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Abstract

Emotion recognition from facial expressions is an inter-

esting and challenging problem and has attracted much at-

tention in recent years. Substantial previous research has

only been able to address the ambiguity of “what describes

the expression”, which assumes that each facial expression

is associated with one or more predefined affective labels

while ignoring the fact that multiple emotions always have

different intensities in a single picture. Therefore, to de-

pict facial expressions more accurately, this paper adopts

a label distribution learning approach for emotion recogni-

tion that can address the ambiguity of “how to describe the

expression” and proposes an emotion distribution learning

method that exploits label correlations locally. Moreover,

a local low-rank structure is employed to capture the local

label correlations implicitly. Experiments on benchmark fa-

cial expression datasets demonstrate that our method can

better address the emotion distribution recognition problem

than state-of-the-art methods.

1. Introduction

As one of the most natural, powerful and immediate

means for human beings to express their emotions and in-

tentions, facial expression recognition techniques have al-

ready been adopted in numerous multimedia systems. Due

to its wide range of application, such as human-computer

interaction [21] and data-driven animation [19], automatic
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facial expression recognition has attracted significant atten-

tion in recent years. Recent facial expression recognition

methods usually focus on extracting useful features and

applying efficient classifiers such as neural-network-based

methods [14], support vector machine (SVM) [13] and hid-

den Markov models (HMM) [27].

Although promising recognition results have been

achieved, there still exist a common issue in previous fa-

cial expression recognition methods: the assumption that

each facial image is associated with only one of the prede-

fined affective labels tends to be an over-simplification. In

real-world applications, a facial expression always contains

blended emotions. For example, when one receives a let-

ter from a friend whom he has not seen for a long time, he

would be happy and surprised simultaneously. According

to Plutchik’s wheel of emotion theory [22], only a few emo-

tions are basic emotions, and each facial expression usually

expresses a mixture of basic emotions with different intensi-

ties. Therefore, to depict facial expressions more accurately,

multi-label learning is utilized for facial expression recogni-

tion, and each picture is associated with multiple predefined

emotions. For example, the GLMM (Group Lasso Regu-

larized Maximum Margin) method was proposed to solve

the facial expression recognition problem in the multi-label

scenario [32]. However, there remain some cases that are

not suitable to be solved by multi-label learning. Specially,

in some cases, we need to know not only which emotions

are associated with a facial expression but also the extent to

which each emotion describes the expression. To solve such

problems, label distribution learning (LDL) [6] is utilized to

address facial expression recognition problems.

To the best of our knowledge, only one study [36] has

been conducted on facial expression recognition by using

LDL. Specifically, in this work, LDL was applied for facial
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(a) (b) (c)

Figure 1: Illustration of non-global label correlations. ANG

and DIS have a correlation in (a) and (b), but the correlation

is not shared in (c).

expression recognition to improve the accuracy of facial ex-

pression recognition, and the label correlations are consid-

ered by seeking the Pearson’s correlation coefficients [36].

Although their work attempted to exploit label correlations,

it exploited label correlations in a global manne under the

assumption that the correlations are shared by all instances.

However, in real-world applications, label correlations are

usually local, where a label correlation may be shared by

only a subset of instances rather than all instances. For

example, Fig. 1 gives three pictures from the s-JAFFE

database with 6 basic emotions (happiness, sadness, sur-

prise, anger, disgust and fear), and we consider the corre-

lation between anger (ANG) and disgust (DIS). In Fig. 1a

and Fig. 1b, ANG and DIS have similar description degrees

in their respective images; thus, we consider that ANG and

DIS have a correlation. However, in Fig. 1c, the description

degree of DIS is significantly higher than ANG. Therefore,

we deem that the correlation between ANG and DIS is not

shared in Fig. 1c.

In this paper, we will solve the facial expression recog-

nition problem by exploiting the emotion correlations at a

local level, which has never been considered in previous

LDL algorithms. Considering the complexity of emotion

correlations, we adopt a low-rank structure to capture the

local emotion correlations. Unlike previous works, we as-

sume that the label space is the local low-rank structure

shown in Fig. 2b rather than the global low-rank structure

shown in Fig. 2a. As shown in Fig. 2b, it is not a low-rank

structure at the global level but it can be divided into three

blocks of low-rank structure. Based on this assumption, we

propose an Emotion Distribution Learning method by ex-

ploiting Low-Rank label correlations Locally (EDL-LRL).

