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Abstract

Reducing bit-widths of activations and weights of deep

networks makes it efficient to compute and store them in

memory, which is crucial in their deployments to resource-

limited devices, such as mobile phones. However, decreas-

ing bit-widths with quantization generally yields drastically

degraded accuracy. To tackle this problem, we propose to

learn to quantize activations and weights via a trainable

quantizer that transforms and discretizes them. Specifically,

we parameterize the quantization intervals and obtain their

optimal values by directly minimizing the task loss of the

network. This quantization-interval-learning (QIL) allows

the quantized networks to maintain the accuracy of the full-

precision (32-bit) networks with bit-width as low as 4-bit

and minimize the accuracy degeneration with further bit-

width reduction (i.e., 3 and 2-bit). Moreover, our quantizer

can be trained on a heterogeneous dataset, and thus can

be used to quantize pretrained networks without access to

their training data. We demonstrate the effectiveness of our

trainable quantizer on ImageNet dataset with various net-

work architectures such as ResNet-18, -34 and AlexNet, on

which it outperforms existing methods to achieve the state-

of-the-art accuracy.

1. Introduction

Increasing the depth and width of a convolutional neu-

ral network generally improves its accuracy [24, 8] in ex-

change for the increased memory and the computational

cost. Such a memory- and computation- heavy network is

difficult to be deployed to resource-limited devices such as

mobile phones. Thus, many prior work have sought various

means to reduce the model size and computational cost, in-

cluding the use of separable filters [13, 10, 21], weight prun-

ing [7] and bit-width reduction of weights or activations
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[27, 22, 4, 26, 25, 30]. Our work aims to reduce bit-widths

of deep networks both for weights and activations, while

preserving the accuracy of the full-precision networks.

Reducing bit-width inherently includes a quantization

process which maps continuous real values to discrete in-

tegers. Decrease in bit-width of deep networks naturally

increases the quantization error, which in turn causes ac-

curacy degeneration, and to preserve the accuracy of a full-

precision network, we need to reduce the quantization error.

For example, Cai et al. [3] optimize the activation quan-

tizer by minimizing mean-squared quantization error using

Lloyd’s algorithm with the assumption of half-wave Gaus-

sian distribution of the response map, and some other work

approximate the layerwise convolutional outputs [22, 16].

However, while such quantization approaches may accu-

rately approximate the original distribution of the weights

and activations, there is no guarantee that they will be

beneficial toward suppressing the prediction error from in-

creasing. To overcome this limitation, our trainable quan-

tizer approximates neither the weight/activation values nor

layerwise convolutional outputs. Instead, we quantize the

weights and activations for each layer by directly minimiz-

ing the task loss of the networks, which helps it to preserve

the accuracy of the full-precision counterpart.

Our quantizer can be viewed as a composition of a trans-

former and a discretizer. The transformer is a (non-linear)

function from the unbounded real values to the normalized

real values (i.e., R(−∞,∞) → R[−1,1]), and the discretizer

maps the normalized values to integers (i.e., R[−1,1] → I).

Here, we propose to parameterize quantization intervals for

the transformer, which allows our quantizer to focus on ap-

propriate interval for quantization by pruning (less impor-

tant) small values and clipping (rarely appeared) large val-

ues.

Since reducing bit-widths decreases the number of dis-

crete values, this will generally cause the quantization error

to increase. To maintain or increase the quantization reso-

lution while reducing the bit-width, the interval for quanti-
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zation should be compact. On the other hand, if the quan-

tization interval is too compact, it may remove valid val-

ues outside the interval which can degrade the performance

of the network. Thus, the quantization interval should be

selected as compact as possible according to the given bit-

width, such that the values influencing the network accuracy

are within the interval. Our trainable quantizer adaptively

finds the optimal intervals for quantization that minimize

the task loss.

Note that our quantizer is applied to both weights and

activations for each layer. Thus, the convolution operation

can be computed efficiently by utilizing bit-wise operations

which is composed of logical operations (i.e., ’AND’ or

’XNOR’) and bitcount [27] if the bit-widths of weights and

activations become low enough. The weight and activation

quantizers are jointly trained with full-precision weights.

