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Abstract

One of the fundamental challenges in video object seg-

mentation is to find an effective representation of the tar-

get and background appearance. The best performing ap-

proaches resort to extensive fine-tuning of a convolutional

neural network for this purpose. Besides being prohibitively

expensive, this strategy cannot be truly trained end-to-end

since the online fine-tuning procedure is not integrated into

the offline training of the network.

To address these issues, we propose a network architec-

ture that learns a powerful representation of the target and

background appearance in a single forward pass. The in-

troduced appearance module learns a probabilistic gener-

ative model of target and background feature distributions.

Given a new image, it predicts the posterior class probabil-

ities, providing a highly discriminative cue, which is pro-

cessed in later network modules. Both the learning and

prediction stages of our appearance module are fully dif-

ferentiable, enabling true end-to-end training of the entire

segmentation pipeline. Comprehensive experiments demon-

strate the effectiveness of the proposed approach on three

video object segmentation benchmarks. We close the gap to

approaches based on online fine-tuning on DAVIS17, while

operating at 15 FPS on a single GPU. Furthermore, our

method outperforms all previously published approaches on

the large-scale YouTube-VOS dataset.

1. Introduction

Video object segmentation (VOS) is the task of tracking

and segmenting one or multiple target objects in a video

sequence. In this work, we consider the semi-supervised

setting, where the ground-truth segmentation is only given

in the first frame. The task is generic, i.e., the targets are

arbitrary and no further assumptions regarding the object

classes are made. The VOS problem is challenging from

several aspects. The target may undergo significant appear-

ance changes and may be subject to fast motion or occlu-

sion. Moreover, the scene may contain distractor objects

Image RGMP [31] A-GAME (Ours)
Figure 1. Comparison between our proposed approach and the re-

cently proposed RGMP [31]. In RGMP, the input features are

concatenated with the initial mask and feature map. In contrast,

we explicitly capture the target and background appearance, in-

cluding distractor objects, by generative modelling. While RGMP

severely struggles, the proposed approach successfully identifies

and accurately segments all annotated targets. As in RGMP, we do

not invoke computationally intensive fine-tuning in the first frame,

but instead aim to learn the appearance model in a single forward

pass. The figure is best viewed in colour.

that are visually or semantically similar to the target.

To tackle the aforementioned challenges, the standard

strategy is to invoke extensive iterative optimization in the

first frame [1, 2, 21, 30], given the initial image-mask pair.

However, this strategy comes at an immense computational

cost, rendering real-time operation infeasible. Furthermore,

these methods do not train the segmentation pipeline end-

to-end, since the online fine-tuning step is excluded from

the offline learning stage. In response to the these issues, we

explore the problem of finding a feedforward network archi-

tecture for VOS that completely avoids online optimization.

Recent works have posed video object segmentation as a

feedforward mask-refinement process [23,31,34], where the

previous mask prediction is adapted to fit the target in the

current frame using a convolutional neural network. How-
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ever, since no explicit modelling of the target appearance is

performed, such approaches inherently fail if the target is

occluded or out of view. This problem has been approached

by incorporating simple appearance models based on e.g.,

concatenation of the feature map from the first frame [31],

or utilization of a set of foreground and background feature

vectors [4, 13]. However, these appearance models are ei-

ther too simplistic, achieving unsatisfactory discriminative

power, or cannot be fully trained end-to-end due to the re-

liance of non-differentiable components.

In this work, we propose a novel neural network archi-

tecture for video object segmentation that integrates a pow-

erful appearance model of the scene. In contrast to previous

methods, our network internally learns a generative proba-

bilistic model of the foreground and background feature dis-

tributions. For this purpose, we employ a class-conditional

mixture of Gaussians, which is inferred through a single

forward pass. Our appearance model outputs the poste-

rior class probabilities, thus providing a powerful cue con-

taining discriminative information about the image content.

This completely removes the need for online fine-tuning, as

target-specific appearance information is captured in a sin-

gle forward pass. We demonstrate our approach in fig. 1.

The proposed generative appearance model is seamlessly

integrated as a module in our video object segmentation net-

work. Our complete architecture is composed of a back-

bone feature extractor, the generative appearance module,

a mask propagation branch, a fusion component, and a fi-

nal upsampling and prediction module. For our genera-

tive appearance module, both the model inference and the

prediction stages are fully differentiable. This ensures that

the entire segmentation pipeline can be trained end-to-end,

which is not the case for methods invoking online fine-

tuning [1, 2, 12, 21, 23, 30] or K-Nearest-Neighbor predic-

tion [4, 13]. Finally, our appearance module is lightweight,

enabling efficient online inference.