Furthermore, we develop an alternating direction method

of multipliers (ADMM) to optimize the objective function.

Experiments on two widely used facial expression datasets

show that our proposed method exhibits a promising per-

formance when considering low-rank label correlations lo-

(a) global (b) local

Figure 2: A simple illustration of global and local label

correlations. Each row denotes the label distribution of

an instance, each column denotes an emotion and differ-

ent colours denote different description degrees. The struc-

ture with same colour in each column constructs a low-rank

structure that can capture the linear label correlation. (a) is

the global low-rank structure and (b) is the local low-rank

structure that can be divided into three blocks of low-rank

structure.

cally.

The main contributions of this study can be summarized

as follows: 1) different from the existing work that exploits

the global label correlations, we consider the label correla-

tions at a local leval; 2) unlike the existing work that cal-

culate the pairwise label correlations explicitly, we employ

a local low-rank structure to exploit the label correlations

implicitly, which can capture the complex label correlations

better. The remained of the paper is organized as follows.

First, we briefly introduce facial expression recognition and

label distribution learning. Second, we present the details

of the proposed EDL-LRL algorithm. Finally, the experi-

mental results are reported, followed by the conclusion.

2. Related Works

2.1. Facial Expression Recognition

Facial expressions are the facial changes in response to a

person’s internal emotional states, intentions, or social com-

munications. Many studies have paid significant attention

to facial expression recognition. Some approaches focused

on feature extraction for the facial expression recognition

problem, e.g., the shapes and locations of facial compo-

nents are extracted to represent the face geometry [20]; ac-

tion unit detection is presented by classifying features cal-

culated from tracked fiducial facial points [26]. Moreover,

other facial expression recognition research focused on ap-

plying different classifiers such as kNN [34], SVM [23] and

Artificial Neural Networks(ANNs) [18]. Besides, emotions

of facial expression were transmitted by some richer repre-

sentations [2, 16] in recent years.

Although facial expression recognition methods have

been designed from various perspectives, the goal of these

works is to predict the most descriptive emotion from the
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predefined affective labels. However, choosing only one

emotion to represent the whole facial expression is inac-

curate and insufficient because a facial expression usually

contains a mixture of basic emotions with different intensi-

ties.

2.2. Label Distribution Learning

In recent years, learning with ambiguity has been

a popular topic in machine learning area. There are

three paradigms for solving label ambiguity at present,

namely, single-label learning (SLL), multi-label learning

(MLL) [25] and LDL. MLL has been successfully applied

to facial expression recognition area [31]. Nevertheless,

MLL cannot describe the extent of each label, in which it

is unlikely that multiple affective labels have the same de-

scription degrees to the image. Thus, this paper describes

a facial expression via an emotion distribution and employs

LDL for prediction. LDL is a further extension of MLL,

and LDL outputs a label distribution rather than a label set

like MLL.

A number of algorithms, which can be divided into three

groups, have been proposed for LDL. One group is based

on the problem transformation (PT) strategy, which trans-

forms an LDL problem into an SLL problem and changes

the training examples to weighted single-label examples

such as PT-SVM [9] and PT-Bayes [7]. The second group

is based on the algorithm adaptation (AA). Certain algo-

rithms, such as kNN and BP, are adapted to form the AA-

kNN [8] and AA-BP [10], respectively. The final group

consists of those based on the specialized algorithm (SA)

that match the LDL problem directly such as SA-IIS [6]

and SA-BFGS [6]. The related research has demonstrated

that the third strategy is more effective than the other two

strategies [6]. Therefore, this paper designs the emotion

distribution learning algorithm based on the SA strategy as

well.

To improve the performance of LDL, some algorithms

attemp to exploit label correlations in different ways. In de-

tail, the correlations were captured based on the Plutchik’s

wheel of emotions [35]; the label correlations were ex-

ploited by seeking the Pearson’s correlation coefficients be-

tween two labels [36]; global label correlations were ex-

ploited for incomplete label distribution learning [28]; ad-

ditional features were used to encode the influence of local

sample correlations [33]; and a distance-mapping function

was employed to encode the global label correlations [12].