Note that the weight quantizers and full-precision weights

are kept and updated only in the training stage; at the in-

ference time, we drop them and use only the quantized

weights.

We demonstrate our method on the ImageNet classifi-

cation dataset [23] with various network architectures such

as ResNet-18, -34 and AlexNet. Compared to the existing

methods on weight and activation quantization, our method

achieves significantly higher accuracy, achieving the state-

of-the-art results. Our quantizers are trained in end-to-end

fashion without any layerwise optimization [25].

In summary, our contributions are threefold:

• We propose a trainable quantizer with parameterized

intervals for quantization, which simultaneously per-

forms both pruning and clipping.

• We apply our trainable quantizer to both the weights

and activations of a deep network, and optimize it

along with the target network weights for the task-

specific loss in an end-to-end manner.

• We experimentally show that our quantizer achieves

the state-of-the-art classification accuracies on Ima-

geNet with extremely low bit-width (2, 3, and 4-bit)

networks, and achieves high performance even when

trained with a heterogeneous dataset and applied to a

pretrained network.

2. Related Work

Our quantization method aims to obtain low-precision

networks. Low-precision networks have two benefits:

model compression and operation acceleration. Some work

compresses the network by reducing bit-width of model

weights, such as BinaryConnect (BC) [5], Binary-Weight-

Network (BWN) [22], Ternary-Weight-Network (TWN)

[16] and Trained-Ternary-Quantization (TTQ) [29]. BC

uses either deterministic or stochastic methods for binariz-

ing the weights which are {−1,+1}. BWN approximates

the full-precision weights as the scaled bipolar({−1,+1})

weights, and finds the scale in a closed form solution. TWN

utilizes the ternary({−1, 0,+1}) weights with scaling fac-

tor which is trained in training phase. TTQ uses the same

quantization method but the different scaling factors are

learned on the positive and negative sides. These methods

solely considers quantization of network weights, mostly

for binary or ternary cases only, and do not consider quan-

tization of the activations.

In order to maximally utilize the bit-wise operations for

convolution, we should quantize both weights and activa-

tions. Binarized-Neural-Network(BNN) [11] binarizes the

weights and activations to {−1,+1} in the same way as

BC, and uses these binarized values for computing gradi-

ents. XNOR-Net [22] further conducts activation binariza-

tion with a scaling factor where the scaling factor is ob-

tained in a closed form solution. DoReFa-Net [27] per-

forms a bit-wise operation for convolution by quantizing

both weights and activations with multiple-bits rather than

performing bipolar quantization. They adopt various activa-

tion functions to bound the activation values. The weights

are transformed by the hyperbolic tangent function and then

normalized with respect to the maximum values before

quantization. Half-Wave-Gaussian-Quantization (HWGQ)

[3] exploits the statistics of activations and proposes vari-

ants of ReLU activation which constrain the unbounded val-

ues. Both DoReFa-Net and HWGQ use upper bounds for

the activation but they are fixed during training and their

quantizations are not learned as done in our model.

Several work [26, 25, 30, 4] proposed highly accurate

low bit-width models by considering both weight and acti-

vation quantization. LQ-Nets [26] allows floating-point val-

ues to represent the basis of K-bit quantized value instead

of the standard basis [1, 2, ..., 2K−1], and learn the basis for

weights and activations of each layer or channel by mini-

mizing the quantization error. On the other hand, our train-

able quantizer estimates the optimal quantization interval,

which is learned in terms of minimizing the output task loss

rather than minimizing the quantization error. Furthermore,

the LQ-Nets has to use a few floating-point multiplication

for computing convolution due to the floating-point basis,

but our convolution can use shift operation instead of mul-

tiplication because all of our quantized values are integers.

Wang et al. [25] proposes a two-step quantization (TSQ)

that decomposes activation and weight quantization steps,

which achieves good performance with AlexNet and VG-

GNet architectures. However, TSQ adopts layerwise opti-

mization for the weight quantization step, and thus is not

applicable to ResNet architecture which includes skip con-

nections. Contrarily, our quantizer is applicable to any

types of network architectures regardless of skip connec-
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(a) Quantization Interval (b) A convolutional layer of our low bit-width network
Figure 1. Illustration of our trainable quantizer. (a) Our trainable quantization interval, which performs pruning and clipping simultaneously.