We perform extensive experiments on 3 datasets, includ-

ing the recent large-scale YouTubeVOS dataset [32]. We

obtain a final score of 66.0% on YouTube-VOS, outper-

forming all previously published methods. Further, our ap-

proach achieves the best mean IoU of 67.2% on Davis17

among all causal video object segmentation methods. We

perform a comprehensive analysis of our method in terms

of an ablation study. Our analysis clearly underlines the ef-

fectiveness of the proposed generative appearance module

and the importance of full end-to-end learning.

2. Related Work

In this work we address the problem of video object seg-

mentation where an initial segmentation mask is provided,

defining the target in the first frame. In recent years interest

in this problem has surged and a wide variety of approaches

have been proposed. Caelles et al. [2] proposed to use a

convolutional neural network pre-trained for the semantic

segmentation task, and fine-tune this in the first frame to

segment out foreground and background. The approach was

extended in a number of works: continuous training during

the sequence [30]; adding instance-level semantic informa-

tion [21]; incorporating motion information via optical flow

[1, 6, 12]; performing temporal propagation via a Markov

random field [1]; location-specific embeddings [8]; sophis-

tic data augmentation [16]; or a combination of these [20].

While these approaches obtain satisfactory results in many

scenarios, they have one critical drawback in common: they

learn the target appearance in the initial frame via exten-

sive training of deep neural networks with stochastic gra-

dient descent. This leads to a significant time-delay before

these methods can start tracking, and an average computa-

tion time that renders real-time processing infeasible.

Despite reduced accuracy, several approaches avoid in-

voking expensive fine-tuning procedures in the first frame.

Some methods rely on optical flow coupled with refine-

ment [15, 29]. Li et al. proposed DyeNet [18], which

combines optical flow with an object proposal network,

interleaving bidirectional mask-propagation and target re-

identification. DyeNet provides outstanding performance,

but it is not causal and relies on future video frames to make

predictions. Jampani et al. [14] explicitly try to avoid opti-

cal flow and propose an approach based on bilateral filters.

Cheng et al. [5] track different parts of the target with visual

object tracking techniques, and refine the final solution with

a convolutional neural network. Xu et al. [32] instead train

a convolutional LSTM [11] to track and segment the target.

More closely related to our work, Perazzi et al. [23] pose

video object segmentation as a mask refinement problem.

Based on an input image, the mask predicted from the pre-

vious frame is refined with a neural network. The network

is recurrent in time, with a particularly deep recurrent con-

nection, an entire VGG16 [28]. In the work by Yang et

al. [34], the mask was reduced to a rough spatial prior on

the target location, and this together with a channel-wise at-

tention mechanism provided improved performance. Wug

et al. [31] extend [23] and concatenate the initial frame

feature map and mask with the current feature map and

previous mask, and train a standard convolutional neural

network to match and segment in a fully recurrent fash-

ion. Also more explicit matching mechanisms have been

proposed, where the input features are matched with a set

of features with known class membership [4, 13] using K-

Nearest-Neighbour (KNN). While these methods model the

target appearance, the non-parametric nature of KNN re-

quires the entire training set to be stored. Additionally, the

process of finding the K nearest neighbours is not differen-

tiable. In contrast to existing work, our approach learns a

compact appearance model of the scene in a single differ-

entiable forward pass.
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Figure 2. Full architecture of the proposed approach, illustrating both model initialization and frame processing. Model Initialization: A

feature map is extracted from the initial frame, which is then fed together with the mask to the mask propagation module. This pair is

furthermore used to initialize the appearance model. Frame processing: A feature map is extracted from the current frame and fed to both

the appearance and mask-propagation modules whose outputs are combined, generating a coarse mask-encoding. Our upsampling module

then refines the mask-encoding by also considering low-level information contained in the shallow features. The predictor then generates

a final segmentation, based on this encoding. Moreover, the mask-encoding and appearance model parameters are fed back via a recurrent

connection. During training, we use two cross-entropy losses applied to the coarse and fine segmentations, respectively.