However, these approaches exploited label correlations at a

global level, and we explained that it is more reasonable to

use the label correlations locally in the introduction.

3. Emotion Distribution Learning

3.1. Formalization

We will give a more formal definition of emotion

distribution learning. Let X = Rq denote the q-

dimensional image space of facial expressions, and let Y =
{y1, y2, · · · , yL} denote the L predefined affective labels.

Each label represents one of the basic emotions. Given

a training set S = {(x1, D1), (x2, D2), · · · , (xn, Dn)},

where Di = {d1i , d
2
i , · · · , d

L
i } is the emotion distribution

with xi, we assign a value dji called the description degree

to facial expression xi for a particular emotion yj , where

xi ∈ X and yj ∈ Y . Note that dji is not the probability that

yj correctly labels xi but rather is the proportion that yj
accounts for in a full description of xi. All emotions with

non-zero dji -s are the correct emotions to describe the fa-

cial expression and satisfy
∑L

j=1 d
j
i = 1, which means that

all emotions in the set can fully describe the facial expres-

sion. The goal of emotion distribution learning is to learn a

mapping function f : X → D that can predict the emotion

distribution for unseen facial expression.

Suppose that p(y|x; θ) is the output model learnt from S,

where θ is the parameter matrix. The goal of emotion distri-

bution learning is to find an appropriate θ that can generate

a distribution p(y|xi; θ) similar to Di given a facial expres-

sion xi. Moreover, as for the form of p(y|xi; θ), we as-

sume it to be a maximum entropy model similar to previous

work [6] as follows:

p(yl|xi; θ) =
1

Zi

exp(
∑

k

θl,kx
k
i ), (1)

where xk
i is the k-th feature of xi, θl,k is an element in θ,

and Zi =
∑

l exp(
∑

k θl,kx
k
i ) is a normalization term used

to satisfy the requirement that the sum of all emotion de-

scription degrees of an instance equals 1. In addition, we

optimize θ by minimizing the following objective function,

which incorporates global discrimination fitting and the in-

fluence of local label correlations:

min
θ

V (θ, S) + λ1Ω(θ, S) + λ2Υ(θ, S), (2)

where V is the loss function defined on the training data,

Ω is a regularizer to control the complexity of the output

model, Υ is a regularizer to enforce the characteristic of

local label correlations, and λ1 and λ2 are two parameters

to balance the three terms.

With the previous discussion, the purpose of emotion

distribution learning is to make the predicted distribution

and the true distribution as similar as possible; therefore,

we choose a loss function that can measure the similarity of

two distributions. Various functions were analyzed to mea-

sure the similarity between two distributions such as the
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Euclidean distance, Kullback-Leibler divergence and Jef-

fery divergence [4]. Here, for easy computation, we use the

square of the Euclidean distance as the loss function defined

by

DJ(Qa||Qb) =
∑

j

(Qj
a −Qj

b)
2, (3)

where Qj
a and Qj

b are the j-th element of the two distribu-

tions Qa and Qb, respectively. Specifically, in this paper,

the expression for V based on the Euclidean distance is de-

fined as follows:

V (θ, S) =
1

2
‖D − D̄‖2F , (4)

where ‖ ·‖2F denotes the Frobenius norm of a matrix, D and

D̄ denote the predicted distribution and the true distribution

of the training set, respectively. For the second term of Eq.

(2), we simply implement it as follows:

Ω(θ, S) = ‖θ‖2F . (5)

The third term of Eq. (2) is employed to enforce the lo-

cal low-rank structure of the predicted distribution, which

implicitly exploits the label correlations locally. We as-

sume that the training data can be divided into m clus-

ters {G1, G2, · · · , Gm} and that each cluster is a low-rank

structure. This partitioning can be implemented by cluster-

ing or some domain knowledge, such as gene pathways [24]

and networks [5] in bioinformatics applications. For easy

implementation, we use K-means as the clustering method.

Notice that we cluster the training data in the label space

rather than in the feature space because instances with sim-

ilar label distributions usually share similar label correla-

tions, and the cluster is more likely to be a low-rank struc-

ture. Unfortunately, the rank of a matrix is difficult to op-

timize; therefore, the trace norm ‖ · ‖tr is utilized in this

paper as a convex approximation of the rank of a matrix.