(b) The lth convolution layer of our low-precision network. Given bit-width, the quantized weights W̄l and activations X̄l are acquired

using the parameterized intervals. The interval parameters (cWl
, dWl

, cXl
, dXl

) are trained jointly with the full-precision weights Wl

during backpropagation.

tion. Zhuang et al. [30] propose a two-stage and progressive

optimization method to obtain good initialization to avoid

the network to get trapped in a poor local minima. We adopt

their progressive strategy, which actually improves the ac-

curacy especially for extremely low bit-width network, i.e.,

2-bit. PACT [4] proposes a parameterized clipping activa-

tion function where the clipping parameter is obtained dur-

ing training. However, it does not consider pruning and

the weight quantization is fixed as in DoReFa-Net. A cou-

ple of recent quantization methods use Bayesian approches;

Louizos et al. [18] propose Bayesian compression, which

determines optimal number of bit precision per layer via

the variance of the estimated posterior, but does not clus-

ter weights. Achterhold et al. [1] propose a variational

inference framework to learn networks that quantize well,

using multi-modal quantizing priors with peaks at quantiza-

tion target values. Yet neither approaches prune activations

or learn the quantizer itself as done in our work.

We propose the trainable quantization interval which

performs pruning and clipping simultaneously during train-

ing, and by applying this parameterization both for weight

and activation quantization we keep the classification accu-

racy on par with the one of the full-precision network while

significantly reducing the bit-width.

3. Method

The trainable quantization interval has quantization

range within the interval, and prunes and clips ranges out of

the interval. We apply the trainable quantization intervals to

both activation and weight quantization and optimize them

with respect to the task loss (Fig. 1). In this section, we

first review and interpret the quantization process for low

bit-width networks, and then present our trainable quantizer

with quantization intervals.

3.1. Quantization in low bit­width network

For the l-th layer of a full-precision convolutional neural

network (CNN), the weight Wl is convolved with the in-

put activation Xl where Wl and Xl are real-valued tensors.

We denote the elements of Wl and Xl by wl and xl, respec-

tively. For notational simplicity, we drop the subscript l in

the following. Reducing bit-widths inherently involves a

quantization process, where we obtain the quantized weight

w̄ ∈ W̄ and the quantized input activation x̄ ∈ X̄ via quan-

tizers,

QW : w
TW−−−→ ŵ

D
−−−→ w̄

QX : x
TX−−−→ x̂

D
−−−→ x̄.

(1)

A quantizer Q∆(∆ ∈ {W,X}) is a composition of a trans-

former T∆ and a discretizer D. The transformer maps the

weight and activation values to [−1, 1] or [0, 1]. The sim-

plest example of the transformer is the normalization that

divides the values by their maximum absolute values. An-

other example is a function of tanh(·) for weights and clip-

ping for activations [27]. The discretizer maps a real-value

v̂ in the range [−1, 1] (or [0, 1]) to some discrete value v̄ as

follows:

v̄ =
⌈v̂ · qD⌋

qD
(2)

where ⌈·⌋ is the round operation and qD is the discretization

level.

In this paper, we parameterize the quantizer (trans-

former) to make it trainable rather than fixed. Thus the

quantizers can be jointly optimized together with the neu-

ral network model weights. We can obtain the optimal W̄

and X̄ that directly minimize the task loss (i.e., classifi-

cation loss) of the entire network (Fig. 1 (b)) rather than

simply approximating the full-precision weight/activation

(W ≈ W̄, X ≈ X̄) [16, 3] or the convolutional outputs
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(a) (b) (c)
Figure 2. A quantizer as a combination of a transformer and a discretizer with various γ where (a) γ = 1, (b) γ < 1, and (c) γ > 1. The

blue dotted lines indicate the transformers, and the red solid lines are their corresponding quantizers. The th
p

∆
and the thc

∆ represent the

pruning and clipping thresholds, respectively.