3. Method

The aim of this work is to develop a network architecture

for video object segmentation with the capability of learn-

ing accurate models of the target and background appear-

ance through a single forward pass. That is, the network

must learn in a one-shot manner to discriminate between

target and background pixels, without invoking stochastic

gradient descent. We tackle this problem by integrating a

generative model of the foreground and background appear-

ance. This model directly aids the segmentation process by

providing discriminative posterior class probabilities. The

learning and inference is computationally efficient and end-

to-end differentiable, enabling a seamless integration of our

generative component into a neural network.

3.1. Overview

Our approach is divided into five components that jointly

address the video object segmentation task and are trained

jointly end-to-end. The model is illustrated in fig. 2. Given

an input image, features are first extracted with a backbone

network. These are then passed to the appearance- and

mask-propagation modules. The outputs of these two mod-

ules are combined in the fusion module, comprising two

convolutional layers and outputting a coarse mask encod-

ing. The encoding is handed to a predictor that generates

a coarse segmentation mask. This prediction is used to up-

date the appearance module and further used as input to the

mask-propagation layer in the next frame to provide a rough

spatial prior. The mask encoding output by the fusion com-

ponent is also passed through an upsampling module, in

which the coarse encoding is combined with successively

more shallow features in order to produce a final refined

segmentation.

3.2. Generative Appearance Module

The task of our appearance module is to learn a gener-

ative model of the video content in a deep feature space.

Our generative model is conditioned on the class variable,

indicating target or background. Given a new frame, the ap-

pearance module returns the posterior class probabilities at

each image location. This output forms an extremely strong

cue for foreground/background discrimination, as the pro-

posed module explicitly models their respective appearance

in a probabilistic manner.

Model learning: Formally, let the set of features extracted

from the image be denoted as {xp}p. The feature xp at

each spatial location p is a D-dimensional vector of real

numbers. We model these observed feature vectors as i.i.d.

samples drawn from the underlying distribution

p(xp) =
K∑

k=1

p(zp = k)p(xp|zp = k) . (1)

Each class-conditional density is a multi-variate Gaussian

with mean µk and covariance matrix Σk,

p(xp|zp = k) = N (xp|µk,Σk) . (2)

The discrete random variable zp in (1) assigns the obser-

vation xp to a specific component zp = k. We use a uni-

form prior p(zp = k) = 1/K for this variable, where K
is the number of components. Each component exclusively

models the feature vectors of either the foreground or back-

ground. As further detailed below, we use four Gaussians,

where the components k ∈ {0, 2} model background and

k ∈ {1, 3} model foreground features.

In the first frame, our generative mixture model is in-

ferred from the extracted features and the initial target mask.

In subsequent frames, we update the model using the net-

work predictions as soft class labels. In general, to update
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the mixture model in a frame i we require a set of features

x
i
p together with a set of soft component assignment vari-

ables αi
p,k ∈ [0, 1]. These variables can be thought of as

soft labels, describing the level of assignment of the vector

x
i
p to component k. In the first frame i = 0, the feature

vectors would be strictly assigned to either foreground or

background α0

p,k ∈ {0, 1}, using the initial target mask.

Given the variables αi
p,k, we compute the model param-

eter updates as,

µ̃
i
k =

∑
p α

i
p,kx

i
p∑

p α
i
p,k

, (3a)

Σ̃
i
k =

∑
p α

i
p,k diag{(x

i
p − µ̃

i
k)

2 + rk}∑
p α

i
p,k

. (3b)

For efficiency, we limit the covariance matrix to be diago-

nal, where diag{v} is a diagonal matrix with entries corre-

sponding to the input vector v. To avoid singularities, the

covariance is regularized with a vector rk, which is a train-

able parameter in our network. In the first frame, the mix-

ture model parameters in (2) are directly achieved from (3),

i.e. µ0

k = µ̃
0

k and Σ
0

k = Σ̃
0

k. In subsequent frames, these

parameters are updated with new information (3) using a

learning rate λ,

µ
i
k = (1− λ)µi−1

k + λµ̃i
k ,

Σ
i
k = (1− λ)Σi−1

k + λΣ̃i
k . (4)

Assignment variables: Next, we describe the computa-

tion of the assignment variables αi
p,k. Note that (3) re-

sembles the M-step in the Expectation Maximization (EM)

algorithm for a mixture of Gaussians. In EM, the vari-

ables zip are treated as latent and (3) is derived by maxi-

mizing the expected complete-data log-likelihood. In that

case the assignment variables are computed in the E-step as

αi
p,k = p(zip = k|xi

p, θ
i−1), where θi−1 = {µi−1

k ,Σi−1

k }k
are the previous estimates of the parameters. However, the

setting is different in our case. The discrete assignment vari-

ables zip are fully observed in the first frame. Moreover, in

the subsequent frames, the network refines the posteriors

p(zip = k|xi
p, θ

i−1), providing even better assignment esti-

mates. We therefore exploit these factors in the estimation

of the assignment variables αi
kp.