The trace norm ‖ · ‖tr is defined as the sum of singular val-

ues, i.e., ‖ · ‖tr =
∑

i σi(·), where σi is the i-th singular

value of the matrix. Thus, the final term of Eq. (2) based on

local low-rank label correlations is derived as follows:

Υ(θ, S) =

m
∑

i=1

‖D(i)‖tr, (6)

where D(i) denotes the predicted distribution of the i-th
cluster Gi. By substituting Eqs. (4), (5) and (6) into Eq.

(2), the optimization problem is obtained as follows:

min
θ

1

2
‖D − D̄‖2F + λ1‖θ‖

2
F + λ2

m
∑

i=1

‖D(i)‖tr. (7)

3.2. Optimizing using ADMM

ADMM (Alternating Direction Method of Multipli-

ers) [3] is a simple but powerful algorithm that is well suited

to solve Eq. (7). It takes the form of a decomposition-

coordination procedure, in which the solutions to small lo-

cal subproblems are coordinated to find a solution to a large

global problem. For easy optimization in the following, we

transform Eq. (7) into the form:

min
θ,Z

1

2
‖D − D̄‖2F + λ1‖θ‖

2
F + λ2

m
∑

i=1

‖Z(i)‖tr

s.t. D(i) − Z(i) = 0.

(8)

The augmented Lagrange function of Eq. (8) is given by

min
θ,Z,Λ

1

2
‖D − D̄‖2F + λ1‖θ‖

2
F + λ2

m
∑

i=1

‖Z(i)‖tr

+

m
∑

i=1

< Λ(i), D(i) − Z(i) > +

m
∑

i=1

ρ(i)

2
‖D(i) − Z(i)‖2F ,

(9)

where Λ is a list of Lagrange multipliers, consist-

ing of {Λ(1),Λ(2), · · · ,Λ(m)}; ρ is a list of posi-

tive numbers, called the penalty parameters, con-

sisting of {ρ(1), ρ(2), · · · , ρ(m)}; Z consists of

{Z(1), Z(2), · · · , Z(m)}; and < ·, · > is the Frobe-

nius dot-product, i.e., for two matrices X,Y ∈ Rm×n,

< X,Y >= tr(XTY ) =
∑m

i=1

∑n
j=1 XijYij . Now, the

above optimization problem can be solved by alternating

minimization, i.e., update each variable (θ, Z and Λ) with

the others fixed in iteration t:

θt+1 =argmin
θ

1

2
‖D − D̄‖2F + λ1‖θ‖

2
F

+
m
∑

i=1

< Λ(i)t, D(i) − Z(i)t >

+

m
∑

i=1

ρ(i)

2
‖D(i) − Z(i)t‖2F ,

(10)

Zt+1 =argmin
Z

λ2

m
∑

i=1

‖Z(i)‖tr

+

m
∑

i=1

< Λ(i)t, D(i)t+1 − Z(i) >

+

m
∑

i=1

ρ(i)

2
‖D(i)t+1 − Z(i)‖2F ,

(11)

Λ(i)t+1 = Λ(i)t + ρ(i)(D(i)t+1 − Z(i)t+1). (12)

Eq. (10) can be effectively solved by the limited-memory

quasi-Newton method (L-BFGS) [30]. The basic idea is

to avoid explicit calculation of the inverse Hessian matrix

used in the Newton method. In addition, L-BFGS approx-

imates the inverse Hessian matrix with an iteratively up-

dated matrix instead of storing the full matrix. Let Eq. (10)
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be T (θ), we follow the idea of an effective quasi-Newton

method BFGS. Consider the second order Taylor series of

T ′(θ) = −T (θ) at the current estimate of the parameter

vector θ(l):

T ′(θ(l+1)) ≈ T ′(θ(l)) +∇T ′(θ(l+1))T∆+
1

2
∆TH(θ(l))∆,

(13)

where ∆ = θ(l+1) − θ(l) is the update step, ∇T (θ(l)) and

H(θ(l)) are the gradient and Hessian matrix of T ′(θ(l+1))
at θ(l), respectively. The minimizer of Eq. (13) is