(W ∗ X ≈ W̄ ∗ X̄) [22, 25] where ∗ denotes convolution

operation.

3.2. Trainable quantization interval

To design the quantizers, we consider two operations:

clipping and pruning (Fig. 1 (a)). The underlying idea of

clipping is to limit the upper bound for quantization [27, 4].

Decreasing the upper bound increases the quantization res-

olution within the bound so that the accuracy of the low

bit-width network can increase. On the other hand, if the

upper bound is set too low, accuracy may decrease because

too many values will be clipped. Thus, setting a proper clip-

ping threshold is crucial for maintaining the performance of

the networks. Pruning removes low-valued weight parame-

ters [7]. Increasing pruning threshold helps to increase the

quantization resolution and reduce the model complexity,

while setting pruning threshold too high can cause the per-

formance degradation due to the same reason as the clipping

scheme does.

We define the quantization interval to consider both

pruning and clipping. To estimate the interval automati-

cally, the intervals are parameterized by c∆ and d∆ (∆ ∈
{W,X}) for each layer where c∆ and d∆ indicate the cen-

ter of the interval and the distance from the center, respec-

tively. Note that this is simply a design choice and other

types of parameterization, such as parameterization with

lower and upper bound, are also possible.

Let us first consider the weight quantization. Because

weights contain both positive and negative values, the quan-

tizer has symmetry on both positive and negative sides.

Given the interval parameters cW and dW , we define the

transformer TW as follows:

ŵ =







0 |w| < cW − dW
sign(w) |w| > cW + dW

(αW |w|+ βW )γ · sign(w) otherwise,
(3)

where αW = 0.5/dW , βW = −0.5cW /dW + 0.5 and the

γ is another trainable parameter of the transformer. That is,

the quantizer is designed by the interval parameters cW , dW
and γ which are trainable. The non-linear function with γ
considers the distribution inside the interval. The graphs in

Fig. 2 show the transformers (dotted blue lines) and their

corresponding quantizers (solid red lines) with various γ. If

γ = 1, then the transformer is a piecewise linear function

where the inside values of the interval are uniformly quan-

tized (Fig. 2 (a)). The inside values can be non-uniformly

quantized by adjusting γ (Fig. 2 (b, c)). γ could be either

set to a fixed value or trained. We demonstrate the effects

of γ in the experiment. If γ 6= 1, the function is complex

to be calculated. However, the weight quantizers are re-

moved after training and we use only the quantized weights

for inference. For this reason, this complex non-linear func-

tion does not decrease the inference speed at all. The actual

pruning threshold thp
∆ and clipping threshold thc

∆ vary ac-

cording to the parameters cW , dW and γ as shown in Fig.

2. For example, the thp
∆ and thc

∆ in the case of γ = 1 are

derived as follows:

thp
∆ = c∆ − d∆ + 0.5d∆/q∆

thc
∆ = c∆ + d∆ − 0.5d∆/q∆.

(4)

Note that the number of quantization levels qW for the

weight can be computed as qW = 2NW−1 − 1 (one-side,

except 0), given the bit-width NW . Thus, the 2-bit weights

are actually ternary {−1, 0, 1}.

The activations fed into a convolutional layer are non-

negative due to ReLU operation. For activation quantiza-

tion, a value larger than cX + dX is clipped and mapped to

1 and we prune a value smaller than cX − dX to 0. The val-

ues in between are linearly mapped to [0, 1], which means

that the values are uniformly quantized in the quantization

interval. Unlike the weight quantization, activation quan-

tizaiton should be conducted on-line during inference, thus

we fix the γ to 1 for fast computation. Then, the transformer

TX for activation is defined as follows (Fig. 2 (a)):

x̂ =







0 x < cX − dX
1 x > cX + dX

αXx+ βX otherwise,
(5)
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Algorithm 1 Training low bit-width network using param-