Our model consists of one base component for back-

ground k = 0 and foreground k = 1, respectively. Given

the ground truth binary target mask yp in the first frame,

where yp = 1 for foreground and yp = 0 otherwise, we set

α0

p,0 = 1−yp and α0

p,1 = yp. That is, the feature vectors xi
p

are strictly assigned to the foreground and background base

components according to the initial mask. In subsequent

frames, where the ground-truth is not available, we use the

final prediction of our segmentation network according to

αi
p,0 = 1− ỹp(I

i, θi−1,Φ)

αi
p,1 = ỹp(I

i, θi−1,Φ) . (5)

Here, ỹp(I
i, θi−1,Φ) ∈ [0, 1] is the probability of the target

class, given the input image Ii, neural network parameters

Φ, and current mixture model parameter estimates θi−1.

A drawback of using a single Gaussian component per

class is that only uni-modal distributions can be accurately

represented. However, the background appearance is typi-

cally multi-modal, especially in the presence of background

objects that are similar to the target, often termed distrac-

tors. To obtain satisfactory discrimination between fore-

ground and background, it is therefore critical to capture

the feature distribution of such distractors. We therefore

add Gaussian components in our model that are dedicated

to the task of modeling hard examples. These compo-

nents are explicitly learned to counter the errors of the two

base components. Ideally, we would wish the base com-

ponents alone to correctly predict the assignment variables,

i.e. p(zip = k|xi
p,µ

i
k,Σ

i
k) = αi

p,k, k = 0, 1. The additional

components are trained on data where this does not hold by

considering incorrectly classified background (k = 2) and

foreground (k = 3) respectively. Their corresponding as-

signment variables are computed as,

αi
p,2 = max(0, αi

p,0 − p(zip = 0|xi
p,µ

i
0
,Σi

0
))

αi
p,3 = max(0, αi

p,1 − p(zip = 1|xi
p,µ

i
1
,Σi

1
)) . (6)

The posteriors p(zip = k|xi
p,µ

i
k,Σ

i
k) are evaluated using

only the base components. Given (6), we finally update the

parameters of the components k = 2, 3 using (3) and (4).

Module output: Given the mixture model parameters

computed in the previous frame, θi−1, our model can pre-

dict the component posteriors,

p(zip = k|xi
p, θ

i−1) =
p(zip = k)p(xi

p|z
i
p = k)

∑
k p(z

i
p = k)p(xi

p|z
i
p = k)

. (7)

Note that each component k belongs to either foreground or

background, and that the outputs (7) thus provide a discrim-

inative mask encoding. In practice, we found it beneficial

to feed the log-probabilities log(p(zip = k)p(xi
p|z

i
p = k))

into the conv layers in the fusion module. By canceling out

constant factors, the outputs are calculated as,

sipk = −
ln |Σi−1

k |+ (xi
p − µ

i−1

k )T(Σi−1

k )−1(xi
p − µ

i−1

k )

2
.

(8)

The component posteriors (7) can be reconstructed from

sipk by a simple soft-max operation. The output (8) should

therefore be interpreted as component scores, encoding

foreground and background assignment. The entire appear-

ance modelling procedure is summarized in Algorithm 1.
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3.3. Object Segmentation Architecture

As our backbone feature extractor, we use ResNet101

[10] with dilated convolutions [3] to reduce the stride of the

deepest layer from 32 to 16. It is pretrained on ImageNet

and all layers up to the last block, layer4, are frozen. The

mask-propagation module is based on the concept proposed

in [31]. The module constructs a mask encoding based on

the mask predicted in the previous frame, a feature map

predicted in the current frame, and a feature map extracted

from the initial frame together with the given ground-truth

mask. The entire module consists of three convolutional

layers, where the middle layer is a dilation pyramid [3].