∆(l) = −H−1(θ(l))∇T ′(θ(l)). (14)

The line search Newton method uses ∆(l) as the search di-

rection p(l) = ∆(l) and updates model parameters by

θ(l+1) = θ(l) + α(l)p(l), (15)

where the step length α(l) is obtained from a line search

procedure to satisfy the strong Wolfe conditions [17]:

T ′(θ(l) + α(l)p(l)) 6 T ′(θ(l)) + c1α
(l)∇T ′(θ(l))T p(l),

(16)

|∇T ′(θ(l) + α(l)p(l))| 6 c2|∇T ′(θ(l))T p(l)|, (17)

where 0 < c1 < c2 < 1. The idea of L-BFGS is to avoid

explicit calculation of H−1(θ(l)) by approximating it with

an iteratively updated matrix B, i.e.

B(l+1) = (I − ρ(l)s(l)(u(l))T )B(l)(I − ρ(l)u(l)(s(l))T )

+ ρ(l)s(l)(s(l))T ,
(18)

where s(l) = θ(l+1)−θ(l), u(l) = ∇T ′(θ(l+1))−∇T ′(θ(l))
and ρ(l) = 1

s(l)u(l) .

As for the optimization of Eq. (10), the computation of

L-BFGS is mainly related to the first-order gradient, which

can be obtained by

∇θl,k =
n
∑

i=1

(p(yl|xi; θ)− dli)p
′(yl|xi; θ) + 2λ1θl,k

+
m
∑

i=1

∑

xj∈Gi

Λ
(i)
j,lp

′(yl|xj ; θ)

+

m
∑

i=1

∑

xj∈Gi

ρ(i)(p(yl|xj ; θ)− Z
(i)l
j )p′(yl|xj ; θ),

(19)

where Λ
(i)
j,l is an element of Λ(i), Z

(i)l
j is an element of Z(i)

and p′(yl|xi; θ) = xk
i (p(yl|xi; θ)− p2(yl|xi; θ)).

To solve Eq. (11), it can be decomposed into m opti-

mization problems, where the i-th problem is:

min
Z(i)

λ2‖Z
(i)‖tr+ < Λ(i)t, D(i)t+1 − Z(i) >

+
ρ(i)

2
‖D(i)t+1 − Z(i)‖2F .

(20)

Algorithm 1: The EDL-LRL algorithm

Input: training set S = {X,D}, parameters λ1, λ2

and m.

Output: the label distribution Dt.

1 cluster training set S with K-means;

2 initialize Λ, Z, ρ and θ;

3 t = 1;

4 repeat

5 solve θt+1 by Eq. (10);

6 solve Zt+1 by Eq. (11);

7 update Λt+1 by Eq. (12);

8 t = t+ 1;

9 until stopping criterion is satisfied;

10 return the label distribution Dt according to Eq. (1).

Then, Eq. (20) can be further rewritten as follows:

min
Z(i)

λ2

ρ(i)
‖Z(i)‖tr +

1

2
‖Z(i) − (D(i) +

Λ(i)

ρi
)‖2F , (21)

which has closed-form solutions. Eq. (21) can be solved by

the following Lemma 1:

Lemma 1 For matrix Y ∈ Rn×d and µ > 0, the problem

as follows has the only one analysis solution,

arg min
M∈Rn×d

µ‖M‖tr +
1

2
‖M − Y ‖2F .

This solution can be described by singular value threshold-

ing operator,

SV Tµ(Y ) = Udiag[(σ − µ)+]V
T

(σ − µ)+ =

{

σ − µ σ > µ

0 otherwise,

U ∈ Rn×r, V ∈ Rd×r and σ = {σ1, σ2, · · · , σr} ∈ Rr×1

can be achieved by singular decomposition of matrix Y ,

Y = UΣV T and Σ = diag(σ).

The overall procedure of our proposed algorithm is pre-

sented in Algorithm 1. Moreover, the ADMM method in

our algorithm will converge at O(1/T ) rate to the optimum

solution according to [11], where T is the number of iter-

ation steps. Although it can be slower to converge to high

accuracy than other optimization methods, a modest accu-

racy is sufficient to attain satisfactory performance [3].