eterized quantizers

Input: Training data

Output: A low bit-width model with quantized weights

{w̄l}
L
l=1 and activation quantizers {cXl

, dXl
}Ll=1

1: procedure TRAINING

2: Initialize the parameter set {Pl}
L
l=1 where Pl =

{wl, cWl
, dWl

, γl, cXl
, dXl

}
3: for l = 1, ..., L do

4: Compute w̄l from wl using Eq. 3 and Eq. 2

5: Compute x̄l from xl using Eq. 5 and Eq. 2

6: Compute w̄l ∗ x̄l
Compute the loss ℓ

7: Compute the gradient w.r.t. the output ∂ℓ/∂xL+1

8: for l = L, ..., 1 do

9: Given ∂ℓ/∂xl+1,

10: Compute the gradient of the parameters in Pl

11: Update the parameters in Pl

12: Compute ∂ℓ/∂xl

13: procedure DEPLOYMENT

14: for l = 1, ..., L do

15: Compute w̄l from wl using Eq. 3 and Eq. 2

16: Deploy the low bit-width model {w̄l, cXl
, dXl

}Ll=1

where αX = 0.5/dX and βX = −0.5cX/dX + 0.5. Given

the bit-width NX of activation, the number of quantization

levels qX (except 0) can be computed as qX = 2NX −1; i.e.,

the quantized values are {0, 1, 2, 3} for 2-bit activations.

We use stochastic gradient descent for optimizing the pa-

rameters of both the weights and the quantizers. The trans-

formers are piece-wise differentiable, and thus we can com-

pute the gradient with respect to the interval parameters c∆,

d∆ and γ. We use straight-through-estimator [2, 27] for the

gradient of the discretizers.

Basically, our method trains the weight parameters

jointly with quantizers. However, it is also possible to train

the quantizers on a pre-trained network with full-precision

weights. Surprisingly, training only the quantizer without

updating weights also yields reasonably good accuracy, al-

though its accuracy is lower than that of joint training (See

Fig. 6).

We describe the pseudo-code for training and deploying

our low bit-width model in Algorithm 1.

4. Experiment results

To demonstrate the effectiveness of our trainable quan-

tizer, we evaluated it on the ImageNet [23] and the CIFAR-

100 [14] datasets.

4.1. ImageNet

The ImageNet classification dataset [23] consists of

1.2M training images from 1000 general object classes and

50,000 validation images. We used various network archi-

tectures such as ResNet-18, -34 and AlexNet for evaluation.

Implementation details We implement our method us-

ing PyTorch with multiple GPUs. We use original ResNet

architecture [9] without any structural change for ResNet-

18 and -34. For AlexNet [15], we use batch-normalization

layer after each convolutional layer and remove the dropout

layers and the LRN layers while preserving the other fac-

tors such as the number and the sizes of filters. In all the

experiments, the training images are randomly cropped and

resized to 224 × 224, and horizontally flipped at random.

We use no further data augmentation. For testing, we use

the single center-crop of 224×224. We used stochastic gra-

dient descent with the batch size of 1024 (8 GPUs), the mo-

mentum of 0.9, and the weight decay of 0.0001 for ResNet

(0.0005 for AlexNet). We trained each full-precision net-

work up to 120 epochs where the learning rate was initially

set to 0.4 for ResNet-18 and -34 (0.04 for AlexNet), and is

decayed by a factor of 10 at 30, 60, 85, 95, 105 epochs. We

finetune low bit-width networks for up to 90 epochs where

the learning rate is set to 0.04 for ResNet-18 and -34 (0.004

for AlexNet) and is divided by 10 at 20, 40, 60, 80 epochs.

We set the learning rates of interval parameters to be 100×
smaller than those of weight parameters. We did not quan-

tize the first and the last layers as was done in [12, 27].