The outputs of the mask propagation and appearance

modules are concatenated and fed into the fusion module,

comprising two convolution layers. The result is processed

by the upsampling module from which a predicted soft seg-

mentation ŷp is obtained. The output of the fusion module is

also fed into a predictor that produces a coarse segmentation

ỹp, which is utilized by the mask propagation and appear-

ance modules (using (5)) in the next timestep. By separating

the feature extractor and upsampling path from the recurrent

module we get a shorter path between variables of different

time steps. We experienced the coarse mask to be a suffi-

cient representation of the previous target segmentation. As

a special case, during sequences with multiple objects, we

run our approach once per object and combine the result-

ing soft segmentations with softmax-aggregation [31]. The

aggregated soft segmentations then replaces the coarse seg-

mentations ỹp in the recurrent connection.

The output of the fusion module provides coarse mask-

encoding that is used to locate and segment the target. There

have been considerable efforts in semantic segmentation

and instance segmentation litterature to refine final seg-

mentations. We adopt an upsampling path similar to [25],

where the coarse representation is successively combined

with successively shallower features.

3.4. Network Training

We train the proposed neural network end-to-end in a re-

current fashion. Based on a video and a single ground-truth

segmentation, the network predicts segmentation masks for

each frame in the video. We train on three datasets:

DAVIS2017 [26]: The DAVIS2017 training set comprises

60 videos containing one or several annotated objects to

track. Each video is between 25 and 100 frames long, each

of which is labeled with a ground-truth segmentation.

YouTube-VOS [32]: The YouTube-VOS training set con-

sists of 3471 videos with one or several target objects. Each

video is 20 to 180 frames long, where every fifth frame is

labelled. We use only the labelled frames during training.

SynthVOS: In order to cover a wide varity of classes we

follow [23, 31] and utilize objects from the salient object

segmentation dataset MSRA10k [7]. It contains 104 images

Algorithm 1: The appearance module inference and

update. Inference: Based on the appearance model pa-

rameters, µi
k,Σ

i
k, and the input feature map x

i
p, a soft

segmentation is constructed for the background, fore-

ground, and the two residual components. Update:

The appearance model parameters are updated based

on the coarse segmentation ỹip.

1 Inference(xi
p, µi

k, Σi
k):

2 for k = 0, 1, 2, 3: compute sipk from (8)

3 return sipk
4 Update(xi

p, ỹip, µi
k, Σi

k):

5 for k = 0, 1: compute αi
p,k from (5)

6 for k = 0, 1: compute µ̃
i
k, Σ̃

i
k based on (3)

7 for k = 0, 1: compute sipk based on (8)

8 for k = 0, 1: compute

p(zip = k|xi
p,µ

i
0
,Σi

0
) = Softmax(sip0, s

i
p1)

9 for k = 2, 3: compute αi
p,k from (6)

10 for k = 2, 3: compute µ̃
i
k, Σ̃

i
k based on (3)

11 for k = 0, 1, 2, 3: update µ
i
k and Σ

i
k from (4)

12 return µ
i
k and Σ

i
k

where a single object is segmented. We paste 1 to 5 such ob-

jects onto an image from VOC2012 [9]. A synthetic video

is obtained by moving the objects across the image.

One training sample consists of a video snippet of n
frames and a given ground-truth for the first frame. Im-

ages are normalized with ImageNet [27] mean and standard

deviation. We let our model predict segmentation masks

in each frame and apply a cross-entropy loss. We also place

an auxillary loss on the coarse segmentations ỹp. The losses

are summed and minimized with Adam in two stages:

Initial training: First we train for 80 epochs using all three

datasets on half resolution images (240 × 432). The batch-

size is set to 4 video snippets, using 8 frames in each snip-

pet. We use a learning rate of 10−4, exponential learning

rate decay of 0.95 per epoch, and a weight decay of 10−5.

Finetuning: We then finetune for 100 epochs on the

DAVIS2017 and YouTube-VOS training sets, using full im-

age resolution. During this step we sample sequences from

both datasets with equal probability. The batchsize is low-

ered to 2 snippets, to accomodate longer sequences of 14

frames. We use a learning rate of 10−5, exponential learn-

ing rate decay of 0.985 per epoch, and a weight decay

of 10−6. The training is stopped early by observing the

performance on a held-out set of 300 sequences from the

YouTube-VOS training set.

