pr@4 Pr@16

ks Metric 1.00 21.55 19.11 16.06

1 LSH 33.75 18.49 15.50 11.14
Th 10.98 20.25 17.22 13.66

VQ-train 54.30 20.15 18.10 14.85
VQ-test 57.44 20.59 18.31 15.32

[11] 56.35 21.35 18.49 15.32
Ours 78.23 21.46 18.88 15.67

2 Th 4.55 21.27 18.86 15.68
VQ-train 15.29 21.51 19.03 15.88
VQ-test 16.43 21.58 18.93 15.94

[11] 15.99 22.12 19.21 15.95
Ours 71.14 22.12 18.63 15.34

3 Th 2.79 21.53 19.11 15.99
VQ-train 7.80 21.56 19.11 16.03
VQ-test 8.20 21.58 19.09 16.06

[11] 7.24 22.18 19.40 16.10
Ours 84.04 21.97 18.87 15.56

Table 4: Results with Triplet network with hard negative

mining. Querying ImageNet val set in Ctest against hash

table built on val set in Ctest.

6.2. ImageNet

ImageNet ILSVRC-2012 [20] dataset has 1, 000 classes

and comes with train (1, 281, 167 images) and val set

(50, 000 images). We use the first nine splits of train set
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Figure 3: Visualization of the examples mapped by our

trained three level hash codes [h(1),h(2)] on Cifar-100. Each

parent node (denoted as depth 1) is color coded in red, yellow,

blue, and green in cw order. Each color coded box (denoted

as depth 2) shows examples of the hashed items in each child

node.

to train our model, the last split of train set for validation,

and use validation dataset to test the query performance.

We use the images downsampled to 32 × 32 from [8]. We

finetune npairs base model and triplet base model as in [11]

and add a randomly initialized fully connected layer to learn

hierarchical representation. Then, we train the parameters

in the newly added layer with other parameters fixed. When

we train with npairs loss, we set the batch size to 1024 and

train for 15k iterations decaying the learning rate to 0.3 of

previous learning rate after each 6k iterations. Also, when

we train with triplet loss, we set the batch size to 512 and

train for 30k iterations decaying the learning rate of 0.3 of

previous learning rate after each 10k iterations. Our results

in Table 2 show that our method outperforms the state of

the art deep metric learning base models in search accuracy

while providing up to 1298× speedup over exhaustive linear

search. Table 3 compares the NMI metric and shows that

the hash table constructed from our representation yields

buckets with significantly better class purity on both datasets

and on both the base metric learning methods.

6.3. ImageNetSplit

In order to test the generalization performance of our

learned representation against previously unseen classes,

we performed an experiment on ImageNet where the set of

classes for training and testing are completely disjoint. Each

class in ImageNet ILSVRC-2012 [20] dataset has super-

class based on WordNet [18]. We select 119 super-classes

which have exactly two sub-classes in 1000 classes of Im-

ageNet ILSVRC-2012 dataset. Then, we split the two sub-

classes of each 119 super-class into Ctrain and Ctest, where

Ctrain ∩ Ctest = ∅. Section D in the supplementary material

shows the class names in Ctrain and Ctest. We use the images

downsampled to 32 × 32 from [8]. We train the models

with triplet embedding on Ctrain and test the models on Ctest.

The batch size is set to 200 in ImageNetSplit dataset. We

finetune the base model for 50k iterations and decayed the

learning rate to 0.3 of previous learning rate after 40k iter-

ations when we optimize our methods. We also perform

vector quantization with the centroids obtained from Ctrain

(denote as ‘VQ-train’) and Ctest (denote as ‘VQ-test’), re-

spectively. Table 4 shows our method preserves the accuracy

without compromising the speedup factor.

Note, in all our experiments in Tables 1 to 4, while all the

baseline methods show severe degradation in the speedup

over the code compound parameter ks, the results show

that the proposed method robustly withstands the speedup

degradation over ks. This is because our method 1) greatly

increases the quantization granularity beyond other base-

line methods and 2) hashes the items more uniformly over

the buckets. In effect, indexing multiple buckets in our

quantized representation does not as adversarially effect

the search speedup as other baselines. Figure 3 shows a

qualitative result with npairs network on Cifar-100, where

d = 32, k = 2, ks = 1. As an interesting side effect, our

qualitative result indicates that even though our method does

not use any super/sub-class labels or the entire label infor-

mation during training, optimizing for the objective in Equa-

tion (2) naturally discovers and organizes the data exhibiting

a meaningful hierarchy where similar subclasses share com-

mon parent nodes.

7. Conclusion

We have shown a novel end-to-end learning algorithm

where the quantization granularity is significantly increased

via hierarchically quantized representations while preserv-

ing the search accuracy and maintaining the computational

complexity practical for the mini-batch stochastic gradient

descent setting. This not only provides the state of the art

accuracy results but also unlocks significant improvement in

inference speedup providing the highest reported inference

speedup on Cifar100 and ImageNet datasets respectively.
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