Comparison with existing methods We evaluate our

learnable quantization method with existing methods, by

quoting the reported top-1 accuracies from the original pa-

pers (Table 1). Our 5/5 and 4/4-bit models preserve the

accuracy of full-precision model for all three network ar-

chitectures (ResNet-18, -34 and AlexNet). For 3/3-bit, the

accuracy drops only by 1% for ResNet-18 and by 0.6% for

ResNet-34. If we further reduced the bit-width to 2/2-bit,

the accuracy drops by 4.5% (ResNet-18) and 3.1% com-

pared to the full-precision. Compared to the second best

method (LQ-Nets [26]), our 3/3 and 2/2-bit models are

around 1% more accurate for ResNet architectures. For

AlexNet, our 3/3-bit model drops the top-1 accuracy only

by 0.5% with respect to full-precision which beats the sec-

ond best by large margin of 5.7%. For 2/2-bit, accuracy

drops by 3.7% which is almost same accuracy with TSQ

[25]. Note that TSQ used layerwise optimization, which

makes it difficult to apply to the ResNet architecture with

skip connections. However, our method is general and is

applicable any types of network architecture.
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Table 1. Top-1 accuracy (%) on ImageNet. Comparion with the existing methods on ResNet-18, -34 and AlexNet. The ‘FP’ represents the

full-precision (32/32-bit) accuracy in our implementation.

Method

ResNet-18 (FP: 70.2) ResNet-34 (FP: 73.7) AlexNet (FP: 61.8)

Bit-width (A/W)

5/5 4/4 3/3 2/2 5/5 4/4 3/3 2/2 5/5 4/4 3/3 2/2

QIL (Ours)† 70.4 70.1 69.2 65.7 73.7 73.7 73.1 70.6 61.9 62.0 61.3 58.1

LQ-Nets [26] - 69.3 68.2 64.9 - - 71.9 69.8 - - - 57.4

PACT [4] 69.8 69.2 68.1 64.4 - - - - 55.7 55.7 55.6 55.0

DoReFa-Net [27] 68.4 68.1 67.5 62.6 - - - - 54.9 54.9 55.0 53.6

ABC-Net [17] 65.0 - 61.0 - 68.4 - 66.7 - - - - -

BalancedQ [28] - - - 59.4 - - - - - - - 55.7

TSQ† [25] - - - - - - - - - - - 58.0

SYQ† [6] - - - - - - - - - - - 55.8

Zhuang et al. [30] - - - - - - - - - 58.1 - 52.5

WEQ [20] - - - - - - - - - 55.9 54.9 50.6

Table 2. The top-1 accuracy (%) of low bit-width networks on

ResNet-18 with direct and progressive finetuning. The 5/5-bit net-

work was finetuned from full-precision network.

Initialization
Bit-width (A/W)

32/32 5/5 4/4 3/3 2/2

Direct
70.2

70.4 69.9 68.7 56.0

Progressive - 70.1 69.2 65.7

Table 3. Joint training vs. Quantizer only. The top-1 accuracy (%)

with ResNet-18.

Initialization
Bit-width (A/W)

32/32 5/5 4/4 3/3 2/2

Joint training
70.2

70.4 70.1 69.2 65.7

Quantizer only 69.4 68.0 62.0 20.9

Initialization Good initialization of parameters improves

the accuracy of trained low bit-width networks [17, 19]. We

adopt finetuning approach for good initialization. In [17],

they progressively conduct the quantization from higher bit-

widths to lower bit-widths for better initialization. We com-

pare the results of direct finetuning of full-precision net-

work with progressively finetuning from 1-bit higher bit-

width network (Table 2). For progressive finetuning, we se-

quentially train the 4/4, 3/3, and 2/2-bit networks (i.e, FP →
5/5 → 4/4 → 3/3 → 2/2 for 2/2-bit network). Generally, the

accuracies of progressive finetuning are higher than those

of direct finetuning. The progressive finetuning is crucial

for 2/2-bit network (9.7% point accuracy improvement), but

has marginal impact on 4/4 and 3/3-bit networks (only 0.2%

and 0.5% point improvements, respectively).

Joint training vs. Quantizer only The weight parame-

ters can be optimized jointly with quantization parameters

Figure 3. Average pruning ratio of weights and activations on

AlexNet and ResNet-18 with various bit-widths

or we can optimize only the quantizers while keeping the

weight parameters fixed. Table 3 shows the top-1 accu-

racy with ResNet-18 network on the both cases. Both the

cases utilize the progressive finetuning. The joint train-

ing of quantizer and weights works better than training

the quantizer only, which is consistent with our intuition.

The joint training shows graceful performance degradation

while reducing bit-width, compared to training of only the

quantizers. Nevertheless, the accuracy of the quantizers

is quite promising with 4-bit or higher bit-width. For ex-

ample, the accuracy drop with 4/4-bit model is only 2.1%

(70.1%→68.0%).