4. Experiments

We first conduct an ablation study of the proposed

approach on the Youtube-VOS benchmark [32]. Then,
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we compare with the state-of-the-art on three video ob-

ject segmentation datasets [24, 26, 32]. Our approach,

called A-GAME, is implemented in PyTorch [22] and

trained on a single Nvidia V100 GPU. Our code and

trained networks are available at https://github.

com/joakimjohnander/agame-vos.

4.1. Ablation Study

We perform an extensive ablative analysis of our ap-

proach on the large-scale YouTube-VOS dataset. We use

the official validation set, comprising 474 videos labelled

with one or multiple objects. Ground-truth masks are with-

held, and results are obtained through an online evaluation

server. Performance is measured in terms of the mean Jac-

card index J [26], i.e. intersection-over-union (IoU), and

the mean contour accuracy F . The two measures are sep-

arately calculated for seen and unseen classes, resulting in

four performance measures. The overall performance (G) is

the average of all four measures.

In our ablative experiments, we analyze six key modi-

fications of our approach, as explained below. Results are

shown in table 1. For each version, we retrain the entire

network from scratch using the exact same procedure.

Appearance module: We first analyze the impact of the

proposed appearance module (see section 3.2) by remov-

ing it from the network (No appearance module in table 1).

This leads to a major reduction in overall performance, from

66.0% to 50.0%. The results clearly demonstrate that the

introduced appearance module is an essential component in

our video object segmentation approach. Further insights

are obtained by studying the performance on seen and un-

seen classes in table 1. Note that removing the appearance

module causes a 9.1% decrease for classes that are seen dur-

ing training, and a remarkable 20.6% decrease for unseen

classes. Thus, our generative appearance model component

is crucial for the generalization to arbitrary objects that are

unseen during training. This is explained by the target spe-

cific and class-agnostic nature of our appearance module.

Mask-propagation module: Secondly, we investigate

the importance of the mask-propagation module (see sec-

tion 3.3). Refraining from propagating the mask predicted

Version G J seen (%) J unseen (%)

A-GAME 66.0 66.9 61.2

No appearance module 50.0 57.8 40.6

No mask-prop module 64.0 65.5 59.5

Unimodal appearance 64.4 65.8 58.8

No update 64.9 66.0 59.8

Appearance SoftMax 55.8 59.3 50.7

No end-to-end 58.8 62.5 53.1

Table 1. Ablation study on YouTube-VOS. We report the overall

performance G along with segmentation accuracy J on classes

seen and unseen during training. See text for further details.

Image Final segmentation Appearance

Figure 3. Visualization of the appearance module on five videos

from YouTube-VOS. The final segmentation of our approach is

shown (middle) together with output of the appearance module

(right). The appearance module accurately locates the target (red)

with the foreground representation while accentuating potential

distractors (green) with the secondary mixture component.

in the previous frame (No mask-prop module in table 1) re-

sults in a 2.0% reduction in performance. While this reduc-

tion is significant, the importance of the mask-propagation

module is small compared to that of the appearance module.

Gaussian mixture components: As described in sec-

tion 3.2, we employ two Gaussian mixture components to

model the foreground and background, respectively. In ad-

dition to the base mixture component, a secondary Gaus-

sian mixture component is added to capture hard examples

that are not accurately modelled by a unimodal distribution.

We investigate the impact of this additional mixture compo-

nents by removing them from our model. The resulting ver-

sion (Unimodal appearance in table 1) thus only employs a

single base mixture component for each class. The resulting

performance drop of 1.6% indicates the importance of mod-

eling hard examples in the presence of distractor objects.

The impact of the multi-modal generative model is also

analyzed qualitatively in fig. 3. The mixture component

dedicated to hard negative image regions is able to model

other objects in the vicinity of the target (row 1 and 2) and

accurately captures other objects of the same class (row 3-

5). Note that both the appearance module’s output and the

final segmentations are soft, and only for the purpose of vi-

sualization we show the arguments of the maxima.