4. Experiments

4.1. Datasets

Various datasets are widely used in the facial expression

recognition area. However, most of them are only suitable
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Dateset Examples Features Lables

s-JAFFE 213 243 6

SBU 3DFE 2500 243 6

Table 1: The characteristics of two datasets.

for single-emotion or multi-emotion problems rather than

the emotion distribution problem. While our proposed ap-

proach prefers to the distribution datasets with annotations

of different voters, the majority voting scheme is widely

adopted as the ground truth in this area. Unfortunately, there

are few facial expression datasets provide the detailed votes

from all the workers. Therefore, to evaluate the effective-

ness of our proposed algorithm, we performed extensive

experiments on two facial expression datasets, s-JAFFE

and SBU 3DFE, which are extended from JAFFE [15] and

BU 3DFE [29], respectively. The characteristics of the two

datasets are summarized in Table 1.

The s-JAFFE dataset contains 213 grayscale images of

10 Japanese female models. Each image is scored by 60

people on the 6 basic emotions (i.e., happiness, sadness,

surprise, fear, anger and disgust) with a five-level scale (1
represents the lowest emotion intensity, while 5 represents

the highest emotion intensity). The average score (after nor-

malization) of each emotion is used to represent the emo-

tion distribution. The second dataset, named SBU 3DFE,

contains 2500 images, and the emotion distribution of each

image is obtained by the same method as s-JAFFE. Besides,

a 243-dimensional feature vector is extracted from each im-

age in s-JAFFE and SBU 3DFE by Local Binary Patterns

(LBP) method [1].

4.2. Evaluation Measures

Different from [36], a different set of measures are used

in our paper, because our used measures are more represen-

tative that are validated in [6]. In detail, six measures, in-

cluding distance-based measures and similarity-based mea-

sures [6], are chosen as the evaluation measures for the LDL

algorithms in this paper. The names and formulas are pre-

sented in Table 2, where D = {d1, d2, · · · , dL} denote the

predicted label distribution and D̄ = {d̄1, d̄2, · · · , d̄L} de-

note the real label distribution. For the first four distance

measures, “↓” indicates “the smaller, the better”, and “↑”

indicates “the larger, the better” for the last two similarity

measures.

4.3. Experimental Setting

To verify the performance of the proposed EDL-LRL

method, we take PT-SVM [9], PT-Bayes [7], AA-kNN [8],

AA-BP [10], SA-IIS [6], SA-BFGS [6], EDL [36], LDL-

SCL [33] and LDLLC [12] in our comparison. The param-

eter settings of those algorithms are as follows. PT-SVM

Name Formula

D
is

ta
n
ce

Chebyshev↓ Dis1(D̄,D) = maxj |d̄j − dj |

Clark↓ Dis2(D̄,D) =

√

∑

L
j=1

(d̄j−dj)
2

(d̄j+dj)
2

Canberra ↓ Dis3(D̄,D) =
∑L

j=1

|d̄j−dj |

d̄j+dj

Kullback-Leibler(K-L)↓ Dis4(D̄,D) =
∑L

j=1 d̄j ln
d̄j

dj

S
im

il
ar

it
y

Cosine↑ Sim1(D̄,D) =

∑L
j=1 d̄jdj

√

∑L
j=1

d̄2
j

√

∑L
j=1

d2
j

Intersection↑ Sim2(D̄,D) =
∑L

j=1 min(d̄j , dj)

Table 2: Evaluation measures for LDL algorithms.

is implemented as the “C-SVC” type in LIBSVM using the

RBF kernel with the parameters C = 1.0 and Gamma =
0.01. For PT-Bayes, maximum likelihood estimation is em-

ployed to estimate the Gaussian class-conditional probabil-

ity density functions. The number of neighbors k in AA-

kNN is set to 5 and the number of hidden-layer neurons for

AA-BP is set to 60. The parameters in SA-BFGS are set to:

c1 = 10−4 and c2 = 0.9. The parameters η, ε, ξ1 and ξ2
in EDL are set as 5, 0.25, 0.0001, 0.001, respectively. For

LDL-SCL, λ1, λ2 and λ3 are set to 0.001. For LDLLC, the

parameters are set to: λ1 = 0.1 and λ2 = 0.01. In addition,

for EDL-LRL, the regularization parameters λ1 and λ2 are

set as 10−3 and 10−2, respectively. The number of clusters

obtained by K-means is set to 5, i.e., m = 5, and we will

investigate the influence of m in the following.