Pruning ratio In order to see the pruning effect of our

quantizer, we compute the pruning ratio which is the num-

ber of zeros over the total number of weights or activations.

Fig. 3 shows the average pruning ratios of the entire net-

work for ResNet-18 and AlexNet. As expected, the pruning

ratio increases as the bit-width decreases. If the bit-width

is high, the quantization interval can be relaxed due to the

high quantization resolution. However, as the bit-width de-

† With this mark in Table 1 and 6, the 2-bit of weights is ternary

{−1, 0, 1}, otherwise it is 4-level.
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(a) Weight (b) Activation
Figure 4. Blockwise pruning ratio of (a) weight and (b) activation for each ResBlock with ResNet-18. The bar graph shows the number of

weights or activations for each ResBlock on a log scale.

(a) weight, initial (b) weight, epoch 11 (c) weight, epoch 90 (d) activation, epoch 90
Figure 5. Weight and activation distributions at the 3rd layer of the 3/3-bit AlexNet. The 3/3-bit network is finetuned from the pretrained

full-precision network. The figures show the distributions of (a) initial weights, (b) weights at epoch 11, (c) weights at epoch 90 and (d)

activations at epoch 90. The th
p

∆
and the thc

∆ represent the pruning and the clipping thresholds, respectively.

creases, more compact interval should be found to maintain

the accuracy, and as a result, the pruning ratio increases.

For 2/2-bit network, 91% and 81% of weights are pruned

on average for AlexNet and ResNet-18, respectively (Fig.

3). The AlexNet is more pruned than the ResNet-18 be-

cause the AlexNet has fully-connected layers which have

18∼64 times larger parameters than the convolutional lay-

ers and the fully-connected layers are more likely pruned.

The activations are less affected by the bit-width. Fig. 4

shows the blockwise pruning ratio of ResNet-18. We com-

pute the pruning ratio for each ResBlock which consists of

two convolutional layers and a skip connection. For activa-

tions, the upper layers are more likely to be pruned, which

may be because more abstraction occurs at higher layers.

Training γ For weight quantization, we designed the

transformer with γ (Eq. 3) which considers the distribution

inside the interval. We investigated the effects of training γ.

Table 4 shows the top-1 accuracies according to the various

γ for 3/3 and 2/2-bit AlexNet. We report both the trainable

γ and fixed γ. For 3/3-bit model, the trainable γ does not

affect the model accuracy; i.e., 61.4% with trainable γ and

61.3% with γ = 1. However, the trainable γ is effective for

2/2-bit model which improves the top-1 accuracy by 0.9%

compared with γ = 1 while the accuracies of the fixed γ of

0.5 and 0.75 are similar with γ = 1. The fixed γ of 1.5 de-

Table 4. The top-1 accuray with various γ on AlexNet

Bit-width
(A/W)

Fixed γ Trainable
γ

0.5 0.75 1.0 1.5

3/3 61.0 61.3 61.3 61.0 61.4

2/2 57.3 57.2 57.2 56.8 58.1

Table 5. Trainable γ with various network architecture for 2/2-bit

AlexNet ResNet-18 ResNet-34

Fixed γ = 1 57.2 65.7 70.6

Trainable γ 58.1 (+0.9) 66.1 (+0.4) 70.6 (+0.0)

grades the performance. We also evaluated trainable γ with

various network models for 2/2-bit (Table 5). The trainable

γ is less effective for ResNet-18 and -34.

Weight quantization To demonstrate the effectiveness of

our method on weight quantization, we only quantize the

weights and leave the activations as full-precision. We mea-

sure the accuracy on ResNet-18 with various bit-widths for

weights and compare it to the other existing methods (Ta-

ble 6). The accuracies of the networks quantized with our

method are slightly higher than those obtained using the

second-best method (LQ-Nets [26]).
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Table 6. Accuracy with ResNet-18 on ImageNet. The weights are

quantized to low bits and the activations remain at 32 bits. The

TTQ-B and TWN-B used the ResNet-18B [16] where the number

of filters in each block is 1.5× of the ResNet-18.