Model update: We investigate the impact of updating the

generative model in each frame using (4). The version No

update (table 1) only uses the initial frame to compute the

mixture model parameters (3), and no update (4) is per-
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Method O-Ft G overall (%) J seen (%) J unseen (%)

S2S [33] X 64.4 71.0 55.5

OSVOS [2] X 58.8 59.8 54.2

OnAVOS [30] X 55.2 60.1 46.6

MSK [23] X 53.1 59.9 45.0

OSMN [34] × 51.2 60.0 40.6

S2S [33] × 57.6 66.7 48.2

RGMP [31] × 53.8 59.5 45.2

RGMP† [31] × 50.5 54.1 41.7

A-GAME × 66.0 66.9 61.2

A-GAME† × 66.1 67.8 60.8

Table 2. State-of-the-art comparison on the YouTubeVOS bench-

mark. Our approach obtains the best overall performance (G) de-

spite not performing any online fine-tuning (O-Ft). Further, our

approach provides a large gain in performance for categories un-

seen during training (J unseen), compared to existing methods.

Entries marked by † were trained with only YouTube-VOS data.

formed during training and inference. Updating the genera-

tive model to capture changes in the target and background

appearance leads to a 1.1% improvement in performance.

Appearance module output: As previously described,

our appearance module outputs the log-probability scores

(8). To validate this choice, we also compare with out-

putting the posterior probabilities (Appearance SoftMax in

table 1), obtained by adding a SoftMax layer after com-

puting the scores (8), between the appearance and fusion

modules. This leads to a significant degradation in per-

formance (−10.2%). These results are in line with con-

ventional techniques in segmentation [19] and classifica-

tion [17], where activations in the network are not converted

to probabilities until the final output layer.

End-to-end learning: Finally, we analyze the impact

of end-to-end differentiation and training in our approach.

Specifically, we investigate the importance of end-to-end

differentiability in the learning stage of the appearance

module. The comparison is performed by not backpropa-

gating through the model inference computation (3) during

the training of the network. Note that, the rest of the frame-

work remains unchanged. The resulting method (No end-to-

end in table 1) obtains poor results, with a total degradation

of 7.2% in overall performance. This highlights the impor-

tance of permitting true end-to-end learning.

4.2. StateoftheArt Comparison

We compare our approach with the state-of-the-art on

three video object segmentation benchmarks: YouTube-

VOS [32], DAVIS2017 [26], and DAVIS2016 [24].

YouTube-VOS: This recently introduced large-scale

dataset contains 474 sequences with 91 classes, 26 of which

are not included in the YouTube-VOS training set. We use

the official validation set, as in section 4.1. We compare

our approach with all, to our best knowledge, published re-

sults [32]. Additionally, we evaluate the RGMP method,

using the code provided by the authors. The results are

shown in table 2. For each approach, we indicate if the

method employs online fine-tuning (O-Ft) and if it is causal,

Method O-Ft Causal J&F mean (%) F (%) J (%)

CINM [1] X X 70.6 74.0 67.2

OSVOS-S [21] X X 68.0 71.3 64.7

OnAVOS [30] X X 65.4 69.1 61.6

OSVOS [2] X X 60.3 63.9 56.6

DyeNet [18] × × 69.1 71.0 67.3

RGMP [31] × X 66.7 68.6 64.8

VM [13] × X - - 56.5

FAVOS [5] × X 58.2 61.8 54.6

OSMN [34] × X 54.8 57.1 52.5

A-GAME × X 70.0 72.7 67.2

Table 3. State-of-the-art comparison on the DAVIS2017 valida-

tion set. For each method we report whether it employs online

fine-tuning (O-Ft), is causal, and the final performance J (%).

Our approach obtains superior results compared to state-of-the-art

methods without online fine-tuning. Further, our approach closes

the performance gap to existing methods employing online fine-

tuning.

Method O-Ft Causal Speed J&F mean (%) F (%) J (%)

OnAVOS [30] X X 13s 85.5 84.9 86.1

OSVOS-S [21] X X 4.5s 86.6 87.5 85.6

MGCRN [12] X X 0.73s 85.1 85.7 84.4

CINM [1] X X >30s 84.2 85.0 83.4

LSE [8] X X 81.5 80.1 82.9

OSVOS [2] X X 9s 80.2 80.6 79.8

MSK [23] X X 12s 77.6 75.4 79.7

SFL [6] X X 7.9s 75.4 76.0 74.8

DyeNet [18] × × 0.42s - - 84.7

FAVOS [5] × X 1.80s 81.0 79.5 82.4

RGMP [31] × X 0.13s 81.8 82.0 81.5

VM [13] × X 0.32s - - 81.0

MGCRN [12] × X 0.36s 76.5 76.6 76.4

PML [4] × X 0.28s 81.2 79.3 75.5

OSMN [34] × X 0.14s 73.5 72.9 74.0

CTN [15] × X 1.30s 71.4 69.3 73.5

VPN [14] × X 0.63s 67.9 65.5 70.2

MSK [23] × X 0.15s - - 69.9

A-GAME × X 0.07s 82.1 82.2 82.0

Table 4. State-of-the-art comparison on DAVIS2016 validation set,

which is a subset of DAVIS2017. For each method we report

whether it employs online fine-tuning (O-Ft), is causal, the com-

putation time (if available), and the final performance J (%). Our

approach obtains competitive results compared to causal methods

without online fine-tuning.