4.4. Results and Discussion

For each dataset, the five-fold cross validation is em-

ployed in this paper. In detail, the instances in each dataset

are randomly divided into 5 parts, one part for testing and

the remainder for training. Note that the EDL results com-

pared in our experiments are different with those reported

in [36], because they used 90% instances as the training

set whereas we use 80% instances, since a small test set

is difficult to reflect the difference between different algo-

rithms (For s-JAFFE, 10% instances has only 21 instances).

We apply each method 10 times on each dataset, and the

experimental results are presented in the form of “mean±
std”. The experimental results are reported in Table 3. The

best performance on each measure is marked in bold, and

the two-tailed t-test with 5% significance level is performed

to see whether the differences between our method (EDL-

LRL) and the other methods are statistically significant. The

results of the t-test are presented immediately after the per-

formance of each method, where • (◦) indicates significance

difference.

As illustrated in Table 3, our proposed EDL-LRL

method outperforms all other methods (PT-SVM [9], PT-

Bayes [7], AA-kNN [8], AA-BP [10], SA-IIS [6], SA-
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data algorithm Chebyshev↓ Clark↓ Canberra↓ K-L↓ Cosine↑ Intersection↑

s-JAFFE

EDL-LRL 0.0806±0.006 0.3008±0.016 0.6134±0.034 0.0361±0.004 0.9660±0.004 0.8970±0.006

PT-SVM 0.1238±0.027• 0.4353±0.045• 0.9039±0.099• 0.0745±0.024• 0.9290±0.023• 0.8453±0.021•
PT-Bayes 0.1204±0.030• 0.4287±0.053• 0.8972±0.138• 0.0764±0.031• 0.9287±0.027• 0.8470±0.029•
AA-kNN 0.1009±0.015• 0.3562±0.036• 0.7283±0.102• 0.0527±0.018• 0.9484±0.020• 0.8739±0.018•
AA-BP 0.1447±0.015• 0.5330±0.062• 1.0995±0.109• 0.1180±0.027• 0.8959±0.021• 0.8132±0.017•
SA-IIS 0.1202±0.048• 0.4651±0.050• 0.9349±0.125• 0.0775±0.036• 0.9286±0.036• 0.8442±0.031•

SA-BFGS 0.1007±0.029• 0.3847±0.094• 0.7825±0.195• 0.0568±0.024• 0.9452±0.025• 0.8673±0.032•
EDL 0.1211±0.008• 0.4311±0.022• 0.9050±0.054• 0.0745±0.008• 0.9297±0.007• 0.8458±0.010•

LDL-SCL 0.0890±0.007• 0.3304±0.021• 0.6808±0.047• 0.0443±0.006• 0.9583±0.006• 0.8851±0.009•
LDLLC 0.1194±0.010• 0.4207±0.016• 0.8775±0.043• 0.0713±0.008• 0.9324±0.008• 0.8503±0.009•

SBU 3DFE

EDL-LRL 0.0951±0.002 0.3556±0.006 0.7463±0.013 0.0694±0.002 0.9626±0.002 0.8686±0.002

PT-SVM 0.1439±0.006• 0.4305±0.012• 0.9321±0.027• 0.0926±0.008• 0.9113±0.007• 0.8324±0.005•
PT-Bayes 0.1451±0.005• 0.4292±0.013• 0.9413±0.031• 0.0904±0.005• 0.9126±0.004• 0.8314±0.005•
AA-kNN 0.1300±0.004• 0.4105±0.005• 0.8532±0.015 0.0845±0.007• 0.9176±0.005• 0.8453±0.003•
AA-BP 0.1475±0.004• 0.4925±0.031• 1.0345±0.063• 0.1205±0.042• 0.8952±0.011• 0.8158±0.008•
SA-IIS 0.1405±0.005• 0.4270±0.016• 0.9241±0.038• 0.0852±0.007• 0.9166±0.005• 0.8341±0.006•