Bit-width
(A/W) Method

Accuracy (%)

Top-1 Top-5

32/32 FP-ours 70.2 89.6

32/4
QIL (Ours) 70.3 89.5

LQ-Nets [26] 70.0 89.1

32/3
QIL (Ours) 69.9 89.3

LQ-Nets [26] 69.3 88.8

32/2

QIL†(Ours) 68.1 88.3

LQ-Nets [26] 68.0 88.0

TTQ-B† [29] 66.6 87.2

TWN-B† [16] 65.3 86.2

TWN† [16] 61.8 84.2

Distributions of weights and activations Fig. 5 shows

the distributions of weights and activations with different

epochs. Since we train both weights and quantizers, the dis-

tributions of weights and quantization intervals are chang-

ing during training. Note that the peaks of the weight distri-

bution appear at the transition of each quantized values. If

the objective is to minimize the quantization errors, this dis-

tribution is not desirable. Since our objective is to minimize

the task loss, during training the loss become different only

when the quantized level of weights are different. Therefore

the weight values move toward the transition boundaries.

We also plot the activation distribution with the pruning and

the clipping thresholds. (Fig. 5 (d)).

4.2. CIFAR­100

In this experiment, we train a low bit-width network

from a pre-trained full-precision network without the orig-

inal training dataset. The motivation of this experiment is

to validate whether it is possible to train the low bit-width

model when the original training dataset is not given. To

demonstrate this scenario, we used CIFAR-100 [14], which

consists of 100 classes containing 500 training and 100 val-

idation images for each class where 100 classes are grouped

into 20 superclasses (5 classes for each superclass). We di-

vide the dataset into two disjoint groups A (4 superclasses,

20 classes) and B (16 superclasses, 80 classes) where A is

the original training set and B is used as a heterogeneous

dataset for training low bit-width model (4/4-bit model in

this experiment). The B is further divided into four sub-

sets B10, B20, B40 and B80 (B10 ⊂ B20 ⊂ B40 ⊂
B80 = B) with 10, 20, 40 and 80 classes, respectively.

First, we train the full-precision networks with A, then

finetune the low bit-width networks with B by minimiz-

ing the mean-squared-errors between the outputs of the full-

Figure 6. The accuracy on CIFAR-100 for low bit-width model

training with heterogeneous dataset.

precision model and the low bit-width model. We report the

testing accuracy of A for evaluation (Fig. 6). We compare

our method with other existing methods such as DoReFa-

Net [27] and PACT [4]. We carefully re-implemented

these methods with pyTorch. Our joint training of weights

and quantizers preserve the full-precision accuracy with all

types of B. If we train the quantizer only with fixed weights,

then the accuracies are lower than those of the joint training.

Our method achieves better accuracy compared to DoReFa-

Net and PACT. As expected, as the size of dataset increases

(B10 → B20 → B40 → B80), the accuracy improves.

These are impressive results, since they show that we can

quantize any given low bit-width networks can without ac-

cess to the original data they are trained on.

5. Conclusion

We proposed a novel trainable quantizer with param-

eterized quantization intervals for training low bit-width

networks. Our trainable quantizer performs simultane-

ous pruning and clipping for both weights and activations,

while maintaining the accuracy of the full-precision net-

work by learning appropriate quantization intervals. Instead

of minimizing the quantization error with respect to the

weights/activations of the full-precision networks as done in

previous work, we train the quantization parameters jointly

with the weights by directly minimizing the task loss. As

a result, we achieved very promising results on the large

scale ImageNet classification dataset. The 4-bit networks

obtained using our method preserve the accuracies of the

full-precision networks with various architectures, 3-bit net-

works yield comparable accuracy to the full-precision net-

works, and the 2-bit networks suffers from minimal accu-

racy loss. Our quantizer also achieves good quantization

performance that outperforms the existing methods even

when trained on a heterogeneous dataset, which makes it

highly practical in situations where we have pretrained net-

works without access to the original training data. Future

work may include more accurate parameterization of the

quantization intervals with piecewise linear functions and

use of Bayesian approaches.
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