i.e. if the segmentation output depends on future frames in

the video. Here we let X and × indicate yes and no, re-

spectively. Among previous approaches performing exten-

sive online fine-tuning in the first frame, OSVOS and On-

AVOS achieve final scores of 58.8% and 55.2%. For the

S2S method, we compare with two versions: one with and

one without online fine-tuning, obtaining 64.4% and 57.6%,

respectively. Our approach obtains a final score of 66.0%,

significantly outperforming state-of-the-art without invok-

ing any online fine-tuning. Furthermore, our method per-

forms notably well on the unseen category, which only con-

siders objects that are not seen during training. Again, this

demonstrates the effectiveness of our class-agnostic appear-

ance module, which generalizes to arbitrary target objects.

DAVIS2017: The dataset comprises 30 videos with one

or multiple target objects. The results are shown in ta-

ble 3. Among existing methods, DyeNet is the only ap-
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Image Ground Truth RGMP [31] CINM [1] FAVOS [5] A-GAME

Figure 4. Qualitative comparison between our approach and 3 state-of-the-art approaches. Our approach is able to accurately segment all

targets, demonstrating robustness to occlusions and successfully discriminating between different objects. This is largely thanks to the

powerful appearance model in our architecture.

proach that is non-causal, since it processes the entire video

in a bidirectional manner. It is therefore not applicable to

real-time or online systems. The RGMP method, achiev-

ing a score of 64.8%, relies on mask propagation and an

appearance model constructed by simply concatenating im-

age features from the first frame. VideoMatch (VM) stores

foreground and background feature vectors that are then

matched with feature vectors in the test image. This method

obtains a final result of 56.5%. The proposed method, em-

ploying an end-to-end differentiable generative probabilis-

tic appearance model, achieves a score of 67.2%. Our ap-

proach outperforms all causal methods not invoking online

fine-tuning, and is even on par with the best non-causal and

online fine-tuning-based techniques.

DAVIS2016: For completeness, we also evaluate our ap-

proach on DAVIS2016. It is a subset of DAVIS2017, con-

taining 20 videos labeled with a single object. The small

size and number of objects in DAVIS2016 limits the diver-

sity. It has therefore become highly saturated over the years.

In table 4 we show the final result of each method, along

with computational time reported by the respective authors.

Our approach obtains a competitive performance of 82.0%
compared to state-of-the-art. Unlike our method, the top

performing approaches on DAVIS2016, such as OSVOS,

OnAVOS, and FAVOS do not generalize well to the larger

and more diverse YouTube-VOS and DAVIS2017 datasets.

4.3. Qualitative Evaluation

We qualitatively compare our approach with three state-

of-the-art approaches (RGMP [31], CINM [1], FAVOS [5])

on three videos from DAVIS2017. The results are shown in

fig. 4. RGMP tends to lose parts of objects, and struggles

with discrimination between different objects. While CINM

can produce detailed segmentation masks (row 5), it suffers

from several failure modes (row 2, 4, 6). FAVOS struggles

with discriminating targets (row 2, 6) and fails to capture

details (row 6) or precise boundaries (row 4). The proposed

approach succeeds to accurately segment both targets in all

scenarios while being one or several orders of magnitude

faster compared to FAVOS and CINM, respectively.

5. Conclusion

We propose to address the VOS problem by learning

the appearance of the target in an efficient and differen-

tiable manner, avoiding the drawbacks of existing matching

or online-finetuning based approaches. The target appear-

ance is modelled as a mixture of Gaussians in an embed-

ding space, and we show that both learning and inference

of this model can be expressed in closed form. This permits

the implementation of the appearance model as a compo-

nent in a neural network that is trained on end-to-end. We

thoroughly analyze the proposed approach and demonstrate

its effectiveness on three benchmarks, resulting in state-of-

the-art performance.
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