SA-BFGS 0.1291±0.009• 0.3984±0.016• 0.8596±0.046• 0.0758±0.008• 0.9255±0.007• 0.8454±0.008•
EDL 0.1377±0.002• 0.4099±0.003• 0.8970±0.007• 0.0844±0.001• 0.9185±0.001• 0.8397±0.001•

LDL-SCL 0.1106±0.002• 0.3749±0.003• 0.7517±0.007 0.0574±0.001◦ 0.9435±0.001• 0.8656±0.001•
LDLLC 0.1356±0.003• 0.4328±0.007• 0.9290±0.015• 0.0857±0.003• 0.9165±0.002• 0.8330±0.003•

Table 3: Comparison results (mean±std.) of LDL methods on real-world datasets. The best performance on each measure is

marked in bold. • (◦) indicates that EDL-LRL is significantly better (worse) than the corresponding method on the criterion

based on two-tailed t-test with 5% significance level. ↑ (↓) indicates the larger (smaller), the better.

(a) Shebyshev (b) Clark (c) Canberra

(d) K-L (e) Cosine (f) Intersection

Figure 3: Comparison of eight methods under varying the training data sizes on s-JAFFE.

BFGS [6], EDL [36], LDL-SCL [33] and LDLLC [12])

on all criteria except for K-L, and EDL-LRL has the top

2 performances on K-L. Besides, the specialized LDL algo-

rithms generally perform better than those algorithms ob-

tained from PT and AA in most cases. The reason is that the

specialized LDL algorithms are designed to directly mini-

mize the similarity between the predicted label distribution

and the true label distribution. Furthermore, it is worth men-

tioning that the EDL-LRL method is superior to the EDL

and LDLLC methods, which exploit label correlations in a

global manner. This indicates that exploiting label correla-

tions locally is more reasonable.

In addition, to demonstrate the robustness of our pro-

posed method, we studied the performance of emotion dis-

tribution prediction under varying training data sizes. In the

experiment, 10%− 90% of the data are used as the training

set. A desired number of instances are sampled randomly

ten times, and the resulting average Chebyshev, Clark, Can-
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(a) Shebyshev (b) Clark (c) Canberra

(d) K-L (e) Cosine (f) Intersection

Figure 4: Influence of m with 6 measures on dataset s-JAFFE.

berra, K-L, Cosine and Intersection are recorded. We re-

port the experimental results on the s-JAFFE dataset with

6 evaluation measures, which are shown in Fig. 3. For the

simplicity of illustration and the poor performances of PT-

SVM and AA-BP, the results of these algorithms are not

reported in Fig. 3. It can be observed that the performance

of our EDL-LRL method improves as the training data size

increases. Furthermore, EDL-LRL achieves the best perfor-

mance when the training data size is greater than 40%, and

it is in the top 3 performances when the training data size is

less than 40% because the local label correlations cannot be

effectively exploited when the training set is insufficient.

4.5. Influence of the Number of Clusters

To investigate the influence of the number of clusters m,

we run EDL-LRL with m varying from 1 to 9, and five-fold

cross validation is employed in each experiment. Besides,

we only show the results with six measures on the s-JAFFE

dataset because the results have the similar trend on the

SBU 3DFE. As seen in Fig. 4, the performance improves

as m increases and tends to be stable after m becomes suf-

ficiently large.

4.6. Convergence

An ADMM based optimization method is used to solve

the objective function of our algorithm. To investigate the

convergence of the ADMM method to solve the EDL-LRL

model, we plot the value of the objective function (i.e., Eq.

(8)) on the two datasets in Fig. 5. As can be observed, the

objective function value decreases with respect to the num-

ber of iterations, and the value approaches a fixed value after

(a) s-JAFFE (b) SBU 3DFE

Figure 5: Convergence of EDL-LRL on s-JAFFE and

SBU 3DFE.

a few iterations.

5. Conclusion

To depict facial expressions more accurately, this pa-

per introduces a challenging learning scenario wherein fa-

cial expression recognition is modeled as an emotion dis-

tribution learning problem and proposes the EDL-LRL al-

gorithm. Moreover, we exploit the label correlations at a

local level since different facial expressions may share dif-

ferent label correlations in real-world applications, and a

local low-rank assumption is employed to capture the local

label correlations. A series of experiments demonstrate that

EDL-LRL is superior to some state-of-the-art label distri-

bution learning methods.
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